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Abstract:



We analyze the time evolution of a spherically-symmetric collapsing matter from the point of view that black holes evaporate by nature. We consider conformal matters and solve the semi-classical Einstein equation [image: there is no content] by using the four-dimensional Weyl anomaly with a large c coefficient. Here, [image: there is no content] contains the contribution from both the collapsing matter and Hawking radiation. The solution indicates that the collapsing matter forms a dense object and evaporates without horizon or singularity, and it has a surface, but looks like an ordinary black hole from the outside. Any object we recognize as a black hole should be such an object.
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1. Introduction and the Basic Idea


Black holes are formed by matters and evaporate eventually [1]. This process should be governed by the dynamics of a coupled quantum system of matter and gravity. It has been believed for a long time that taking the back reaction from the evaporation into consideration does not change the classical picture of black holes drastically. This is because evaporation occurs in the time scale [image: there is no content] as a quantum effect, while collapse does in the time scale [image: there is no content] as a classical effect1. Here, [image: there is no content], and [image: there is no content]. However, these two effects become comparable near the black hole. Recently, it has been discussed that the inclusion of the back reaction plays a crucial role in determining the time evolution of a collapsing matter [3,4,5,6,7,8,9].



We first explain our basic idea by considering the following process. Suppose that a spherically symmetric black hole with mass [image: there is no content] is evaporating. Then, we consider what happens if we add a spherical thin shell to it. The important point here is that the shell will never go across “the horizon” because the black hole disappears before the shell reaches “the horizon”.



To see this, we assume, for simplicity, that Hawking radiation goes to infinity without reflection and then describe the spacetime outside the black hole by the outgoing Vaidya metric [10]:


[image: there is no content]



(1)




where [image: there is no content] is the Bondi mass. We assume that [image: there is no content] satisfies:


[image: there is no content]



(2)




where [image: there is no content] is the intensity of the Hawking radiation. Here, N is the degrees of freedom of fields in the theory, and k is an [image: there is no content] constant.



If the shell comes close to [image: there is no content], the motion is governed by the equation for ingoing radial null geodesics:


[image: there is no content]



(3)




no matter what mass and angular momentum the particles constituting the shell have2. Here, [image: there is no content] is the radial coordinate of the shell. This reflects the fact that any particle becomes ultra-relativistic near [image: there is no content] and behaves like a massless particle [11]. As we will show soon in the next section, we obtain the solution of (3):


r(u)≈a(u)−2a(u)dadu(u)+Ce−u2a(u)=a(u)+2σa(u)+Ce−u2a(u)⟶a(u)+2σa(u).



(4)







This means the following (see Figure 1): The shell approaches the radius [image: there is no content] in the time scale of [image: there is no content], but during this time, the radius [image: there is no content] itself is slowly shrinking as (2). Therefore, [image: there is no content] is always apart from [image: there is no content] by [image: there is no content]. Thus, the shell never crosses the radius [image: there is no content] as long as the black hole evaporates in a finite time, which keeps the [image: there is no content] coordinates complete outside “the horizon”, [image: there is no content].


Figure 1. Motion of a shell or a particle near the evaporating black hole.



[image: Universe 03 00051 g001]






After the shell comes sufficiently close to [image: there is no content], the total system composed of the black hole and the shell behaves like an ordinary black hole with mass [image: there is no content], where [image: there is no content] is the mass of the shell. In fact, as we will see later, the radiation emitted from the total system agrees with that from a black hole with mass [image: there is no content].



We then consider a spherically symmetric collapsing matter with a continuous distribution and regard it as a set of concentric null shells. We can apply the above argument to each shell because its time evolution is not affected by the outside shells due to the spherical symmetry. Thus, we conclude that any object we recognize as a black hole actually consists of many shells. See Figure 2. Therefore, there is not a horizon, but a surface at [image: there is no content], which is a boundary inside which the matter is distributed3. If we see the system from the outside, it looks like an evaporating black hole in the ordinary picture. However, it has a well-defined internal structure in the whole region and evaporates like an ordinary object4 5.


Figure 2. A black hole as an object that consists of many shells.



[image: Universe 03 00051 g002]






In order to prove this idea, we have to analyze the dynamics of the coupled quantum system of matter and gravity. As a first step, we consider the self-consistent equation:


[image: there is no content]



(5)







Here, we regard matter as quantum fields while we treat gravity as a classical metric [image: there is no content]. [image: there is no content] is the expectation value of the energy-momentum tensor operator with respect to the state [image: there is no content] that stands for the time evolution of matter fields defined on the background [image: there is no content]. [image: there is no content] contains the contribution from both the collapsing matter and the Hawking radiation, and [image: there is no content] is any state that represents a collapsing matter at [image: there is no content].



In this paper, we consider conformal matters. Then, we show that [image: there is no content] on an arbitrary spherically symmetric metric [image: there is no content] can be determined by the four-dimensional (4D) Weyl anomaly with some assumption and obtain the self-consistent solution of (5) that realizes the above idea. Furthermore, we can justify that the quantum fluctuation of gravity is small if the theory has a large c coefficient in the anomaly.



Our strategy to obtain the solution is as follows. We start with a rather artificial assumption that [image: there is no content] (this is equivalent to [image: there is no content] in Kruskal-like coordinates). By a simple model satisfying this assumption, we construct a candidate metric [image: there is no content]. We then evaluate [image: there is no content] on this background [image: there is no content] by using the energy-momentum conservation and the 4D Weyl anomaly and show that the obtained [image: there is no content] and [image: there is no content] satisfy (5). Next, we try to remove the assumption. We fix the ratio [image: there is no content], which seems reasonable for the conformal matter. Under this ansatz, the metric is determined from the trace part of (5), [image: there is no content], where [image: there is no content] is given by the 4D Weyl anomaly. On this metric, we calculate [image: there is no content] as before and check that (5) indeed holds.



