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Abstract: The enigmatic phenomenon of dark energy (DE) is the elusive entity driving
the accelerated expansion of our Universe. A plausible candidate for DE is the non-zero
Einstein Cosmological Constant ΛE manifested as a constant energy density of the vacuum,
yet it seemingly defies gravitational effects. In this work, we interpret the non-zero ΛE

through the lens of scale-invariant cosmology. We revisit the conformal scale factor λ and
its defining equations within the Scale-Invariant Vacuum (SIV) paradigm. Furthermore, we
address the profound problem of the missing mass across galactic and extragalactic scales
by deriving an MOND-like relation, g ∼ √

a0 gN , within the SIV context. Remarkably,
the values obtained for ΛE and the MOND fundamental acceleration, a0, align with
observed magnitudes, specifically, a0 ≈ 10−10 m s−2 and ΛE ≈ 1.8 × 10−52 m−2. Moreover,
we propose a novel early dark energy term, T̃µν ∼ κH, within the SIV paradigm, which
holds potential relevance for addressing the Hubble tension.

Keywords: cosmology; theory; dark energy; dark matter; MOND; Weyl integrable
geometry

1. Introduction
Modern physics faces a tantalizing situation wherein the two theories describing

most phenomena, Quantum Field Theory (QFT) and General Relativity (GR), have been
successfully tested to high precision on Earth and via solar system observations. However,
the models of phenomena on galactic, inter-galactic, and cosmic scales have suggested that
normal matter barely accounts for ≈5% of the energy content of the Universe. Meanwhile,
≈70% of the energy content is related to the expansion of the Universe due to dark energy
(DE), and the other component is ≈25% due to dark matter (DM) [1].

Following the conventional wisdom, there is no shortage of proposals as to what DE
and DM could be: either possible new fields, new particles, or modifications of the Einstein
GR (EGR) [2–4]. While one is often very successful in continuing an ongoing trajectory,
the usual explanation of DE and DM has faced a detection deficit for over 40 years while
accumulating many tensions as a working paradigm [5].

Here, we would like to provide a possible solution to the DE and DM puzzles via
a symmetry extension of the EGR. This extension was already proposed by Weyl in
1918 [6,7], but was rejected, for good reason, by Einstein [8]. The initial concern was
resolved within the Weyl integrable geometry (WIG) reformulation [9,10]. The idea of
scale invariance was then advocated by Dirac [10], and it was later the cornerstone of the
scale-covariant cosmology of Canuto et al. [11]. The initial works [10,11] used the Large
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Numbers Hypothesis of Dirac [12], which was faced with skepticism. However, in 2016,
the idea of a Scale-Invariant Vacuum (SIV) was proposed in three papers posted to the
arXiv preprint server in 2016 and published in 2017 by Maeder [13]. Since then, the idea
has been stress tested on various phenomena. For a short, recent overview, see [14]. The
foundations of the framework have been revisited [15,16], and the potential link between
the SIV and DM and DE was stated in 2020 by Maeder and Gueorguiev [17]. Here, we
provide our current understanding of the phenomena of dark energy via the Einstein
Cosmological Constant and dark matter via the MOND-like acceleration relation within
the SIV paradigm, along with the numerical values of the relevant expressions.

2. Framework for Scale-Invariant Cosmology
As was already pointed out, the Weyl geometry as the foundation of a scale-invariant

cosmology was discussed by Dirac [10] and Canuto et al. [11], and possible astronomical
applications have been considered by Bouvier and Maeder [18] and Maeder and Bouvier
[19]. More modern but very abstract mathematical formulations have been reviewed [20];
however, nature-based considerations of phenomena with potential observational validations
are rare [14,19,21], and even fewer have had a particle physics focus [22].

The scale-covariant cosmology equations were first introduced in 1977 by Canuto et al. [11]
in the following form:

8 πGϱ

3
=

k
a2 +

ȧ2

a2 + 2
λ̇ ȧ
λ a

+
λ̇2

λ2 − ΛEλ2

3
, (1)

−8 πGp =
k
a2 + 2

ä
a
+ 2

λ̈

λ
+

ȧ2

a2 + 4
ȧ λ̇

a λ
− λ̇2

λ2 − ΛE λ2 . (2)

