Nucleosynthesis Predictions and High-Precision Deuterium Measurements
Abstract
:1. Introduction
2. Background
3. Observational Deuterium Measurements
3.1. Deuterium in the Absorber
3.2. Deuterium in the Absorber
3.3. Deuterium Measurement Sample
4. Predictions from Nucleosynthesis
4.1. Updating Nuclear Reaction Rates
4.2. Implementing New Physics
5. Summary
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Epstein, R.I.; Lattimer, J.M.; Schramm, D.N. The origin of deuterium. Nature 1976, 263, 198–202. [Google Scholar] [CrossRef]
- Prodanović, T.; Fields, B.D. On Nonprimordial Deuterium Production by Accelerated Particles. Astrophys. J. 2003, 597, 48. [Google Scholar] [CrossRef]
- Romano, D.; Tosi, M.; Chiappini, C.; Matteucci, F. Deuterium astration in the local disc and beyond. Mon. Not. R. Astron. Soc. 2006, 369, 295–304. [Google Scholar] [CrossRef]
- Dvorkin, I.; Vangioni, E.; Silk, J.; Petitjean, P.; Olive, K.A. Evolution of dispersion in the cosmic deuterium abundance. Mon. Not. R. Astron. Soc. Lett. 2016, 458, L104–L108. [Google Scholar] [CrossRef]
- Tytler, D.; Fan, X.M.; Burles, S. Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57. Nature 1996, 381, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Burles, S.; Tytler, D. The Deuterium Abundance toward Q1937-1009. Astrophys. J. 1998, 499, 699. [Google Scholar] [CrossRef]
- Crighton, N.H.M.; Webb, J.K.; Ortiz-Gil, A.; Fernández-Soto, A. Deuterium/hydrogen in a new Lyman limit absorption system at z = 3.256 towards PKS1937-1009. Mon. Not. R. Astron. Soc. 2004, 355, 1042–1052. [Google Scholar] [CrossRef]
- Riemer-Sørensen, S.; Webb, J.K.; Crighton, N.; Dumont, V.; Ali, K.; Kotuš, S.; Bainbridge, M.; Murphy, M.T.; Carswell, R. A robust deuterium abundance; re-measurement of the z = 3.256 absorption system towards the quasar PKS 1937-101. Mon. Not. R. Astron. Soc. 2015, 447, 2925–2936. [Google Scholar] [CrossRef]
- Riemer-Sørensen, S.; Kotuš, S.; Webb, J.K.; Ali, K.; Dumont, V.; Murphy, M.T.; Carswell, R. A robust deuterium abundance; re-measurement of the z = 3.256 absorption system towards the quasar PKS 1937-101. Mon. Not. R. Astron. Soc. 2017. accepted. [Google Scholar]
- Carswell, R.F.; Webb, J.K. VPFIT: Voigt Profile Fitting Program; Astrophysics Source Code Library: College Park, MD, USA, 2014. [Google Scholar]
- Cooke, R.J.; Pettini, M.; Jorgenson, R.A.; Murphy, M.T.; Steidel, C.C. Precision Measures of the Primordial Abundance of Deuterium. Astrophys. J. 2014, 781, 31. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; et al. Planck 2015 results XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Cooke, R.J.; Pettini, M.; Nollett, K.M.; Jorgenson, R. The Primordial Deuterium Abundance of the Most Metal-poor Damped Lyman-α System. Astrophys. J. 2016, 830, 148. [Google Scholar] [CrossRef]
- Berengut, J.C.; Flambaum, V.V.; King, J.A.; Curran, S.J.; Webb, J.K. Is there further evidence for spatial variation of fundamental constants? Phys. Rev. D 2011, 83, 123506. [Google Scholar] [CrossRef]