This paper is organized as follows. In Section 2, we derive (4). In Section 3, we construct a candidate metric with the assumption [image: there is no content]. In Section 4, we evaluate [image: there is no content] on this metric and then check that (5) is satisfied. In Section 5, we remove the assumption and construct the general self-consistent solution. In Section 6, we rethink how the Hawking radiation is created in this picture.




2. Motion of a Thin Shell Near the Evaporating Black Hole


We start with the derivation of (4) [3,4,5]. That is, we solve (3) explicitly. Putting [image: there is no content] in (3) and assuming [image: there is no content], we have:


dΔr(u)du=−Δr(u)2a(u)−da(u)du.



(6)







The general solution of this equation is given by:


[image: there is no content]








where [image: there is no content] is an integration constant. Because [image: there is no content] and [image: there is no content] can be considered to be constant in the time scale of [image: there is no content], the second term can be evaluated as:


[image: there is no content]











Therefore, we obtain:


[image: there is no content]








which leads to (4):


r(u)≈a(u)−2a(u)dadu(u)+Ce−u2a(u)=a(u)+2σa(u)+Ce−u2a(u)⟶a(u)+2σa(u).











This result indicates that any particle gets close to:


[image: there is no content]



(7)




in the time scale of [image: there is no content], but it will never cross the radius [image: there is no content] as long as [image: there is no content] keeps decreasing as (2)6. In the following, we call [image: there is no content] the surface of the black hole.



Here, one might wonder if such a small radial difference [image: there is no content] makes sense, since it looks much smaller than [image: there is no content]. However, the proper distance between the surface [image: there is no content] and the radius a is estimated for the metric (1) as7:


Δl=R(a)R(a)−a2σa≈2σ.



(8)







In general, this is proportional to [image: there is no content], but it can be large if we consider a theory with many species of fields. In fact, in that case, we have:


[image: there is no content]



(9)







We assume that N is large, but not infinite, for example, [image: there is no content] as in the standard model. Then, [image: there is no content] is a non-trivial distance.




3. Constructing the Candidate Metric


The purpose of this section is to construct a candidate metric by considering a simple model corresponding to the process given in Section 1 [3,5]. At this stage, we do not mind whether it is a solution of (5) or not, which will be the task for the next section.



3.1. Single-Shell Model


As a preliminary for the next subsection, we begin with a simpler model [3]. See Figure 3.


Figure 3. A spherical null shell evaporating in accordance with (2).



[image: Universe 03 00051 g003]






Suppose that a spherical null shell with mass [image: there is no content] comes from infinity and evaporates like the ordinary black hole. Here, we consider the shell infinitely thin. We model this process by describing the spacetime outside the shell as the Vaidya metric (1) with (2). On the other hand, the spacetime inside it is flat because of spherical symmetry, and we express the metric by:


[image: there is no content]



(10)







Now, we have two time coordinates [image: there is no content], and we need to connect them along the trajectory of the shell, [image: there is no content]. This can be done by noting that the shell is moving along an ingoing null geodesic in the metrics of the both sides, (1) and (10). Therefore, the junction condition is given by:


[image: there is no content]



(11)







This determines the relation between U and u for a given [image: there is no content].



Generally, connecting two different metrics along a null hypersurface [image: there is no content] leads to a surface energy-momentum tensor [image: there is no content]. Indeed, by using the Barrabes–Israel formalism [20,21], we can estimate the surface energy [image: there is no content] and the surface pressure [image: there is no content] as8:


ϵ2d=a8πGrs2,p2d=−a˙rs4πG(rs−a)2.



(12)







Note that [image: there is no content] is nothing but the energy per unit area of the shell with energy [image: there is no content] and that the positive pressure [image: there is no content] is proportional to the energy being lost, [image: there is no content].



Thus, we have obtained the metric without coordinate-singularity that describes the formation and evaporation process of a black hole. Note again that we do not claim yet that this metric satisfies (5), but we here construct a candidate metric which formally expresses such a process.




3.2. Multi-Shell Model


Now, we consider a spherically-symmetric collapsing matter consisting of n spherical thin null shells. See Figure 4, where the position of the i-th shell is depicted by [image: there is no content].


Figure 4. A multi-shell model.



[image: Universe 03 00051 g004]






We assume that each shell behaves like the ordinary evaporating black hole if we look at it from the outside. We postulate again that the radiation goes to infinity without reflection. Then, because of spherical symmetry, the region just outside the i-th shell can be described by the Vaidya metric:


[image: there is no content]



(13)




with:


[image: there is no content]



(14)




for [image: there is no content]. Here, [image: there is no content], and [image: there is no content] is the energy inside the i-th shell (including the contribution from the shell itself). For [image: there is no content], [image: there is no content] is the time coordinate at infinity, and [image: there is no content], where M is the Bondi mass for the whole system. On the other hand, the center, which is below the first shell, is the flat spacetime (10):


a0=0,u0=U.



(15)







In this case, the junction condition (11) is generalized to:


ri−airidui=−2dri=ri−ai−1ridui−1fori=1⋯n.



(16)







This is equivalent to:


[image: there is no content]



(17)




and:


[image: there is no content]



(18)







As in the single-shell model, we have the surface energy-momentum tensor on each shell. By generalizing (12), we can show that the energy density [image: there is no content] and the surface pressure [image: there is no content] on the i-th shell are given by [5]:


ϵ2d(i)=ai−ai−18πGri2,p2d(i)=−ri4πG(ri−ai)2daidui−ri−airi−ai−12dai−1dui−1.



(19)




[image: there is no content] expresses the energy density of the shell with energy [image: there is no content]. In the expression of [image: there is no content], the first term corresponds to the total energy flux observed just above the shell, and the second one represents the energy flux below the shell that is redshifted due to the shell. Thus, the pressure is induced by the radiation from the shell itself9.