As a scale-invariant cosmology, any λ could be used. Thus, one has to make a “gauge”
choice for λ to proceed with comparison to observations1. Some possible choices have
already been discussed by Canuto et al. [11] based on the Large Numbers Hypothesis by
Dirac [12]. Subsequent studies, e.g., [19], noticed that, for the vacuum solutions of the
GR equations, the conformal equivalence of de Sitter space to Minkowski space can be
achieved explicitly by fixing λ to satisfy

3λ−2/(c2t2ΛE) = 1. (3)

This property of the vacuum, that the empty space is scale invariant, was further
formalized in [13], and, in subsequent works, was emphasized as the Scale-Invariant
Vacuum hypothesis for imposing the SIV gauging condition that fixes λ. Therefore, if one
is to choose an λ that does not depend on the matter behavior explicitly, and by setting
Λ = ΛEλ2, then one can obtain the following set of relationships given first in [13] and
further re-derived from an action in [16], while the observational consequences have been
summarized in [14]:

3
λ̇2

λ2 = Λ , and 2
λ̈

λ
− λ̇2

λ2 = Λ , (4)

or
λ̈

λ
= 2

λ̇2

λ2 , and
λ̈

λ
− λ̇2

λ2 =
Λ
3

. (5)

Upon the use of the SIV choice (4) first introduced in 2017 by Maeder [13] or its
equivalent form (5), one observes that the cosmological constant disappears from (1) and (2).
In doing so, one recovers the scale invariance of the vacuum for flat cosmology (k = 0),
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which is broken only by the presence of source fields characterized by the energy density
of matter and its pressure:

8 πGϱ

3
=

k
a2 +

ȧ2

a2 + 2
ȧλ̇

aλ
, (6)

−8 πGp =
k
a2 + 2

ä
a
+

ȧ2

a2 + 4
ȧλ̇

aλ
. (7)

Making sense of this choice of λ, called the Scale-Invariant Vacuum (SIV) choice,
and linking it to the observed phenomena in nature are the purposes of this paper. For
this purpose, we go back to the origin of the equations and highlight the key properties
of the Ricci tensor and scalar related to understanding our viewpoint. After a Weyl
transformation [18,19], one has the following Ricci tensor and Ricci scalar expressions:

gµν → λ2gµν ⇒ Rµν → Rµν + Kµν, (8)

where Kµν is given by

Kµν = gµνκρκρ + 2κµκν + κµ;ν + κν;µ − 2gµνκ
ρ
;ρ. (9)

Such expressions were first discussed in Equation (89.2) by Eddington [9] and later
by Dirac [10] and Parker [22] as well. Upon contracting (8), one sees that the Ricci scalar
becomes R → (R + K)/λ2, where

K = 6κρκρ − 6κ
ρ
;ρ. (10)

Here, κµ = −∂µ ln λ is the WIG connexion vector.

3. The Various Faces of the Cosmological Term Λ
3.1. The Einstein Cosmological Constant ΛE

The conventional Einstein equation with cosmological constant ΛE within general
relativity is as follows:

Rµν −
1
2

Rgµν + ΛEgµν = κTµν. (11)

This formulation utilizes a metric-compatible connection where the first two terms
form the Einstein tensor with zero-divergence while on the right-hand side. When on
the left-hand side, one has the stress–energy tensor satisfying similar zero divergence,
leading to the relevant covariant conservation laws. All of this is consistent as long as
κ = 8πG/c4 and the cosmological constant ΛE are constants; otherwise, one would
have ΛE,µ = κ,νTν

µ . Thus, the constancy of G and c imply the constancy of the Einstein
Cosmological Constant ΛE.

3.2. Cosmological Constant or Dark Energy

One usually expects that an appropriate averaging over the matter distribution would
result in a stress–energy tensor Tµν = ρgµν + O(δT) where the energy density ρ will be
related to the zero-point/vacuum energy of the matter fields. Since, in a co-moving frame,
for an observer at infinity, the metric is expected to be Minkowski-like, one has T00 ∝ ρ

and Tii ∝ p; therefore, one naturally considers ρ as a dark energy contribution to the
stress–energy tensor with p = −ρ due to η00 = −ηii. Thus, we can move the term ΛE gµν

from the LHS to the RHS of (11) and consider ΛE to be related to the zero-point/vacuum
energy of the matter fields. Unfortunately, this leads to the cosmological constant problem
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manifested in the enormous discrepancy between the estimated value, based on QFT
arguments, and the observed/measured actual value [1,23–25]. Another issue comes
from the parallels between Newtonian Gravity, where a homogeneous and isotropic mass
distribution has no gravitational effect, and GR, where energy is on the RHS of (11) and
therefore has an influence on the metric. Thus, the question of “Should or shouldn’t the
vacuum gravitate if it has a non-zero energy density?” comes to mind.

