Quantum Tunneling Radiation from Loop Quantum Black Holes and the Information Loss Paradox
Abstract
:1. Introduction
2. Loop Quantum Black Holes
3. Quantum Tunneling Radiation from Loop Quantum Black Holes
4. Back Reaction Effects
5. Information Recovery from LQBHs
6. Conclusions and Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1976, 43, 199–220, Erratum in 1976, 46, 206. [Google Scholar]
- Hooft, G. On the Quantum Structure of a Black Hole. Nucl. Phys. B 1985, 256, 727–745. [Google Scholar]
- Robinson, S.P.; Wilczek, F. Relationship between Hawking Radiation and Gravitational Anomalies. Phys. Rev. Lett. 2005, 95, 011303. [Google Scholar] [CrossRef] [PubMed]
- Vagenas, E.C.; Das, S. Gravitational anomalies, Hawking radiation, and spherically symmetric black holes. J. High Energy Phys. 2006, 2006, 025. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev. D 1977, 15, 2752–2756. [Google Scholar]
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar]
- Preskill, J. Do black holes destroy information? In Proceedings of the International Symposium on Black Holes, Membranes, Wormholes, and Superstrings, The Woodlands, TX, USA, 16–18 January 1992. [Google Scholar]
- Sorkin, R.D. Ten theses on black hole entropy. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 2005, 36, 291–301. [Google Scholar]
- Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett. 2000, 85, 5042–5045. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.K. Energy conservation and Hawking radiation. In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF), Rio de Janeiro, Brazil, 20–26 July 2003; pp. 1585–1590. [Google Scholar]
- Vagenas, E.C. Generalization of the KKW analysis for black hole radiation. Phys. Lett. B 2003, 559, 65–73. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Wu, S.-Q.; Cai, X. Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes. Phys. Rev. D 2006, 73, 064003, Erratum in 2006, 73, 069902. [Google Scholar]
- Zhang, J.; Zhao, Z. Charged particles’ tunnelling from the Kerr-Newman black hole. Phys. Lett. B 2006, 638, 110–113. [Google Scholar] [CrossRef]
- Kerner, R.; Mann, R.B. Tunnelling, temperature and Taub-NUT black holes. Phys. Rev. D 2006, 73, 104010. [Google Scholar] [CrossRef]
- Zhao, L. Tunnelling through black rings. Commun. Theor. Phys. 2007, 47, 835–842. [Google Scholar]
- Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hawking radiation as tunneling for extremal and rotating black holes. J. High Energy Phys. 2005, 2005, 014. [Google Scholar] [CrossRef]
- Wu, S.Q.; Jiang, Q.Q. Remarks on Hawking radiation as tunneling from the BTZ black holes. J. High Energy Phys. 2006, 2006, 079. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, J.; Zhao, Z. Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole. Chin. Phys. Lett. 2006, 23, 2019–2022. [Google Scholar]
- Di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.; Zoccatelli, G. On the Hawking radiation as tunneling for a class of dynamical black holes. Phys. Lett. B 2007, 657, 107–111. [Google Scholar] [CrossRef]
- Kerner, R.; Mann, R.B. Tunnelling from Gödel black holes. Phys. Rev. D 2007, 75, 084022. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Parikh, M.K. New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. B 2002, 546, 189–195. [Google Scholar] [CrossRef]
- Medved, A.J.M. Radiation via tunneling from a de Sitter cosmological horizon. Phys. Rev. D 2002, 66, 124009. [Google Scholar] [CrossRef]
- Shankaranarayanan, S. Temperature and entropy of Schwarzschild–de Sitter space-time. Phys. Rev. D 2003, 67, 084026. [Google Scholar] [CrossRef]