3.3. The Candidate Metric


Finally, we take the continuum limit in the multi-shell model and construct the candidate metric [3,4,5]. Especially, we focus on a configuration in which each shell has already come close to [image: there is no content]:


[image: there is no content]



(20)




where (7) has been used10 (a more general case is discussed in [8]).



We first solve the Equation (16). By introducing:


[image: there is no content]



(21)




we have:


ηi−ηi−1=logdUduidUdui−1=−logduidui−1=−log1+ai−ai−1ri−ai≈−ai−ai−1ri−ai=−ai−ai−12σai≈−14σai2−ai−12.



(22)







Here, at the second line, we have used (18); at the third line, we have used (20) and assumed [image: there is no content], which is satisfied for a continuous distribution; and at the last line, we have approximated [image: there is no content]. With the initial conditions (15), we obtain:


[image: there is no content]



(23)







Now, the metric at a spacetime point [image: there is no content] inside the object is obtained by considering the shell that passes the point and evaluating the metric (13). We have at [image: there is no content]:


[image: there is no content]



(24)






[image: there is no content]



(25)




where (20) and (23) have been used. From these, we obtain the metric:


ds2=−r−airdui2−2duidr+r2dΩ2=−ri−airiduidU2dU2−2duidUdUdr+r2dΩ2≈−2σr2er22σdU2−2er24σdUdr+r2dΩ2.



(26)







Note that this is static, although each shell is shrinking, and that it does not exist in the classical limit [image: there is no content].



Thus, our candidate metric for the evaporating black hole is given by:


ds2=−2σr2e−R(a(u))2−r22σdu2−2e−R(a(u))2−r24σdudr+r2dΩ2,forr≤R(a(u)),−r−a(u)rdu2−2drdu+r2dΩ2,forr≥R(a(u)),



(27)




which corresponds to Figure 2. Here, we have converted U to u by [image: there is no content] and expressed (26) in terms of u. This metric is continuous at the surface [image: there is no content], where [image: there is no content] decreases as (2).



Next, we consider a stationary black hole. Suppose that we put this object into the heat bath with temperature [image: there is no content]. Then, the ingoing energy flow from the bath and the outgoing one from the object become balanced each other11, and the system reaches a stationary state, which corresponds to a stationary black hole in the heat bath [22] (see also Figure 5). The object has its surface at [image: there is no content], where [image: there is no content] const. Then, the Vaidya metric for the outside spacetime is replaced with the Schwarzschild metric:


[image: there is no content]



(28)






Figure 5. The boundary conditions. Left: The evaporating black hole in the vacuum. Right: The stationary black hole in the heat bath.



[image: Universe 03 00051 g005]






By introducing the time coordinate T around the origin as:


[image: there is no content]



(29)




we can write the interior metric (26) as:


[image: there is no content]



(30)







Thus, by changing T to t through [image: there is no content], we obtain our candidate metric for the stationary black hole:


ds2=−2σr2e−R(a)2−r22σdt2+r22σdr2+r2dΩ2,forr≤R(a),−r−ardt2+rr−adr2+r2dΩ2,forr≥R(a),



(31)




where [image: there is no content] with [image: there is no content] const. The remarkable feature of (31) is that the redshift is exponentially large inside, and time is almost frozen in the region deeper than the surface by [image: there is no content].





4. Evaluating the Expectation Value of the Energy-Momentum Tensor


In this section, we evaluate the expectation value of the energy-momentum tensor [image: there is no content] in the candidate metrics (27) and (31) assuming that the matter is conformal. We show that [image: there is no content] can be determined by the four-dimensional Weyl anomaly and the energy-momentum conservation [image: there is no content] if we introduce a rather artificial assumption [image: there is no content]. Then, we show that the self-consist Equation (5) is indeed satisfied if [image: there is no content] in (27) and (31) is chosen properly.



4.1. Summary of the Assumptions So Far


We start with summarizing the assumptions that we have made to obtain the metric (27). Firstly, we assume that the system is spherically symmetric. Then, the time evolution of each shell is not affected by its exterior region after it becomes ultra-relativistic. Secondly, we assume that the radiation coming out of each shell flows to infinity without reflection. Then, the metric of each inter-shell region is given by the Vaidya metric.



We consider what these assumptions mean in terms of [image: there is no content]. Here, we discuss in Kruskal-like coordinates [image: there is no content]: U and V are coordinates, such that outgoing and ingoing null lines are characterized by [image: there is no content] const. and [image: there is no content] const., respectively. Therefore, the second assumption means that in the inter-shell regions only [image: there is no content] is nonzero12, and in particular,


[image: there is no content]



(32)







Furthermore, noting the surface energy-momentum tensor (19), we find that [image: there is no content] and [image: there is no content] lead to nonzero values of [image: there is no content] and [image: there is no content], respectively, on each shell (see the footnote at (12)).



Thus, after taking the continuum limit, we have nonzero values for [image: there is no content] except for [image: there is no content]. Therefore, the assumption we have made so far are essentially the spherical symmetry and (32). We keep the assumption (32) within this section and will remove it in the next section.




4.2. Relations among [image: there is no content] from the Energy-Momentum Conservation


We investigate the relations among the components of [image: there is no content] obtained from the energy-momentum conservation, which will be used to determine [image: there is no content]. The general spherically symmetric metric can be expressed in Kruskal-like coordinates as:


[image: there is no content]



(33)







We assume that [image: there is no content] is spherically symmetric, that is, the non-zero components are:


⟨TUU⟩,⟨TVV⟩,⟨TUV⟩,⟨Tθθ⟩=⟨Tϕϕ⟩,



(34)




which depend only on U and V. Here, we keep [image: there is no content] for the convenience of the next section. Then, [image: there is no content] and [image: there is no content] are expressed as, respectively,


⟨Tθθ⟩=−e−φr∂Ur∂V(r2⟨TUU⟩)+∂U(r2⟨TUV⟩)−∂Uφ(r2⟨TUV⟩),



(35)






⟨Tθθ⟩=−e−φr∂Vr∂U(r2⟨TVV⟩)+∂V(r2⟨TUV⟩)−∂Vφ(r2⟨TUV⟩).