- Webb, J.K.; King, J.A.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B. Indications of a Spatial Variation of the Fine Structure Constant. Phys. Rev. Lett. 2011, 107, 191101. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B.; Wilczynska, M.R.; Koch, F.E. Spatial variation in the fine-structure constant—New results from VLT/UVES. Mon. Not. R. Astron. Soc. 2012, 422, 3370–3414. [Google Scholar] [CrossRef]
- Pettini, M.; Bowen, D.V. A New Measurement of the Primordial Abundance of Deuterium: Toward Convergence with the Baryon Density from the Cosmic Microwave Background? Astrophys. J. 2001, 560, 41–48. [Google Scholar] [CrossRef]
- Kirkman, D.; Tytler, D.; Suzuki, N.; O’Meara, J.M.; Lubin, D. The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047. Astrophys. J. Suppl. Ser. 2003, 149, 1–28. [Google Scholar] [CrossRef]
- Fumagalli, M.; O’Meara, J.M.; Prochaska, J.X. Detection of Pristine Gas Two Billion Years After the Big Bang. Science 2011, 334, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Noterdaeme, P.; López, S.; Dumont, V.; Ledoux, C.; Molaro, P.; Petitjean, P. Deuterium at high redshift. Primordial abundance in the zabs = 2.621 damped Ly-α system towards CTQ 247. Astron. Astrophys. 2012, 542, L33. [Google Scholar] [CrossRef]
- Pettini, M.; Cooke, R. A new, precise measurement of the primordial abundance of deuterium. Mon. Not. R. Astron. Soc. 2012, 425, 2477–2486. [Google Scholar] [CrossRef]
- O’Meara, J.M.; Tytler, D.; Kirkman, D.; Suzuki, N.; Prochaska, J.X.; Lubin, D.; Wolfe, A.M. The Deuterium to Hydrogen Abundance Ratio toward a Fourth QSO: HS 0105+1619. Astrophys. J. 2001, 552, 718–730. [Google Scholar] [CrossRef]
- Pettini, M.; Zych, B.J.; Murphy, M.T.; Lewis, A.; Steidel, C.C. Deuterium abundance in the most metal-poor damped Lyman alpha system: Converging on Ωb,0h2. Mon. Not. R. Astron. Soc. 2008, 391, 1499–1510. [Google Scholar] [CrossRef]
- O’Meara, J.M.; Burles, S.; Prochaska, J.X.; Prochter, G.E.; Bernstein, R.A.; Burgess, K.M. The Deuterium-to- Hydrogen Abundance Ratio toward the QSO SDSS J155810.16-003120.0. Astrophys. J. Lett. 2006, 649, L61–L65. [Google Scholar] [CrossRef]
- Balashev, S.A.; Zavarygin, E.O.; Ivanchik, A.V.; Telikova, K.N.; Varshalovich, D.A. The primordial deuterium abundance: SubDLA system at zabs = 2.437 towards the QSO J 1444+2919. Mon. Not. R. Astron. Soc. 2016, 458, 2188–2198. [Google Scholar] [CrossRef]
- Coc, A.; Petitjean, P.; Uzan, J.P.; Vangioni, E.; Descouvemont, P.; Iliadis, C.; Longland, R. New reaction rates for improved primordial D /H calculation and the cosmic evolution of deuterium. Phys. Rev. D 2015, 92, 123526. [Google Scholar] [CrossRef]
- Arbey, A. AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies. Comput. Phys. Commun. 2012, 183, 1822–1831. [Google Scholar] [CrossRef]
- Wagoner, R.V. Synthesis of the Elements Within Objects Exploding from Very High Temperatures. Astrophys. J. Suppl. Ser. 1969, 18, 247. [Google Scholar] [CrossRef]
- Kawano, L. Let’s Go: Early Universe. 2. Primordial Nucleosynthesis: The Computer Way; NASA Technical Reports Server (NTRS): Hampton, VA, USA, 1992.