3.3. Connecting the Dots Within the SIV Paradigm

The observed value for ΛE is well within the order of magnitude estimate based on
the relevant parameters for such a system [26], that is, using the values of c, G, RH where
the Hubble radius is RH = c/H0 with H0 being the Hubble constant. However, if one
considers a non-zero positive constant energy density for a homogeneous and isotropic
universe, then one concludes that, at a sufficiently large distance RS, such a universe
should possess a black hole event horizon. For example, if the constant energy density is
due to the zero-point energy of the familiar matter and radiation fields, then one expects
ρ0 = const ≳ 0. Now, consider a ball of radius r. Such a constant value results in an
effective mass M = 4π

3 r3ρ0, in geometric units (c = 1, G = 1), and its Schwarzschild radius
will be RS = 2M. If the mass distribution is within a radius r < RS, then one has a black
hole. No matter how small the positive constant energy density ρ0 ≳ 0 is, there is always
a sufficiently big ball of radius rb, so that beyond r > rb, one has a black hole with an

event horizon at rb = 8π
3 r3

bρ0 ⇒ rb =
√

3
8πρ0

. Of course, this situation does not apply if
the constant energy density is negative. Therefore, one can inevitably conclude that we
are inside a black hole, which may be the case as argued in [27,28]. However, if it is so,
then one would expect a contracting flow of matter towards the center of such a black hole,
located somewhere in the past, where there should be the biggest concentration of matter;
however, we observe an expanding Hubble flow towards the future event horizon, which
would indicate that the constant energy density should be negative. Such a negative energy
density will result in negative effective mass, which is at odds with positive probabilities in
quantum mechanics [29].

An alternative viewpoint is to consider the observed age of the Universe τ0 ≈ 1/H0

instead. Then again, c, G, τ0 will give us the ballpark estimate for ΛE but with a different
understanding when viewed within the SIV paradigm. For this purpose, we shall consider
the Weyl transformation (8). That is, the metric in the Einstein GR (EGR) frame g′µν will be
related to a metric gµν within a Weyl integrable geometry (WIG) via the factor λ, that is,
g′µν = λ2gµν. From now on, we will denote the EGR frame quantities with primes and no
primes for the more general WIG quantities. Upon utilizing (8), (9), and (10) within (11),
such a Weyl transformation expresses (11) into the more general WIG framework and the
Einstein equation becomes

Rµν + Kµν −
1
2

λ−2(R + K)λ2gµν + ΛEλ2gµν = κ Tµν. (12)

The above Equation (12) should be viewed as a rewriting of the Einstein GR equations
with a cosmological constant (11) for the metric g′µν into extended equations within the WIG
framework where now the objects on the LHS and RHS of (12) depend on λ and gµν. If λ is
chosen to be a constant, then (12) reverts to (11) because the connexion vector κµ becomes
zero and so is Kµν, as seen from (10), but for an appropriate new choice of units that is
reflected in the appropriate rescaling of ΛE, one will have the extended Equation (12). In
what follows, we are interested in a non-trivial choice for λ that will depend on time only. To
specify the functional form of this non-trivial λ, one can make the following considerations:
To understand the forthcoming expressions for λ, the new Equation (12) can now be split
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into two equations, one containing Λ = λ2ΛE along with λ and its derivatives (via kµ), and
another equation that does not have the Λ term:

Rµν −
1
2

Rgµν = κTµν − T̃µν, (13)

Kµν −
1
2

Kgµν + Λgµν = T̃µν. (14)

To evaluate T̃µν, we look at the LHS of (14) and use (9) and (10): T̃µν = 2κµκν +

κµ;ν + κν;µ + (Λ − 2κρκρ + κ
ρ
;ρ)gµν. Therefore, imposing κµ;ν = κν;µ = −κµκν along with

Λ = 3κµκµ will guarantee T̃µν = 0. By looking at κµ;ν = κµ,ν + Γρ
µνκρ, the first condition

is readily satisfied within the WIG (κµ;ν = κν;µ) of Canuto et al. [11], while the second
condition implies the relationship κµ,ν + Γρ

µνκρ + κµκν = 0. For the SIV “gauge” choice
λ ∝ 1/t, the only non-zero component is κ0 = 1/t, which will require Γ0