- Srinivasan, K.; Padmanabhan, T. Particle production and complex path analysis. Phys. Rev. D 1999, 60, 024007. [Google Scholar] [CrossRef]
- Arzano, M.; Medved, A.J.M.; Vagenas, E.C. Hawking radiation as tunneling through the quantum horizon. J. High Energy Phys. 2005, 2005, 037. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, Q.Y.; You, L.; Zhan, M.S. Hidden Messenger Revealed in Hawking Radiation: A Resolution to the Paradox of Black Hole Information Loss. Phys. Lett. B 2009, 675, 98–101. [Google Scholar] [CrossRef]
- Nozari, K.; Hamid Mehdipour, S. Quantum Gravity and Recovery of Information in Black Hole Evaporation. Europhys. Lett. 2008, 84, 20008. [Google Scholar] [CrossRef]
- Mehdipour, S.H. Generalized uncertainty principle and Parikh-Wilczek tunneling. Int. J. Mod. Phys. A 2009, 24, 5669–5680. [Google Scholar] [CrossRef]
- Fazeli, R.; Mehdipour, S.H.; Sayyadzad, S. Generalized Uncertainty Principle in Hawking Radiation of Non-Commutative Schwarzschild Black Hole. Acta Phys. Polon. B 2010, 41, 2365–2376. [Google Scholar]
- Nozari, K.; Saghafi, S. Natural Cutoffs and Quantum Tunneling from Black Hole Horizon. J. High Energy Phys. 2012, 2012, 005. [Google Scholar] [CrossRef]
- Nozari, K.; Shahini, P. TeV scale black holes thermodynamics with extra dimensions and quantum gravity effects. arXiv, 2012; arXiv:1206.5624. [Google Scholar]
- Silva, C.A.S.; Landim, R.R. Influences of a Generalized Uncertainty Principle on the black-hole area spectrum in the tunneling formalism. Europhys. Lett. 2012, 100, 10002. [Google Scholar] [CrossRef]
- Anacleto, M.A.; Brito, F.A.; Passos, E. Quantum-corrected self-dual black hole entropy in tunneling formalism with GUP. Phys. Lett. B 2015, 749, 181–186. [Google Scholar] [CrossRef]
- Kim, H. Hawking radiation as tunneling from charged black holes in 0A string theory. Phys. Lett. B 2011, 703, 94–99. [Google Scholar] [CrossRef]
- Nozari, K.; Mehdipour, S.H. Hawking Radiation as Quantum Tunneling from Noncommutative Schwarzschild Black Hole. Class. Quantum Gravity 2008, 25, 175015. [Google Scholar] [CrossRef]
- Miao, Y.G.; Xue, Z.; Zhang, S.J. Tunneling of massive particles from noncommutative inspired Schwarzschild black hole. Gen. Relativ. Gravit. 2012, 44, 555–566. [Google Scholar] [CrossRef]
- Silva, C.A.S.; Brito, F.A. Quantum tunneling radiation from self-dual black holes. Phys. Lett. B 2013, 725, 456–462. [Google Scholar] [CrossRef]
- Modesto, L. Semiclassical loop quantum black hole. Int. J. Theor. Phys. 2010, 49, 1649–1683. [Google Scholar] [CrossRef]
- Modesto, L.; Premont-Schwarz, I. Self-dual black holes in loop quantum gravity: Theory and phenomenology. Phys. Rev. D 2009, 80, 064041. [Google Scholar] [CrossRef]
- Alesci, E.; Modesto, L. Particle Creation by Loop Black Holes. Gen. Relativ. Gravit. 2014, 46, 1656. [Google Scholar] [CrossRef]
- Hossenfelder, S.; Modesto, L.; Premont-Schwarz, I. Emission spectra of self-dual black holes. arXiv, 2012; arXiv:1202.0412. [Google Scholar]
- Modesto, L. Disappearance of the black hole singularity in loop quantum gravity. Phys. Rev. D 2004, 70, 124009. [Google Scholar] [CrossRef]
- Modesto, L. The Kantowski-Sachs space-time in loop quantum gravity. Int. J. Theor. Phys. 2006, 45, 2235–2246. [Google Scholar] [CrossRef]
- Modesto, L. Loop quantum gravity and black hole singularity. arXiv, 2007; arXiv:hep-th/0701239. [Google Scholar]
- Modesto, L. Gravitational collapse in loop quantum gravity. Int. J. Theor. Phys. 2008, 47, 357–373. [Google Scholar] [CrossRef]