- Pisanti, O.; Cirillo, A.; Esposito, S.; Iocco, F.; Mangano, G.; Miele, G.; Serpico, P.D. PArthENoPE: Public algorithm evaluating the nucleosynthesis of primordial elements. Comput. Phys. Commun. 2008, 178, 956–971. [Google Scholar] [CrossRef]
- Ma, L.; Karwowski, H.J.; Brune, C.R.; Ayer, Z.; Black, T.C.; Blackmon, J.C.; Ludwig, E.J.; Viviani, M.; Kievsky, A.; Schiavilla, R. Measurements of 1H(d→,fl)3He and 2H(p→,fl)3He at very low energies. Phys. Rev. C 1997, 55, 588–596. [Google Scholar] [CrossRef]
- Marcucci, L.E.; Mangano, G.; Kievsky, A.; Viviani, M. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis. Phys. Rev. Lett. 2016, 116, 102501. [Google Scholar] [CrossRef] [PubMed]
- Viviani, M.; Kievsky, A.; Marcucci, L.E.; Rosati, S.; Schiavilla, R. Photodisintegration and electrodisintegration of 3He at threshold and pd radiative capture. Phys. Rev. C 2000, 61, 064001. [Google Scholar] [CrossRef]
- Marcucci, L.E.; Viviani, M.; Schiavilla, R.; Kievsky, A.; Rosati, S. Electromagnetic structure of A = 2 and 3 nuclei and the nuclear current operator. Phys. Rev. C 2005, 72, 014001. [Google Scholar] [CrossRef]
- Iocco, F.; Mangano, G.; Miele, G.; Pisanti, O.; Serpico, P.D. Primordial nucleosynthesis: From precision cosmology to fundamental physics. Phys. Rep. 2009, 472, 1–76. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.H. Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 015004. [Google Scholar] [CrossRef]
- Steigman, G. Neutrinos and Big Bang Nucleosynthesis. Adv. High Energy 2012, 2012, 268321. [Google Scholar] [CrossRef]
- Nollett, K.M.; Steigman, G. BBN and the CMB constrain light, electromagnetically coupled WIMPs. Phys. Rev. D 2014, 89, 083508. [Google Scholar] [CrossRef]
- Nollett, K.M.; Steigman, G. BBN and the CMB constrain neutrino coupled light WIMPs. Phys. Rev. D 2015, 91, 083505. [Google Scholar] [CrossRef]
- Lesgourgues, J.; Pastor, S. Massive neutrinos and cosmology. Phys. Rep. 2006, 429, 307–379. [Google Scholar] [CrossRef]
- Riemer-Sørensen, S.; Parkinson, D.; Davis, T.M.; Blake, C. Simultaneous Constraints on the Number and Mass of Relativistic Species. Astrophys. J. 2013, 763, 89. [Google Scholar] [CrossRef]
- Friedmann, A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Aver, E.; Olive, K.A.; Skillman, E.D. The effects of He I λ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 2015, 7, 011. [Google Scholar] [CrossRef]
- Jenssen, E.S. New AlterBBN: A Code for Big Bang Nucleosynthesis with Light Dark Matter. Master’s Thesis, Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway, 2016. [Google Scholar]
1 | PArthENoPE is also publicly available, but it requires expensive fortran libraries to compile |
2 | |
3 | |
4 | To be implemented in the next version of AlterBBN |
Reference | Absorption Redshift | H i)) | [X/H] | D i/H i | 100 |
---|---|---|---|---|---|
Burles and Tytler [6] | 2.504 | −2.55 Si | |||
Pettini and Bowen [17] | 2.076 | −2.23 Si | |||
Kirkman et al. [18] | 2.426 | −2.79 O | |||
Fumagalli et al. [19] | 3.411 | −4.20 Si | |||
Noterdaeme et al. [20] | 2.621 | −1.99 O | |||
Cooke et al. [11], Pettini and Cooke [21] | 3.050 | −1.92 O | |||
Cooke et al. [11], O’Meara et al. [22] | 2.537 | −1.77 O | |||
Cooke et al. [11], Pettini et al. [23] | 2.618 | −2.40 O | |||
Cooke et al. [11] | 3.067 | −2.33 O | |||
Cooke et al. [11], O’Meara et al. [24] | 2.702 | −1.55 O | |||
Riemer-Sørensen et al. [8] | 3.255 | −1.87 O | |||
Balashev et al. [25] | 2.437 | −2.04 O | |||
Cooke et al. [13] | 2.853 | −2.08 O | |||
Riemer-Sørensen et al. [9] | 3.572 | −2.26 O | |||
Weighted average | — | — | — | ||
Unweighted average | — | — | — | ||
Planck Collaboration et al. [12] | — | — | — |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riemer-Sørensen, S.; Jenssen, E.S. Nucleosynthesis Predictions and High-Precision Deuterium Measurements. Universe 2017, 3, 44. https://doi.org/10.3390/universe3020044
Riemer-Sørensen S, Jenssen ES. Nucleosynthesis Predictions and High-Precision Deuterium Measurements. Universe. 2017; 3(2):44. https://doi.org/10.3390/universe3020044
Chicago/Turabian StyleRiemer-Sørensen, Signe, and Espen Sem Jenssen. 2017. "Nucleosynthesis Predictions and High-Precision Deuterium Measurements" Universe 3, no. 2: 44. https://doi.org/10.3390/universe3020044
APA StyleRiemer-Sørensen, S., & Jenssen, E. S. (2017). Nucleosynthesis Predictions and High-Precision Deuterium Measurements. Universe, 3(2), 44. https://doi.org/10.3390/universe3020044