µν = 0. In particular,
Γ0

00 = 0 implies a time-independent g00 for constructing the metric-compatible covariant
derivative. Thus, for a general metric, the LHS of (14) may result in non-zero T̃µν = Γ0

µνκ0

within the SIV paradigm. Therefore, (14) defines T̃µν once the choice of λ is made. In this
respect, T̃µν can bring early dark energy effects into (13) due to the time dependence of
κ0. The contemporary view on the resolution of the Hubble tension is the possibility for
early dark energy [30], which could be supplied by T̃µν. For the case of SIV theory, the
appearance of a non-zero T̃µν and its dependence on Γ0

µν and κ result in the coupling of
the Hubble parameter H = ȧ/a to κ = −λ̇/λ, as seen by the last terms in (6) and (7). This
gives an explicit new model for early dark energy based on T̃µν ∼ κ H. From what follows,
this split of (12) is viewed as a foresight2. When investigating how to choose the “gauge”
factor λ, the second Equation (14) defines T̃µν once the choice of λ is made, and one is left
only with the first Equation (13).

Now, consider κ
ρ
;ρ = −κρκρ along with Λ = 2κρκρ + κ

ρ
;ρ = 3κρκρ, which implies

Λ = K/4 and T̃ = 0. In the special co-moving frame where the time-covariant derivative is
given by the partial derivative, with λ dependent only on time and κ = κ0 = −λ̇/λ, one
obtains a key SIV equation:

Λ =
3
2

(
κ2 − κ̇

)
⇔ Λ = 3κ2 = 3

(
λ̇

λ

)2

: iff κ̇ = −κ2 (15)

The above equations are those given by the first expressions in (4) and (5). By taking
the time derivative of κ/λ, we see that it will be equal to (κ̇ + κ2)/λ, which will vanish
if κ̇ = −κ2; thus, Λ/λ2 will be a constant3. Therefore, we will denote this constant also
by ΛE since these two constants will coincide eventually. Thus, for the case κ̇ = −κ2, the
solution for λ(t) is very simple and one can use the constant ΛE = Λ/λ2 = 3λ̇2/λ4 to
characterize it:

ε(t0 − t)
√

ΛE/3 = 1/λ − 1/λ0. (16)

That is, κ2 = λ̇2/λ2 = Λ/3 = (ΛE/3)λ2, along with

λ = λ0/
(

1 + λ0ε(t0 − t)
√

ΛE/3
)

, (17)

and κ = −λ̇/λ = −ελ
√

ΛE/3 are key SIV expressions; therefore, κ̇ ∼ λ̇ = ελ2√ΛE/3
implies κ̇ = −ε2(ΛE/3)λ2 = −κ2 as required. Here, ε = ±1, and therefore ε2 = 1. By
setting λ0

√
ΛE/3 = 1/t0, we have λ = λ0t0/t for ε = −1; thus, we have recovered (3), and

therefore κ = −λ̇/λ = 1/t with t ∈ [tin, t0], where tin is the moment of the Big Bang when
a(tin) = 0.

It is often convenient to choose λ0 = 1 along with SIV time units such that t0 = 1.
Thus, one is led to the same expression of the scale factor λ as obtained by the fundamental
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SIV hypothesis, according to which the macroscopic empty space is scale invariant,
homogeneous, and isotropic [13,16].

3.4. Interpretation of the Cosmological Constant Within the SIV Framework

The presence of a non-zero cosmological term ΛE leads to some severe problems: (1) a
mismatch of the observed value with the zero-point energy estimates based on QFT, and
(2) the puzzling conclusion that we may be inside a black hole. The Quantum Field Theory
(QFT) predicts an enormous value of vacuum energy when viewed as the zero-point energy
of the matter fields (i.e., c7/h̄/G2 ∼ 10114 erg/cm2), while anthropic considerations à la
Weinberg and even a simple dimensional estimate using the relevant physical constants
(i.e., H2

0 c2/G ∼ 10−8 erg/cm2) seem to arrive at the correct order of magnitude for the
vacuum energy related to the cosmological constant. Thus, one can conclude that quantum
effects involving Planck’s constant h̄ have nothing to do with the observed ΛE. Therefore,
quantum vacuum fluctuations are just that: fluctuations whose mean value is zero at
large cosmic scales. Within the SIV, this is reflected in removing the ΛE from the Freedman
equations, as seen in (13), in favor of an early dark energy term defined by (14) that involves
the conformal factor λ. It can be interpreted as a choice of parameterization that brings the
GR equations into the true co-moving frame with no cosmological constant ΛE as extra
energy density. It is similar to what happens when identifying the co-moving frame such
that the kinetic energy of a system is zero and therefore there is no relative special motion.
However, we do leave in 4D spacetime, which brings up the question of relative time
parameterizations; that is, what if the coordinate time of the observer is different from
the proper time of the system under study? It seems the relative time parametrization
controlled by λ also controls the amount of extra energy that there could be.

