Effective Gravitational “Constant” in Scalar-(Curvature)Tensor and Scalar-Torsion Gravities
Abstract
:1. Introduction
2. Nonminimally Coupled Scalar Field
2.1. Scalar-(Curvature)Tensor Gravity
2.2. Multiscalar-(Curvature)Tensor Gravity
2.3. Scalar-Torsion Gravity
3. Cosmological Evolution and the Stabilization of the Gravitational “Constant”
3.1. Scalar-(Curvature)Tensor Cosmology
3.2. Multiscalar-(Curvature)Tensor Cosmology
3.3. Scalar-Torsion Cosmology
4. Effective Gravitational “Constant” around a Point Mass
4.1. Scalar-(Curvature)Tensor Gravity
4.2. Multiscalar-(Curvature)Tensor Gravity
4.3. Scalar-Torsion Gravity
5. Observational Constraints
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Faraoni, V.; Capozziello, S. Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics; Springer: Dordrecht, The Netherlands, 2011; Volume 170. [Google Scholar]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quantum Gravity 2015, 32, 243001. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f (T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed]
- Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoedl, S.; Schlamminger, S. Torsion balance experiments: A low-energy frontier of particle physics. Prog. Part. Nucl. Phys. 2009, 62, 102–134. [Google Scholar] [CrossRef]
- Uzan, J.P. Varying Constants, Gravitation and Cosmology. Living Rev. Relativ. 2011, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T. The Constancy of the Constants of Nature: Updates. Prog. Theor. Phys. 2011, 126, 993–1019. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Burrage, C.; Sakstein, J. A Compendium of Chameleon Constraints. J. Cosmol. Astropart. Phys. 2016, 2016, 045. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M.; Vilson, O. Invariant quantities in the scalar-tensor theories of gravitation. Phys. Rev. D 2015, 91, 024041. [Google Scholar] [CrossRef]
- Järv, L.; Kannike, K.; Marzola, L.; Racioppi, A.; Raidal, M.; Rünkla, M.; Saal, M.; Veermäe, H. A frame independent classification of single field inflationary models. Phys. Rev. Lett. 2017, 118, 151302. [Google Scholar] [CrossRef]
- Kuusk, P.; Järv, L.; Vilson, O. Invariant quantities in the multiscalar-tensor theories of gravitation. Int. J. Mod. Phys. A 2016, 31, 1641003. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Kuusk, P.; Randla, E.; Vilson, O. Post-Newtonian parameter γ for multiscalar-tensor gravity with a general potential. Phys. Rev. D 2016, 94, 124015. [Google Scholar] [CrossRef]
- Kuusk, P.; Järv, L.; Randla, E. Scalar-Tensor and Multiscalar-Tensor Gravity and Cosmological Models. In Algebra, Geometry and Mathematical Physics Springer Proceedings in Mathematics & Statistics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 85, pp. 661–672. [Google Scholar]
- Geng, C.Q.; Lee, C.C.; Saridakis, E.N.; Wu, Y.P. “Teleparallel” dark energy. Phys. Lett. B 2011, 704, 384–387. [Google Scholar] [CrossRef]
- Järv, L.; Toporensky, A. General relativity as an attractor for scalar-torsion cosmology. Phys. Rev. D 2016, 93, 024051. [Google Scholar] [CrossRef]
- Li, B.; Sotiriou, T.P.; Barrow, J.D. f (T) gravity and local Lorentz invariance. Phys. Rev. D 2011, 83, 064035. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f (T) gravity. Class. Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Damour, T.; Nordtvedt, K. General relativity as a cosmological attractor of tensor scalar theories. Phys. Rev. Lett. 1993, 70, 2217–2219. [Google Scholar] [CrossRef] [PubMed]
- Torres, D.F. Quintessence, superquintessence and observable quantities in Brans-Dicke and nonminimally coupled theories. Phys. Rev. D 2002, 66, 043522. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M. Potential dominated scalar-tensor cosmologies in the general relativity limit: Phase space view. Phys. Rev. D 2010, 81, 104007. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M. Scalar-tensor cosmologies with dust matter in the general relativity limit. Phys. Rev. D 2012, 85, 064013. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M. Scalar-tensor cosmologies with a potential in the general relativity limit: Time evolution. Phys. Lett. B 2010, 694, 1–5. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P.; Saal, M.; Vilson, O. Transformation properties and general relativity regime in scalar–tensor theories. Class. Quantum Gravity 2015, 32, 235013. [Google Scholar] [CrossRef]
- Ooba, J.; Ichiki, K.; Chiba, T.; Sugiyama, N. Planck constraints on scalar-tensor cosmology and the variation of the gravitational constant. Phys. Rev. D 2016, 93, 122002. [Google Scholar] [CrossRef]
- Ooba, J.; Ichiki, K.; Chiba, T.; Sugiyama, N. Cosmological constraints on scalar-tensor gravity and the variation of the gravitational constant. arXiv, 2017; arXiv:1702.00742. [Google Scholar]
- Järv, L.; Kuusk, P.; Randla, E. Biscalar-tensor cosmology in the general relativity limit. Unpublished work.