- Modesto, L. Quantum gravitational collapse. arXiv, 2005; arXiv:gr-qc/0504043. [Google Scholar]
- Ashtekar, A.; Bojowald, M. Quantum geometry and the Schwarzschild singularity. Class. Quantum Gravity 2006, 23, 391–441. [Google Scholar] [CrossRef]
- Modesto, L. Loop quantum black hole. Class. Quantum Gravity 2006, 23, 5587–5602. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Black holes in loop quantum gravity: The Complete space-time. Phys. Rev. Lett. 2008, 101, 161301. [Google Scholar] [CrossRef] [PubMed]
- Campiglia, M.; Gambini, R.; Pullin, J. Loop quantization of spherically symmetric midi-superspaces: The Interior problem. AIP Conf. Proc. 2008, 977, 52–63. [Google Scholar]
- Campiglia, M.; Gambini, R.; Pullin, J. Loop quantization of spherically symmetric midi-superspaces. Class. Quantum Gravity 2007, 24, 3649–3672. [Google Scholar] [CrossRef]
- Modesto, L. Black hole interior from loop quantum gravity. Adv. High Energy Phys. 2008, 2008, 459290. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Vandersloot, K. Loop Quantum Dynamics of the Schwarzschild Interior. Phys. Rev. D 2007, 76, 104030. [Google Scholar] [CrossRef]
- Chiou, D.W. Phenomenological loop quantum geometry of the Schwarzschild black hole. Phys. Rev. D 2008, 78, 064040. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Quantum black holes in Loop Quantum Gravity. Class. Quantum Gravity 2014, 31, 095009. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. Quantum Reduced Loop Gravity: Semiclassical limit. Phys. Rev. D 2014, 90, 024006. [Google Scholar] [CrossRef]
- Kantowski, R.; Sachs, R.K. Some spatially homogeneous anisotropic relativistic cosmological models. J. Math. Phys. 1966, 7, 443–446. [Google Scholar] [CrossRef]
- Cruz, M.B.; Silva, C.A.S.; Brito, F.A. Gravitational axial perturbations and quasinormal modes of loop quantum black holes. arXiv, 2015; arXiv:1511.08263. [Google Scholar]
- Sahu, S.; Lochan, K.; Narasimha, D. Gravitational lensing by self-dual black holes in loop quantum gravity. Phys. Rev. D 2015, 91, 063001. [Google Scholar] [CrossRef]
- Silva, C.A.S. On the holographic basis of Quantum Cosmology. arXiv, 2015; arXiv:1503.00559. [Google Scholar]
- Bojowald, M. Loop Quantum Cosmology. Living Rev. Rel. 2005, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Kraus, P.; Wilczek, F. A Simple Stationary Line Element for the Schwarzschild Geometry, and Some Applications. arXiv, 1994; arXiv:gr-qc/9406042. [Google Scholar]
- Kraus, P.; Wilczek, F. Selfinteraction correction to black hole radiance. Nucl. Phys. B 1995, 433, 403–420. [Google Scholar] [CrossRef]
- Kraus, P.; Wilczek, F. Effect of self-interaction on charged black hole radiance. Nucl. Phys. B 1995, 437, 231–242. [Google Scholar] [CrossRef]
- Shankaranarayanan, S.; Srinivasan, K.; Padmanabhan, T. Method of complex paths and general covariance of Hawking radiation. Mod. Phys. Lett. A 2001, 16, 571–578. [Google Scholar] [CrossRef]
- Shankaranarayanan, S.; Padmanabhan, T.; Srinivasan, K. Hawking radiation in different coordinate settings: complex paths approach. Class. Quantum Gravity 2002, 19, 2671–2688. [Google Scholar] [CrossRef]
- Padmanabhan, T. Entropy of horizons, complex paths and quantum tunnelling. Mod. Phys. Lett. A 2004, 19, 2637–2643. [Google Scholar] [CrossRef]
- Iso, S.; Umetsu, H.; Wilczek, F. Anomalies, Hawking radiations, and regularity in rotating black holes. Phys. Rev. D 2006, 74, 044017. [Google Scholar] [CrossRef]
- Umetsu, K. Hawking Radiation from Kerr-Newman Black Hole and Tunneling Mechanism. Int. J. Mod. Phys. A 2010, 25, 4123–4140. [Google Scholar] [CrossRef]