Another way to understand the situation is to recognize that the positive cosmological
constant ΛE on the LHS of (11) indicates extra energy density as part of the RHS (11). The
presence of ΛE explicitly breaks the global rescaling symmetry along with the ρ, p, and
k/a2 terms in the Freedman equations. The breaking is still there even for the macroscopic
vacuum, characterized by ρ = p = k = 0, if ΛE is non-zero. This can be viewed as a
manifestation of unproper time parametrization, since, for proper time parametrization, one
expects zero energy density instead. To correct the time parametrization, one can apply
global conformal transformation λ(t) instead of the commonly discussed local conformal
gauge λ(x). The use of λ(x) would imply the presence of a physical field whose excitations
should manifest as particles, which is not permissible [22]. Thus, the idea of using λ(t) is
well justified in order to preserve isotropy and homogeneity of space. It is aligned with
the idea about the role of time parametrization. Therefore, the existence of λ(t) as defined
by (17) removes ΛE from the Freedman equations and results in (6) and (7), which are
clearly scale invariant when ρ = p = k = 0. This demonstrates the relationship between
the scale-breaking term ΛE and its relation to the symmetry-restoring WIG frame defined
by λ(t) given by (17).

Therefore, the “gauge” symmetry of the SIV theory is not like the usual local gauge
symmetry, which we are familiar with from particle physics. As such, one can circumvent
the earlier mentioned problems by showing that ΛE is an actual constant within the SIV. As
mentioned earlier, the Einstein Cosmological Constant ΛE must be a constant if one views
the Newton Gravitational Constant G as a true constant (see Section 3.1). This can be used
to construct a Weyl transformation that removes the cosmological term Λ. It implies that the
extra energy density due to the cosmological constant can be viewed as an observer effect,
just as the kinetic energy of a system depends on the relative motion of the two systems;
however, in the case of the cosmological constant, this seems to be about the difference
in time parameterizations. That is, the metric gµν provides Λ-free EGR equations, as seen



Universe 2025, 11, 48 7 of 12

in (13), while the presence of a non-zero constant ΛE term is due to the choice of the EGR
metric tensor g′µν = λ2gµν, where the factor λ = t0/t is defined via

√
ΛE/3 = 1/t0 (17), in

agreement with the early observation by [13,19] that one can obtain the Minkowski line
element based on (3). Thus, this relates the value of the cosmological constant ΛE to the
age of the Universe t0, which is consistent with the simple dimensional estimates [26]. In
the usual SI units where the age of the Universe is τ0 = 13.8 billion years and the speed of
light is c = 3 × 108 m/s, one obtains

ΛE = 3/(cτ0)
2 ≈ 1.8 × 10−52 m−2, (18)

which is reasonably close to the measured value [1,26].
In the considerations above, we have settled that the time dependence of λ only is

justifiable based on assumptions of homogeneous and isotropic space at cosmological
scales. This is a cornerstone of the SIV paradigm [13,16]. An alternative justification
of a time-dependent-only λ is based on re-parametrization invariance, which has been
fruitful in justifying the known classical long-range forces and some of the key properties
of physical systems [29]. Either way, one arrives at the above arguments and concludes that
the Einstein Cosmological Constant ΛE is a manifestation of the choice of parametrization
where the age of the Universe is a natural parameter that measures how much stuff has
become causally connected within the observed Universe. Thus, upon a proper choice of λ

and metric gµν, the ΛE term disappears, and one has only (13) without the observer-related
cosmological constant ΛE given by (18).