(36)







The other components are satisfied trivially.



On the other hand, because the trace of the energy-momentum tensor is expressed as [image: there is no content], we have:


⟨Tθθ⟩=12⟨Tμμ⟩+2e−φ⟨TUV⟩.



(37)







Substituting (37) into (35) and (36), we obtain:


∂U(r2⟨TUV⟩)−∂Uφ−2r∂Ur(r2⟨TUV⟩)=−∂V(r2⟨TUU⟩)−12r∂Ureφ⟨Tμμ⟩,



(38)






∂V(r2⟨TUV⟩)−∂Vφ−2r∂Vr(r2⟨TUV⟩)=−∂U(r2⟨TVV⟩)−12r∂Vreφ⟨Tμμ⟩.



(39)







Once [image: there is no content] is given, we can determine [image: there is no content] from these equations with some boundary conditions if one of the four functions (34) is known [23].



4.2.1. The Static Case


As a special case, we suppose that the spacetime is static. Then, [image: there is no content] and [image: there is no content] satisfy:


φ(U,V)=φ(r(U,V)),∂Vr=−∂Ur.



(40)







Then, we can rewrite (33) as:


[image: there is no content]



(41)




where:


eφ(r)=eA(r)B(r),∂Vr=−∂Ur=eA(r)22B(r)



(42)




and:


dU=dT−Be−A2dr,dV=dT+Be−A2dr.



(43)







In this case, the expectation value of the energy-momentum tensor [image: there is no content] should also be static and satisfy:


⟨Tμν⟩=⟨Tμν(r)⟩,⟨TUU⟩=⟨TVV⟩.



(44)







Then, Equations (38) and (39) reduce to:


∂r(r2⟨TUV⟩)−∂rφ−2r(r2⟨TUV⟩)=∂r(r2⟨TUU⟩)−12reφ⟨Tμμ⟩.



(45)









4.3. Evaluation of [image: there is no content] inside the Black Hole


Now, we can evaluate [image: there is no content] in the metric (30) assuming (32) and (44). Here, we rewrite the metric (30) as (33) with (42) and:


[image: there is no content]



(46)







4.3.1. Boundary Conditions for [image: there is no content]


We start with the boundary conditions. See Figure 5.



We first note that the region around [image: there is no content] is kept to be a flat space. This is because the initial collapsing matter came from infinity with a dilute distribution. Then, the region inside the innermost shell in Figure 4 is flat due to the spherical symmetry, and it is almost frozen in time by the large redshift as in (27)13. Thus, the boundary conditions for [image: there is no content] are given by:


[image: there is no content]



(47)







Note that this should be applied to both the evaporating and stationary black holes, because at any rate, black holes have been formed by collapse of matters.




4.3.2. Employing [image: there is no content]


Now, we combine the energy-momentum conservation with the assumption (32). Under (32), (45) becomes:


∂r(r2⟨TUU⟩)=12reφ⟨Tμμ⟩.



(48)




Integrating this from zero to r for [image: there is no content], we have:


r2⟨TUU⟩−(r2⟨TUU⟩)|r=0=12∫0rdr′r′eφ(r′)⟨Tμμ(r′)⟩=σ∫0rdr′er′22σr′⟨Tμμ(r′)⟩=σer22σ∫0rdr′e−r2−r′22σr′⟨Tμμ(r′)⟩≈σrer22σ⟨Tμμ(r)⟩∫0rdr′e−rσ(r−r′)≈σ2r2er22σ⟨Tμμ(r)⟩.



(49)







Here, at the first line, we have used (42) and (46); at the third line, we have assumed that [image: there is no content] does not change as rapidly as [image: there is no content], which will be checked soon, and used [image: there is no content], since the largest contribution comes from [image: there is no content]; at the final line, we have omitted the term proportional to [image: there is no content] for [image: there is no content]. Finally, using the boundary condition (47), we have:


⟨TUU⟩=⟨TVV⟩=σ2r4er22σ⟨Tμμ⟩.



(50)







On the other hand, under the assumption (32), (37) leads to:


⟨Tθθ⟩=12⟨Tμμ⟩.



(51)







Thus, all of the components of [image: there is no content] are determined by [image: there is no content].




4.3.3. ⟨Tμμ⟩ from the 4D Weyl Anomaly


In the case of conformal matters, [image: there is no content] is provided by the 4D Weyl anomaly once the metric is given [23,24,25,26]:


⟨Tμμ⟩=ℏcwF−ℏawG,



(52)




where [image: there is no content] and [image: there is no content]. For the metric (30), [image: there is no content] and [image: there is no content] are calculated as:


[image: there is no content]



(53)







Therefore, only the c-coefficient remains for [image: there is no content], and we obtain:


⟨Tμμ⟩=ℏcw3σ2,



(54)




which is constant and consistent with the assumption made in (49).



Thus, (50) and (51) are fixed as, respectively,


[image: there is no content]



(55)




and:


⟨Tθθ⟩=ℏcw6σ2,



(56)




which means that the 4D Weyl anomaly provides the angular pressure [4,5]15.





4.4. The Self-Consistent Equation


Now, we can obtain the condition that the self-consistent Equation (5) holds, as follows. From (32), (55) and (56), we have:


−⟨TTT⟩=⟨Trr⟩=ℏcw3σ1r2,⟨Tθθ⟩=ℏcw6σ2,



(57)




where we have used (43). On the other hand, the Einstein tensor for the metric (30) is calculated as:


−GTT=Grr=1r2,Gθθ=12σ.



