Blind Spots for Direct Detection with Simplified DM Models and the LHC
Abstract
:1. Introduction
2. The Model Blocks
- Model 1. Combining Higgs portal and vector mediators;
- Model 2. Combining t-channel scalar mediators (charged under color) and Higgs portal;
- Model 3. Combining t-channel scalar mediators (charged under color) and vector mediators.
2.1. Vector Mediator
2.2. Higgs Portal/Scalar Mediator
2.3. Scalar t-Channel Mediators
3. Methodology and Analysis of the Combined Models
3.1. Model 1: Combining and Higgs Portal
3.2. Model 2: Combining Higgs Portal and Squarks
3.3. Model 3: Combining and Squarks
4. Summary and Conclusions
- The Model 1 (combination of Higgs portal and ) is at present not constrained at all by mono-jet searches for the assumption . Moreover, under this assumption, the future searches of heavy resonances at the LHC will be most effective to probe the blind spot regions.
- In Model 2 and Model 3 (involving squark-like mediators), the current limits on the coupling from jets + missing energy and mono-jet searches are comparable. However, according to LHC future projections [17,18], the jets + missing energy searches at the 14 LHC will outperform the expectations for mono-jet searches in the parameter space with blind spots.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Goodman, J.; Shepherd, W. LHC Bounds on UV-Complete Models of Dark Matter. arXiv 2011. [Google Scholar]
- Abdallah, J.; Ashkenazi, A.; Boveia, A.; Busoni, G.; De Simone, A.; Doglioni, C.; Efrati, A.; Etzion, E.; Gramling, J.; Jacques, T.; et al. Simplified Models for Dark Matter and Missing Energy Searches at the LHC. arXiv 2014. [Google Scholar]
- Malik, S.A.; McCabe, C.; Araujo, H.; Belyaev, A.; Bœhm, C.; Brooke, J.; Buchmueller, O.; Davies, G.; De Roeck, A.; de Vries, K.; et al. Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments. Phys. Dark Univ. 2015, 9–10, 51–58. [Google Scholar] [CrossRef]
- Abdallah, J.; Abdallah, J.; Araujo, H.; Arbey, A.; Ashkenazi, A.; Belyaev, A.; Berger, J.; Boehm, C.; Boveia, A.; Brennan, A.; et al. Simplified Models for Dark Matter Searches at the LHC. Phys. Dark Univ. 2015, 9–10, 8–23. [Google Scholar] [CrossRef]
- Abercrombie, D.; Akchurin, N.; Akilli, E.; Maestre, J.A.; Allen, B.; Gonzalez, B.A.; Andrea, J.; Arbey, A.; Azuelos, G.; Azzi, P. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum. arXiv 2015. [Google Scholar]
- Akerib, D.S.; Araujo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 2014, 112, 091303. [Google Scholar] [CrossRef] [PubMed]
- Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Balan, C.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; et al. Dark Matter Results from 225 Live Days of XENON100 Data. Phys. Rev. Lett. 2012, 109, 181301. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Kowalska, K.; Roszkowski, L.; Sessolo, E.M.; Williams, A.J. Less-simplified models of dark matter for direct detection and the LHC. J. High Energy Phys. 2016, 4, 182. [Google Scholar] [CrossRef]
- Alloul, A.; Christensen, N.D.; Degrande, C.; Duhr, C.; Fuks, B. FeynRules 2.0—A complete toolbox for tree-level phenomenology. Comput. Phys. Commun. 2014, 185, 2250–2300. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. MicrOMEGAs 3: A program for calculating dark matter observables. Comput. Phys. Commun. 2014, 185, 960–985. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 1407, 79. [Google Scholar] [CrossRef]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852–867. [Google Scholar] [CrossRef]
- Drees, M.; Dreiner, H.; Schmeier, D.; Tattersall, J.; Kim, J.S. CheckMATE: Confronting your Favourite New Physics Model with LHC Data. Comput. Phys. Commun. 2014, 187, 227–265. [Google Scholar] [CrossRef]
- Kowalska, K.; Roszkowski, L.; Sessolo, E.M.; Williams, A.J. GUT-inspired SUSY and the muon g-2 anomaly: Prospects for LHC 14 TeV. J. High Energy Phys. 2015, 6, 20. [Google Scholar] [CrossRef]
- Chakraborti, M.; Chattopadhyay, U.; Choudhury, A.; Datta, A.; Poddar, S. The Electroweak Sector of the pMSSM in the Light of LHC—8 TeV and Other Data. J. High Energy Phys. 2014, 7, 19. [Google Scholar] [CrossRef]