4. The Missing Mass Problem
At astronomical and cosmological scales, it has been observed that motions in galaxies

and their clusters exhibit behavior that cannot be explained by the observed known matter
and its laws of motion. The idea of an invisible dark matter has been proposed to explain
observations (see the next section for more details). However, its absence from laboratory
tests for the past 40 years has become a puzzle. That is, the absence of any laboratory
detection of new dark matter particles raises questions as to the validity of the idea of the
existence of dark matter. On the other hand, these observations could be addressed by
an alternative to the dark matter hypothesis known as Modified Newtonian Dynamics
(MOND) [31]. It has been gaining supporters due to its successes in fitting observational
data about galaxies [32]. Furthermore, it has been shown that MOND could be viewed as a
particular manifestation of the SIV paradigm [33]. Thus, the presence of the scale factor
λ within the SIV paradigm can be utilized to address this missing matter observational
puzzle by its connection to MOND.

4.1. The Dark Matter Option

There is unambiguous observational evidence for deviation away from the Keplerian
fall-off v2 ∼ M/r when observing the motion of stars in the outer layers of galaxies. The
observations point to flat rotational curves v ∼ const as one moves further away from
the central bulge of the visible part of a galaxy. This observation has been addressed as
a continuation of the matter paradigm by assuming the presence of extra non-luminous
matter named dark matter, which forms halos around galaxies and extends far beyond
the luminous part of the host galaxy [34]. This is a natural initial guess as to what may be
causing the deviation from the Keplerian fall-off and into the presence of flat rotational
curves. There is a large variety of proposed dark matter candidates that are yet to be
observed if the idea is correct. In addition to the fact that such dark matter is a no-show in
labs, there are many additional issues with the various proposed dark matter solutions.
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4.2. The MOND Option

The Modified Newtonian Dynamics (MOND) resolution to the observed flat rotational
curves does not consider a new dark matter component(s) but assumes that the dynamics
are changed once the Newtonian acceleration falls below a certain cut-off value a0. Since
the FLRW scale factor at the current epoch is often chosen to be 1, this ambiguity in notation
with the MOND acceleration a0 should presumably be absent.

For the very low acceleration g ≪ a0, the initial MOND suggest that g ∼ √
gN a0,

where g = v2/r is the observed acceleration, while gN = GM/r2 is the Newtonian
gravitational acceleration [31]. For systems with acceleration g ≫ a0, the dynamics are
reduced to the standard dynamics g = gN (limit of a0 → 0), while, for accelerations
g ≪ a0, the system is in the Deep-MOND (DMOND) regime, where it also should
exhibit scale-invariant space–time dynamics (t, r) → λ × (t, r) [32,35]. Furthermore, in
the scale-invariant DMOND regime, g ∼ √

gN a0, where the limit could be viewed as
a0 → ∞ along with G → 0 but the product Ga0 → A0 stays constant. In this DMOND
scale-invariant regime, λ is an overall constant scale factor, where (t, r) → λ × (t, r) could
be viewed as rescaling the coordinate functions but keeping the units the same; thus, G
and a0 are constants that are invariant upon this rescaling within the DMOND regime. An
alternative viewpoint is to consider a change of units that removes the λ scaling of the
coordinates while inducing change in the values of the dimension-full constants q, say
with units [q] = [l]a[t]b[m]c, then q → λ−(a+b)q [32]. From this viewpoint, a0 → λa0 and
G → G/λ and the limits are obtained as λ → 0 or ∞. Notice that mass-related quantities
are not affected within MOND. The value of the MOND acceleration a0 is expected to
satisfy a0 ≈ cH0/2π [32].

4.3. Deriving MOND-like Acceleration Within SIV

In the SIV paradigm, the scale invariance is the primary idea, and the form of the scale
factor λ can be deduced, as discussed earlier. Furthermore, the equations of motion given
by the equations of the geodesics within GR are generalized via Dirac co-calculus to include
an extra velocity-dependent term as part of the scale-covariant Newtonian equation of
motion [16,18,19,36,37]:

d2−→r
dt2 = −Gt M(t)

r2

−→r
r

+ κ(t)
d−→r
dt

, (19)

Here, κ(t) = −λ̇/λ and Gt is Newton’s Gravitational Constant in the system of units
related to the choice of time parametrization t within the SIV, where Gt is viewed as a
true constant but the mass is expected to have relevant time dependence. For the above
equation to exhibit scale invariance, one has to assume that Gt M(t) ∝ λ, and if Gt is kept
constant, then M(t) = M0λ(t). The variation of mass is demanded by the conservation law
associated with the scale-invariant equation [13]. In the subsequent considerations, we will
drop the time label for Gt and M(t) to simplify the notation.