(58)







Comparing (57) and (58), we conclude that (5) is satisfied if we identify:


[image: there is no content]



(59)







We note that the dominant energy condition [21] is violated, [image: there is no content], and that the interior is not a fluid in the sense [image: there is no content] [3,4,5].



We can check the validity of the classical gravity in (5). Indeed, in the macroscopic region [image: there is no content], all of the invariants for (30) are of order [image: there is no content]:


R,RμνRμν,RμναβRμναβ∼1σ∼1lp2cw.



(60)







They are smaller than the Planck scale if:


[image: there is no content]



(61)




is satisfied. Therefore, macroscopic black holes [image: there is no content] can be described by the ordinary field theory. We do not need to consider quantum gravity except for the very small region [image: there is no content] or the last moment of the evaporation. (30) can be trusted for [image: there is no content].




4.5. Evaluation of [image: there is no content] outside the Black Hole


In this subsection, we investigate [image: there is no content] in the outside region, [image: there is no content], for both the evaporating and the stationary black holes.



4.5.1. The Evaporating Black Hole


First, we consider the evaporating back hole (27). Although we do not assume the static condition (44), we use a similar argument to the previous subsection. We first identify the boundary conditions. In the left of Figure 5, no ingoing matter comes after the collapsing matter at [image: there is no content]. Therefore, the boundary condition for the ingoing energy [image: there is no content] is given by:


⟨TVV⟩|U=−∞=0forV>Vout,



(62)




where [image: there is no content] labels the outermost shell. On the other hand, as we have shown in (55), the outgoing energy at the surface [image: there is no content] is given by:


⟨TUU⟩|V=Vout=ℏcw3R(a(U))4forU≥U0.



(63)







Here, we have identified U in (33) with u in (1) so that [image: there is no content] as in (27). [image: there is no content] characterizes the time at which the outermost shell gets sufficiently close to [image: there is no content] and starts to emit the radiation.



Using these boundary conditions and the conservation laws (38) and (39) with the assumption (32), we obtain (see Appendix A for the derivation):


r2⟨TUU⟩=ℏcw3R(a(U))2+12∫R(a(U)),U=const.r(U,V)dr(r−a(U))⟨Tμμ⟩,



(64)






r2⟨TVV⟩=−∫−∞UdU′r(∂Vr)2⟨Tμμ⟩.



(65)







Next, we evaluate [image: there is no content] from (52). For the metric (27) for [image: there is no content], we have [image: there is no content] and obtain:


⟨Tμμ⟩=12ℏ(cw−aw)a(U)2r6,



(66)




which gives [image: there is no content] through (51). From (64) and (66), we obtain:


[image: there is no content]



(67)




where [image: there is no content] has been used. On the other hand, () cannot be evaluated explicitly due to the time dependence of [image: there is no content]. Here, in order to estimate its order, we assume that [image: there is no content] is approximately constant. Then, we can have (see Appendix A):


[image: there is no content]



(68)







Note here that the anomaly leads to particle creation even outside the black hole. The sign of [image: there is no content] depends on the kind of field [25]. For example, it is positive for a massless scalar field, and it is negative for a massless vector field16. When [image: there is no content], (67) indicates that the outgoing radiation increases by the amount [image: there is no content] as it goes to infinity from the surface. On the other hand, from (68), we can see that the negative ingoing energy is created [23,25,28].



Now, we check the self-consistent Equation (5). First, from (66)–(68), we can see that [image: there is no content] at [image: there is no content], which represents the energy-momentum of the radiation around the black hole as in the Stefan–Boltzmann law [image: there is no content]. The amount of energy in the region around the black hole with the volume [image: there is no content] is estimated as [image: there is no content], which is much smaller than the mass of the black hole itself, [image: there is no content]. In this sense, [image: there is no content] is negligible:


[image: there is no content]



(69)




and the region outside the black hole is described by vacuum-like solutions, such as the Vaidya metric or the Schwarzschild metric.



We have seen so far that the metric (27) is the self-consistent solution describing the whole spacetime of the evaporating black hole. There is no horizon or singularity, but this object is the black hole in quantum mechanics (see Figure 6).


Figure 6. The Penrose diagram of the evaporating black hole described by the self-consistent solution (27).



[image: Universe 03 00051 g006]







4.5.2. The Stationary Black Hole


Next, we consider the stationary black hole in the heat bath (31). This time, we assume (44) in addition to (32) and use (48). We start with examining the boundary condition. See the right of Figure 5. Because the system is stationary, the surface is fixed at [image: there is no content]const., and there, the ingoing and outgoing energy flows are balanced as:


[image: there is no content]



(70)







Here, we have used (55) and chosen the overall time scale as in (31), [image: there is no content].



Then, we calculate [image: there is no content] from (51) and obtain the same value as (66) except for [image: there is no content] const. We can evaluate [image: there is no content] from (48) with (70) and find that [image: there is no content] is given by (67) with [image: there is no content] const.



Now, we study the self-consistent equation. Because we have the same order of [image: there is no content] as in the case of the evaporating black hole, we can follow the same reasoning for (69). That is, [image: there is no content] is negligible, and the metric outside the black hole is close to the Schwarzschild metric.






5. Generalization


We have assumed so far that the radiation emitted from each shell flows to infinity without reflection, which is expressed by (32). For a more realistic description, however, this assumption should be removed.



First, we discuss what [image: there is no content] means. In the [image: there is no content] coordinates (33), this is equivalent to the nonzero trace in the two-dimensional part [image: there is no content]:


⟨Taa⟩≡⟨TUU⟩+⟨TVV⟩=2gUV⟨TUV⟩.