- Chakraborti, M.; Chattopadhyay, U.; Choudhury, A.; Datta, A.; Poddar, S. Reduced LHC constraints for higgsino-like heavier electroweakinos. J. High Energy Phys. 2015, 11, 50. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. Sensitivity to WIMP Dark Matter in the Final States Containing Jets and Missing Transverse Momentum with the ATLAS Detector at 14 TeV LHC; Technical Report ATL-PHYS-PUB-2014-007; European Organization for Nuclear Research (CERN): Geneva, Switzerland, 2014. [Google Scholar]
- The ATLAS Collaboration. Search for Supersymmetry at the High Luminosity LHC with the ATLAS Experiment; Technical Report ATL-PHYS-PUB-2014-010; European Organization for Nuclear Research (CERN): Geneva, Switzerland, 2014. [Google Scholar]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al. A search for resonances using lepton-plus-jets events in proton-proton collisions at = 8 TeV with the ATLAS detector. J. High Energy Phys. 2015, 8, 148. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; et al. Search for new phenomena in the dijet mass distribution using p − p collision data at = 8 TeV with the ATLAS detector. Phys. Rev. D 2015, 91, 052007. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreuet, H.; et al. Search for new phenomena in dijet mass and angular distributions from pp collisions at = 13 TeV with the ATLAS detector. Phys. Lett. 2016, B754, 302–322. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. Studies of Sensitivity to New Dilepton and Ditop Resonances with an Upgraded ATLAS Detector at a High-Luminosity LHC; Technical Report ATL-PHYS-PUB-2013-003; European Organization for Nuclear Research (CERN): Geneva, Switzerland, 2013. [Google Scholar]
- Belyaev, A.; Christensen, N.D.; Pukhov, A. CalcHEP 3.4 for collider physics within and beyond the Standard Model. Comput. Phys. Commun. 2013, 184, 1729–1769. [Google Scholar] [CrossRef]
- The ATLAS and CMS Collaborations. Measurements of the Higgs Boson Production and Decay Rates and Constraints on Its Couplings from a Combined ATLAS and CMS Analysis of the LHC pp Collision Data At = 7 and 8 TeV. Technical Report ATLAS-CONF-2015-044; European Organization for Nuclear Research (CERN): Geneva, Switzerland, 2015. [Google Scholar]
- Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; et al. Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using = 8 TeV proton–proton collision data. J. High Energy Phys. 2014, 9, 176. [Google Scholar] [CrossRef]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V.M.; et al. Searches for supersymmetry using the M_T2 variable in hadronic events produced in pp collisions at 8 TeV. J. High Energy Phys. 2015, 5, 078. [Google Scholar] [CrossRef]
- Athanasopoulos, P.; Faraggi, A.E.; Mehta, V.M. Light Z’ in heterotic string standardlike models. Phys. Rev. D 2014, 89, 105023. [Google Scholar] [CrossRef]
1 | Example of Feynman diagrams for , Higgs and squark mediators which provide contributions for monojet signature are given in Figure 1. |
2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, A.; Kowalska, K.; Roszkowski, L.; Sessolo, E.M.; Williams, A.J. Blind Spots for Direct Detection with Simplified DM Models and the LHC. Universe 2017, 3, 41. https://doi.org/10.3390/universe3020041
Choudhury A, Kowalska K, Roszkowski L, Sessolo EM, Williams AJ. Blind Spots for Direct Detection with Simplified DM Models and the LHC. Universe. 2017; 3(2):41. https://doi.org/10.3390/universe3020041
Chicago/Turabian StyleChoudhury, Arghya, Kamila Kowalska, Leszek Roszkowski, Enrico Maria Sessolo, and Andrew J. Williams. 2017. "Blind Spots for Direct Detection with Simplified DM Models and the LHC" Universe 3, no. 2: 41. https://doi.org/10.3390/universe3020041
APA StyleChoudhury, A., Kowalska, K., Roszkowski, L., Sessolo, E. M., & Williams, A. J. (2017). Blind Spots for Direct Detection with Simplified DM Models and the LHC. Universe, 3(2), 41. https://doi.org/10.3390/universe3020041