To arrive at an expression for an MOND-like acceleration a0 within the SIV, one
considers the ratio of the Newtonian acceleration gN = GM/r2 to the additional dynamic
acceleration κ(t)v (magnitudes):

x =
κvr2

GM
. (20)

Next, we will use the relation given by the instantaneous radial acceleration v2/r =
GM/r2 to eliminate the speed v. Then, by using gN = GM/r2, we arrive at

x =
κvr2

GM
= κ

√
r3

GM
= κ

√
r

gN
.
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The quantity x has been discussed previously [15,37], and is finally utilized in
connecting the SIV to MOND in [33]. Here, we are re-deriving the relevant expressions with
a focus on keeping the time component κ = κ0 = −λ̇/λ of the connexion vector within the
WIG explicit. Thus, when the dynamic acceleration dominates over the Newtonian (x ≫ 1),
one has

g = gN + xgN ≈ xgN = κ
√

rgN .

Therefore, we have arrived at the DMOND-type relation g ∼ √
a0gN , from which we

can deduce an expression for a0 within the SIV:

a0 ≈ κ2r.

The upper bound on a0 corresponds to utilizing the Hubble horizon r → rH = c/H0.
Therefore,

a0 ≈ κ2rH = κ2c/H0. (21)

In SIV units (1 = λ0 = t0 = c), one has κ = 1/t, and, for the matter-dominated
epoch, using the scale factor a(t) =

(
(t3 − Ωm)/(1 − Ωm)

)2/3 [38], one obtains H =

2t2/(t3 − Ωm); therefore, a0 ≈ κ2c/H0 = (1 − Ωm)/2 = Ωλ/2, where, within the SIV,
Ωλ = 2/(H t)—assuming a flat Universe (Ωk = 0). Therefore, Ωλ + Ωm = 1 is trivially
true within the SIV. SIV models with non-zero curvature k are also possible [13]. Thus, a
non-zero κ term in (19) gives rise to non-zero DMOND-like acceleration within the SIV:

a0 ≈ Ωλ/2. (22)

Next, we look at the DMOND-like acceleration a0, as expressed in the usual SI
units where the age of the Universe is τ0 = 13.8 billion years, the Hubble constant is
H0 = 68 km/s/Mp, and the speed of light is c = 3 × 108 m/s. Using κ ≈ 1/τ0, one can
immediately estimate the value to be a0 ≈ c/τ0 since H0τ0 ≈ 1. However, to be more
precise, one has to take into account that κ = −λ̇/λ and therefore κ(τ) = (dt/dτ)κ(t). To
find dt/dτ, we consider

t − tin

t0 − tin
=

τ − τin

τ0 − τin

for τin = 0 and tin = Ω1/3
m ⇒ t = Ω1/3

m + τ
τ0
(1 − Ω1/3

m ),

dt
dτ

=
t0 − tin

τ0
=

(1 − Ω1/3
m )

τ0
.

Thus, there is a correction factor to our use of κ ≈ 1/τ0 above; that is, κ(τ0) =

(1 − Ω1/3
m )/τ0 results in

a0 ≈ (1 − Ω1/3
m )2c/τ0 = (1 − Ω1/3

m )2cH0/ξ,

where H0τ0 = ξ ≈ 1. For Ωm = 5%, this gives a0 ≈ 2.75 × 10−10 m/s2. Here, the estimate
is based on the ΛCDM model; its fit to observational data results in Ωm = 5% for baryonic
matter. Within the SIV, we do not have such parameter determination yet; however, a
value of Ωm could be estimated based on the self-consistency requirement about the age
of the Universe and the value of the Hubble constant. That is, assuming H0τ0 = ξ ≈ 1,
one obtains 2(1 − Ω1/3

m )/(1 − Ωm) ≈ 1, which gives Ωm ≈ 23.6% within the SIV. Thus,
a0 ≈ 10−10 m/s2. Therefore, the two estimates above for a0 result in about the same order
of magnitude values a0 ≈ 10−10 m/s2. Notice that this value for Ωm = 23.6% is closer to
the total matter content within the ΛCDM model.
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The SIV paradigm suggests that the MOND-like acceleration a0 may be epoch
dependent and could have different values depending on the redshift of the system under
observation. This could be used to differentiate and test the SIV and MOND paradigms [39].