(71)







In a [image: there is no content] coordinate system, in which the metric is diagonal, this is expressed as:


⟨Taa⟩=⟨Ttt⟩+⟨Trr⟩.



(72)







In other words, [image: there is no content] is equivalent to [image: there is no content], which is indeed satisfied by the previous self-consistent solution as in (57). Therefore, we characterize [image: there is no content] by introducing a function [image: there is no content] such that:


⟨Trr⟩−⟨Ttt⟩≡1−f1+f.



(73)




[image: there is no content] corresponds to [image: there is no content]. Here, if we require [image: there is no content] and [image: there is no content], f must satisfy [image: there is no content]. In the following arguments, we assume that the matters are conformal.



5.1. Determination of the Interior Metric


For simplicity, we consider a stationary black hole in the heat bath. More precisely, we describe the exterior by the Schwarzschild metric (28), and parametrize the interior metric by (41) [4]. Then, we assume that [image: there is no content] is static and satisfies (44). Our program is to fix two functions [image: there is no content] and [image: there is no content] by two equations.



The first equation comes from (73). Once [image: there is no content] is given, we rewrite the relation (73), by using the self-consistent Equation (5) for the ansatz (41), as:


21+f=Grr−Gtt+1=r∂rAB−1+r∂rlogB.



(74)







In order to build the second equation, we apply the Weyl anomaly Equation (52) to the trace of (5):


Gμμ=8πG⟨Tμμ⟩=γF−αG,



(75)




where we have introduced the notations [image: there is no content] and [image: there is no content].



Here, we assume that for [image: there is no content], [image: there is no content] and [image: there is no content] are large quantities of the same order as expected from (46):


A(r)∼B(r)≫1.



(76)







Then, the first Equation (74) becomes approximately:


[image: there is no content]



(77)




where [image: there is no content], and we have used [image: there is no content]. Next, in order to examine what terms dominate in (75) for [image: there is no content], we replace A, B and r with [image: there is no content], [image: there is no content] and [image: there is no content], respectively, and pick up the terms with the highest powers of [image: there is no content]. Then, we have:


[image: there is no content]



(78)







Therefore, in the leading order of r, (75) becomes [image: there is no content], that is,


B=γ6A′2.



(79)







It is natural to expect that the dimensionless function [image: there is no content] is a constant for conformal fields [4]:


[image: there is no content]



(80)







Then, from (77)–(80), we obtain:


A=r22(1+f)σf,B=r22σf,



(81)




where we have defined:


[image: there is no content]



(82)







Thus, the interior metric is determined as:


[image: there is no content]



(83)







Indeed, this is a generalization of (30) because (82) and (83) become (59) and (30), respectively, if we set [image: there is no content]. Redefining the overall scale of time and connecting the metric with the Schwarzschild metric, we reach the generalized metric for the stationary black hole:


ds2=−2σfr2e−R(a)2−r22(1+f)σfdt2+r22σfdr2+r2dΩ2,forr≤R(a),−r−ardt2+rr−adr2+r2dΩ2,forr≥R(a),



(84)




where [image: there is no content]. The metric for the evaporating one is obtained with the outside metric replaced by the Vaidya metric (1).




5.2. Check of the Self-Consistent Equation


As in Section 4, we now evaluate [image: there is no content] in the metric (84) and check the self-consistent equation. Because we assume that [image: there is no content] is static, we have to determine three functions of r: [image: there is no content], [image: there is no content] and [image: there is no content].



5.2.1. Evaluation of [image: there is no content] inside the Black Hole


First we determine [image: there is no content] in the interior metric (83), which can be expressed by (33) with (81). We assume (80) and express the relation (73) as:


[image: there is no content]



(85)




where we have used (43). Thus, only [image: there is no content] and [image: there is no content] are left as unknown functions.



We then substitute (85) into (45) and obtain:


∂r((f−1)r2⟨TUU⟩)−f∂rφ−2r(r2⟨TUU⟩)=−12reφ⟨Tμμ⟩.



(86)







Using (80), (81) and [image: there is no content] for [image: there is no content], we reach:


∂r(r2⟨TUU⟩)+f(1−f2)σfr(r2⟨TUU⟩)=σf(1−f)rer22(1+f)σf⟨Tμμ⟩.



(87)







The solution can be expressed as:


[image: there is no content]



(88)




where [image: there is no content] satisfies


∂rC=σf(1−f)rer22(1−f2)σf⟨Tμμ⟩.



(89)







This equation can be solved easily as:


C(r)−C(0)=σf(1−f)∫0rdr′1r′er′22(1−f2)σf⟨Tμμ(r′)⟩≈(1+f)σf2r2er22(1−f2)σf⟨Tμμ(r)⟩,



(90)




where we have employed almost the same technique as in (49). Here, the boundary condition (47) means [image: there is no content]. Then, we reach:


r2⟨TUU(r)⟩=(1+f)σf2r2er22(1+f)σf⟨Tμμ(r)⟩.



(91)







Applying the Weyl anomaly formula (52) to the metric (83) and using the same estimation as (53), we have:


⟨Tμμ⟩=ℏcw3(1+f)4σf2=3(8π)2Glp2cw,



(92)




where at the second equality, we have used (82)17. Substituting this into (91), we obtain:


[image: there is no content]



(93)




which reduces to (55) if [image: there is no content]. Then, from (37), (85) and (93), we obtain:


⟨Tθθ⟩=32(8π)2Glp2cw+f8πG(1+f)r2≈32(8π)2Glp2cw.



(94)







Now, we can check the self-consistent Equation (5) explicitly. Using (85), (93) and (43), we have:


[image: there is no content]



(95)






⟨Trr⟩=ℏcw(1−f)3σf(1+f)3r2=18πGr21−f1+f



(96)




where at the second equality, we have used (82). On the other hand, we have for the metric (83):


−Gtt=1r2,Grr=1r21−f1+f,Gθθ=12(1+f)2σf=316πlp2cw.