- Perivolaropoulos, L. PPN Parameter gamma and Solar System Constraints of Massive Brans-Dicke Theories. Phys. Rev. D 2010, 81, 047501. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Kuusk, P.; Randla, E. Post-Newtonian parameters γ and β of scalar-tensor gravity with a general potential. Phys. Rev. D 2013, 88, 084054. [Google Scholar] [CrossRef]
- Arnoulx de Pirey Saint Alby, T.; Yunes, N. Cosmological Evolution and Solar System Consistency of Massive Scalar-Tensor Gravity. arXiv, 2017; arXiv:1703.06341. [Google Scholar]
- Randla, E. PPN parameters for multiscalar-tensor gravity without a potential. J. Phys. Conf. Ser. 2014, 532, 012024. [Google Scholar] [CrossRef]
- Li, J.T.; Wu, Y.P.; Geng, C.Q. Parametrized post-Newtonian limit of the teleparallel dark energy model. Phys. Rev. D 2014, 89, 044040. [Google Scholar] [CrossRef]
- Chen, Z.C.; Wu, Y.; Wei, H. Post-Newtonian Approximation of Teleparallel Gravity Coupled with a Scalar Field. Nucl. Phys. B 2015, 894, 422–438. [Google Scholar] [CrossRef]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 2004, 93, 261101. [Google Scholar] [CrossRef] [PubMed]
- Konopliv, A.S.; Asmar, S.W.; Folkner, W.M.; Karatekin, Ö.; Nunes, D.C.; Smrekar, S.E.; Yoder, C.F.; Zuber, M.T. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 2011, 211, 401–428. [Google Scholar] [CrossRef]
- Talmadge, C.; Berthias, J.P.; Hellings, R.W.; Standish, E.M. Model Independent Constraints on Possible Modifications of Newtonian Gravity. Phys. Rev. Lett. 1988, 61, 1159–1162. [Google Scholar] [CrossRef] [PubMed]
- Sereno, M.; Jetzer, P. Dark matter versus modifications of the gravitational inverse-square law. Results from planetary motion in the solar system. Mon. Not. R. Astron. Soc. 2006, 371, 626–632. [Google Scholar] [CrossRef]
- Wallin, J.F.; Dixon, D.S.; Page, G.L. Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects. Astrophys. J. 2007, 666, 1296–1302. [Google Scholar] [CrossRef]
- Haranas, I.; Kotsireas, I.; Gómez, G.; Fullana, M.J.; Gkigkitzis, I. Yukawa effects on the mean motion of an orbiting body. Astrophys. Space Sci. 2016, 361, 365. [Google Scholar] [CrossRef]
- Iorio, L. A model-independent test of the spatial variations of the Newtonian gravitational constant in some extrasolar planetary systems. Mon. Not. R. Astron. Soc. 2007, 376, 1727–1730. [Google Scholar] [CrossRef]
- Borka, D.; Jovanović, P.; Jovanović, V.B.; Zakharov, A.F. Constraining the range of Yukawa gravity interaction from S2 star orbits. J. Cosmol. Astropart. Phys. 2013, 2013, 050. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Järv, L. Effective Gravitational “Constant” in Scalar-(Curvature)Tensor and Scalar-Torsion Gravities. Universe 2017, 3, 37. https://doi.org/10.3390/universe3020037
Järv L. Effective Gravitational “Constant” in Scalar-(Curvature)Tensor and Scalar-Torsion Gravities. Universe. 2017; 3(2):37. https://doi.org/10.3390/universe3020037
Chicago/Turabian StyleJärv, Laur. 2017. "Effective Gravitational “Constant” in Scalar-(Curvature)Tensor and Scalar-Torsion Gravities" Universe 3, no. 2: 37. https://doi.org/10.3390/universe3020037
APA StyleJärv, L. (2017). Effective Gravitational “Constant” in Scalar-(Curvature)Tensor and Scalar-Torsion Gravities. Universe, 3(2), 37. https://doi.org/10.3390/universe3020037