- Keski-Vakkuri, E.; Kraus, P. Microcanonical D-branes and back reaction. Nucl. Phys. B 1997, 491, 249–262. [Google Scholar] [CrossRef]
- Parikh, M.K. A Secret tunnel through the horizon. Gen. Relativ. Gravit. 2004, 36, 2419–2422. [Google Scholar] [CrossRef]
- Vagenas, E.C. Are extremal 2D black holes really frozen? Phys. Lett. B 2001, 503, 399–403. [Google Scholar] [CrossRef]
- Vagenas, E.C. Two-dimensional dilatonic black holes and Hawking radiation. Mod. Phys. Lett. A 2002, 17, 609–618. [Google Scholar] [CrossRef]
- Vagenas, E.C. Semiclassical corrections to the Bekenstein-Hawking entropy of the BTZ black hole via selfgravitation. Phys. Lett. B 2002, 533, 302–306. [Google Scholar] [CrossRef]
- Setare, M.R.; Vagenas, E.C. Self-gravitational corrections to the Cardy—Verlinde formula of the Achúcarro–Ortiz black hole. Phys. Lett. B 2004, 584, 127–132. [Google Scholar] [CrossRef]
- Medved, A.J.M. Radiation via tunneling in the charged BTZ black hole. Class. Quantum Gravity 2002, 19, 589–598. [Google Scholar] [CrossRef]
- Medved, A.J.M.; Vagenas, E.C. On Hawking radiation as tunneling with back-reaction. Mod. Phys. Lett. A 2005, 20, 2449–2453. [Google Scholar] [CrossRef]
- Aharonov, Y.; Casher, A.; Nussinov, S. The Unitarity Puzzle and Planck Mass Stable Particles. Phys. Lett. B 1987, 191, 51–55. [Google Scholar] [CrossRef]
- Mathur, S.D. The Fuzzball proposal for black holes: An Elementary review. Prog. Phys. 2005, 53, 793–827. [Google Scholar] [CrossRef]
- Silva, C.A.S. Fuzzy spaces topology change as a possible solution to the black hole information loss paradox. Phys. Lett. B 2009, 677, 318–321. [Google Scholar] [CrossRef]
- Silva, C.A.S.; Landim, R.R. A note on black hole entropy, area spectrum, and evaporation. Europhys. Lett. 2011, 96, 10007. [Google Scholar] [CrossRef]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? J. High Energy Phys. 2013, 2013, 062. [Google Scholar] [CrossRef]
- Silva, C.A.S.; Landim, R.R. Fuzzy spaces topology change and BH thermodynamics. J. Phys. Conf. Ser. 2014, 490, 012012. [Google Scholar] [CrossRef]
- Hawking, S.W. The Information Paradox for Black Holes. arXiv, 2015; arXiv:1509.01147. [Google Scholar]
- Unruh, W.G.; Wald, R.M. Information Loss. arXiv, 2017; arXiv:1703.02140. [Google Scholar]
- Page, D.N. Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Phys. Rev. D 1976, 13, 198–206. [Google Scholar] [CrossRef]
- Page, D.N. Particle emission rates from a black hole. II. Massless particles from a rotating hole. Phys. Rev. D 1976, 14, 3260–3273. [Google Scholar] [CrossRef]
- Page, D.N. Particle emission rates from a black hole. III. Charged leptons from a nonrotating hole. Phys. Rev. D 1977, 16, 2402–2411. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.A.S.; Brito, F.A. Quantum Tunneling Radiation from Loop Quantum Black Holes and the Information Loss Paradox. Universe 2017, 3, 42. https://doi.org/10.3390/universe3020042
Silva CAS, Brito FA. Quantum Tunneling Radiation from Loop Quantum Black Holes and the Information Loss Paradox. Universe. 2017; 3(2):42. https://doi.org/10.3390/universe3020042
Chicago/Turabian StyleSilva, C. A. S., and Francisco A. Brito. 2017. "Quantum Tunneling Radiation from Loop Quantum Black Holes and the Information Loss Paradox" Universe 3, no. 2: 42. https://doi.org/10.3390/universe3020042
APA StyleSilva, C. A. S., & Brito, F. A. (2017). Quantum Tunneling Radiation from Loop Quantum Black Holes and the Information Loss Paradox. Universe, 3(2), 42. https://doi.org/10.3390/universe3020042