(97)







Comparing (94), (95) and (96) with (97), we find that (5) is indeed satisfied.



Finally, we see that the quantum fluctuation of gravity is small also in the general case. In fact, the invariants of (83) are given by:


R,RμνRμν,RμναβRμναβ∼1(1+f)2σf∼1lp2cw,



(98)




where (82) has been used. They are small compared with the Planck scale, and therefore, the fluctuation is small if (61) is satisfied.




5.2.2. Evaluation of [image: there is no content] outside the Black Hole


Next, we consider the outside region, [image: there is no content], of the metric (84). As we have seen in the previous section, [image: there is no content] outside the black hole is so small that the modification from the Schwarzschild or Vaidya metric is negligible, although the precise condition to fix [image: there is no content] is not known. In this subsection, as a simple example, we fix [image: there is no content] by hand and determine [image: there is no content]. Then, we show that the region outside the black hole can be described approximately by the Schwarzschild metric.



We assume:


[image: there is no content]



(99)




where f is a constant given by (80). This means that the total flux emitted from the surface at [image: there is no content] is kept outside (see (93) for [image: there is no content]), while the other effects (such as particle creation outside the black hole by the anomaly in SubSection 4.5) do not contribute to [image: there is no content]. Furthermore, we take for simplicity:


[image: there is no content]



(100)




as the boundary condition. We note that (99) and (100) are not given by some principle, but chosen by hand as an example.



Then, the first term in the right-hand side of (45) vanishes, while the second term is given through the Weyl anomaly by (66) with [image: there is no content]const. Solving (45) with the method of variation of constants under (100), we obtain18:


[image: there is no content]



(101)







This behaves [image: there is no content] for [image: there is no content], which decreases faster than (99) and does not contribute to the flux at infinity. Using (66) and (101), we can evaluate [image: there is no content] through (37) as:


⟨Tθθ⟩=6ℏ(cw−aw)a2r42r2−1R(a)2.



(102)







Thus, [image: there is no content] around [image: there is no content], and we can regard [image: there is no content] by the same reasoning for (69). Therefore, (5) is satisfied by (84).






6. Hawking Radiation


In this section, we discuss how close the object that we are considering is to the black hole in the conventional picture.



6.1. Amount of the Radiation


First we show that the object emits the same amount of radiation as the conventional black hole. We prove that the energy flux at r is given by:


[image: there is no content]



(103)




where J is the energy passing through the ingoing spherical null surface at r per unit time. Here, the time is “the local time at r” such as [image: there is no content] in (13) for the multi-shell model (then, (103) agrees with the right-hand side of (14)). More precisely, we define J by19:


[image: there is no content]



(104)




We can easily show that (104) becomes (103) by using (81), (85) and (93). Note that (103) means that the c-coefficient determines the intensity of the Hawking radiation, and the effect of f is to decrease the flux [4,5].



Now, we apply (103) to the surface [image: there is no content] and obtain the energy flux emitted by the object:


[image: there is no content]



(105)




which agrees with the amount of the radiation emitted by the black hole in the conventional picture.



Here, we point out that we can obtain the energy spectrum of the radiation by solving the wave equation in the metric (27) under the Eikonal approximation. Indeed, it turns out to be the Planck-like distribution with the Hawking temperature [3,5].




6.2. Insensitivity to the Detail of the Initial Wave Function


Next, we argue that the expectation value of the energy momentum tensor is determined by the overall geometry and does not depend on the detail of the initial wave function. To see this, we start with reexamining the analysis (49) of [image: there is no content]. If we integrate it from [image: there is no content] instead of [image: there is no content], we have:


r2⟨TUU⟩=(r2⟨TUU⟩)|r0+σ2r2⟨Tμμ(r)⟩er22σ(1−e−rσ(r−r0)).



(106)







Here, the last term vanishes for such [image: there is no content] that [image: there is no content], and the first term is negligible, unless it is as large as [image: there is no content]. Thus, even if we do not use the boundary condition (47), we obtain the same result (50).



This indicates that the amount of the radiation is determined universally by the geometry. Indeed, as is shown in (50), [image: there is no content] is produced at each point in the interior through the 4D Weyl anomaly (52), which is independent of the state, but is determined by the metric (30). Furthermore, while we have assumed the configuration (20) to obtain the metric (30), it has been shown by [8] that (30) is asymptotically reached from any initial distribution of mass and velocity of the matter. In this sense, the radiation occurs universally in collapsing processes, whose amount is given by (105).



Here, we emphasize that the 4D Weyl anomaly plays a crucial role in our picture of black holes. As (51) shows, the anomaly induces the strong angular pressure (56) [28,29,30,31,32]. It is so strong in the metric (30) that the object can be stable against the strong gravitational force20 21.




6.3. Fate of the Incoming Matter


Finally, we discuss the information problem. In our picture, the matter fields simply propagate in the background metric as in the ordinary quantum field theory on curved spacetime, and nothing special happens during the time evolution. Therefore, it is natural to expect that the collapsing matter itself eventually comes back as the radiation22.



Indeed, we can get a clue to this by a simple analysis [5]. Suppose that a particle with energy [image: there is no content] comes close to the black hole and becomes a part of it. Then, it starts to emit radiation. As the particle loses energy, its wavelength increases. If the wavelength gets larger than the size of the black hole, then the particle can no longer stay in it. We can estimate the time scale of this process as [image: there is no content], which is much shorter than that of the evaporation [image: there is no content].



Therefore, one of the important future works is to solve the wave equation in the self-consistent metric (27) more precisely23. If we succeed in it, we should be able to understand how the information of the collapsing matter comes back and especially what happens to the baryon number conservation [5] 24.