5. Conclusion
To summarize, we have shown that the Einstein Cosmological Constant ΛE is a true

constant within the framework of scale-invariant cosmology. In particular, within the SIV
paradigm, one can derive an expression (17) for the scale factor λ(t) based on (14), which
results in the condition (15), while the metric tensor satisfies the usual Einstein equation
without cosmological constant (13). That is, without a cosmological constant term of the
form ΛEgµν, but with the potential introduction of time-dependent dark energy term T̃µν,
that could be significant in the early universe and then diminish later. The contemporary
view on the resolution of the Hubble tension is the possibility for early dark energy [30],
which could be supplied by T̃µν. This explicit new model for early dark energy has the form
T̃µν ∼ κ H; thus, it could be used to test the SIV theory and its impact on the Hubble tension.
However, one first will have to determine the model parameter Ωm and the validity of the
SIV paradigm. This could be performed by determination of the relevant SIV Ωm from
the cosmological parameters such as deceleration, jerk, and snap, which were recently
constrained using a model-independent kinematic cosmographic study utilizing three
different data sets and their combinations [40,41]. Our approach to ΛE avoids the puzzling
conclusion that we may be inside of a black hole if ΛE is associated with the zero-point
energy of the vacuum—labeled as dark energy that does not gravitate. Furthermore, we
avoid the puzzling observation that there is a disagreement of 123 orders of magnitude
with the QFT estimates of the zero-point vacuum energy since it does not contribute to Tµν.
In our approach, the presence of a non-zero ΛE within ΛCDM is due to the choice of time
parameterization. That is, as there is extra kinetic energy in the case of spatial motion, there
is also extra energy due to differences in the time parametrization since this is a relative
temporal motion.

Next, we have shown how to derive an expression for the MOND-like acceleration
a0 (21) that controls the transition to DMOND where scale invariance is expected. In this
respect, we may have explained the dark matter problem via an MOND-like paradigm.
In our case, however, a0 is a consequence of the scale-invariant equations of motion (19),
while the usual MOND limits are controlled by the parameter x (20). Thus, there is a small
tangency of the SIV and MOND over a limited interval of low gravities and timescales!

Our estimates of the fundamental MOND acceleration a0 ≈ 10−10 m/s2 and the
Einstein Cosmological Constant ΛE ≈ 10−52 m−2 show the correct order of magnitude for
these two important constants. Both values are controlled by the age of the Universe, while
a0 is also related to the matter content of the Universe.
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Notes
1 As it stands, one can fit observations and deduce the model parameters, but the choice of λ has to make sense from a physics

viewpoint.
2 The need to fix λ has been anticipated by Dirac [10], Canuto et al. [11], but they used the Large Numbers Hypothesis Dirac

[12]. Here, we present the SIV approach, which seems to be relevant for understanding the cosmological constant and the dark
matter phenomena. Another “gauge” fixing is the λ constant that is the EGR frame. There could be other “gauge” choices
within the WIG that will correspond to specific WIG frameworks. The significance of these frameworks is something to be
understood in the future. In particular, the more correct expression for Λ in (15) contains a linear term in κ, of the form Γρ

ρ0κ0,

that comes from κ
ρ
;ρ. This term, along with other terms that result in an overall non-zero value for the LHS of (14), can be part

of the stress–energy tensor T̃µν determining gµν via (13). These extra terms to Tµν could be viewed as dark energy that are not
directly related to the cosmological constant. For example, another metric-specific term is Γ0

0iκ0, which is not balanced in general
when considering (9), (10), and (14). Remarkably, all the terms with an explicit gµν will cancel out upon using the more general
expression κ

ρ
ρ; = −κρκρ instead of κ̇ = −κ2, as given in (15), but κ̇ = −κ2 is important since it guarantees a constant value for

Λ/λ2 and therefore constancy of ΛE. In this respect, the unique choice for λ that follows from (15), which is equivalent to (4)
and (5), is an equivalent definition of the main SIV equations within a special co-moving frame. Furthermore, the SIV theory
associated with the unique “gauge” choice defined by Equation (4) and/or the equivalent set (5) is also supported by the unique
scale-invariant action principle discussed recently in [16].

3 The SIV equations for λ have been redirived from an action principle [16], but were first introduced and studied, since 2017,
by Maeder [13], within the scale-invariant cosmology by Dirac [10], Canuto et al. [11]. Thus, the property of κ̇ = −κ2 has been
noticed before and in particular the result within the SIV that λ̇2/λ4 is constant. Here, we turn this observations into a reasonable
choice for determining the functional form of λ that results in ΛE being a constant according to the SIV.
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