7. Summary and Discussion


Our solution tells what the black hole is. The collapsing matter becomes a dense object and evaporates eventually without forming a horizon or singularity. It has a surface instead of the horizon, but looks like an ordinary black hole from the outside. In the interior, the non-trivial structure is formed, where the matter and the Hawking radiation can interact. This can provide a possible solution to the information problem.



There remain problems to be clarified in the future. First, as we have mentioned, the important problem is to understand how the information comes back in this picture. To do it, we need to solve the wave equation in the self-consistent metric (27).



Second, although we have assumed a constant f to construct the metric (84), we do not understand its meaning yet. In principle, f should be determined by the dynamics of matters in the metric (84). Therefore, it is interesting to evaluate f concretely by considering a specific theory.



Third, the spherical symmetry has played an important role in our analysis. In the real world, however, we need to consider a rotating black hole, the outside of which is described by the Kerr metric. Although there is a conjecture on the interior metric for a slowly-rotating black hole [5], the general form is not known. It would be valuable if we can determine the interior metric by the 4D Weyl anomaly for the general case.



Fourth, we do not know yet how stable the metric (30) is for non-spherically symmetric perturbations. When investigating this problem, we need to be careful with the fact that the interior is not a fluid, as we have mentioned below (59).



Finally, astrophysics has entered into a new stage by the launch of gravitational wave detectors. For a new physics of black holes, it should be exciting to study an observable signal that exhibits some difference between the black holes in our picture and the conventional picture [43,44,45].
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Appendix A. Derivation of (64) and (65)


We derive (64) and (65). We first express the Vaidya metric (1) in the form of (33). We put [image: there is no content]. Then, we introduce V as a label of an ingoing null line following (3): once an initial position for [image: there is no content] in (3) is given, the solution is determined uniquely, which we denote by [image: there is no content]. This plays roles of [image: there is no content] in (33). Indeed, we have:


dr¯=∂r¯∂UVdU+∂r¯∂VUdV=−r¯−a2r¯dU+∂r¯∂VUdV,



(A1)




replace [image: there is no content] in (1) with this, and obtain:


[image: there is no content]



(A2)




which means that [image: there is no content].



Under (32), we integrate (38) from [image: there is no content] to [image: there is no content] along a fixed [image: there is no content]:


(r2⟨TUU⟩)−(r2⟨TUU⟩)|Vout=−12∫VoutVdV′r∂Ureφ⟨Tμμ⟩=−∫VoutVdV′∂r¯∂VUr∂Ur⟨Tμμ⟩=−∫r(U,Vout),U=const.r(U,V)drr∂Ur⟨Tμμ⟩=12∫r(U,Vout),U=const.r(U,V)dr(r−a(U))⟨Tμμ⟩.



(A3)







Here, at the second line, (A2) has been used; at the third line, we have used the fact that [image: there is no content] holds along a fixed U (see (A1)); at the last line, we employ (A1) again. Then, employing the boundary condition (63), we obtain (64).



Next, we derive (65). We integrate (39) with the assumption (32) and the boundary condition (62):


r2⟨TVV⟩=(r2⟨TVV⟩)|U=−∞−12∫−∞UdU′r∂Vreφ⟨Tμμ⟩=−∫−∞UdU′r(∂Vr)2⟨Tμμ⟩,








where we have used [image: there is no content] in (A2).



Then, we estimate its order assuming that [image: there is no content] varies slowly, [image: there is no content] const. In this case, we can use (42) to have:


r2⟨TVV⟩=−∫∞,V=const.rdr′1∂Urr′(∂Vr)2⟨Tμμ⟩=∫∞,V=const.rdr′r′∂Vr⟨Tμμ⟩=12∫∞,V=const.rdr′(r′−a)⟨Tμμ⟩.











Using (66), this becomes (68).
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1.See, e.g., [2] for a classical analysis of collapsing matters.



	
2.See Appendix I in [5] for a precise derivation.



	
3.That is essential for particle creation is a time-dependent metric, but not the existence of horizons. A Planck-like distribution can be obtained even if there is no horizon [3,5,12].



	
4.We keep using the term “black hole” even though the system is different from the conventional black hole that has a horizon.



	
5.See also [13,14,15,16,17]. See, e.g., [18,19] for a black hole as a closed trapped region in the vacuum.



	
6.The above analysis is based on the classical motion of particles, but we can show that the result is valid even if we treat them quantum mechanically. See Section 2-B and Appendix A in [5].



	
7.For the general metric, the proper length in the radial direction is given by [image: there is no content]. See [11].



	
8.The surface tensor is given by [image: there is no content]. Here, [image: there is no content] is the four-vector of a timelike observer with proper time [image: there is no content] who crosses the shell at [image: there is no content], [image: there is no content] is the ingoing radial null vector along the locus of the shell which is taken as [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content], and [image: there is no content] is the metric on the two-sphere ([image: there is no content]). See Appendix F in [5] for the detail.



	
9.See [5] for more detailed discussions.



	
10.Due to the spherical symmetry, the motion of each shell in the “local time” [image: there is no content] is determined independently of the shells outside it. Therefore, the analysis for (7) can be applied to each shell.



	
11.We can see how this “equilibration” occurs, by introducing interactions between radiations and matters. See Section 2-E in [5] for a detailed discussion.



	
12.We can see this explicitly as follows. Because the Vaidya metric has only [image: there is no content], we can expect that only [image: there is no content] exists in the inter-shell regions. From the definitions of U and V, we have a transformation between [image: there is no content] and [image: there is no content] such that [image: there is no content] Therefore, we evaluate [image: there is no content], [image: there is no content] and [image: there is no content].



	
13.We will check the validity of (30) later. Indeed, (30) becomes almost flat at [image: there is no content], and can be connected to the flat spacetime.



	
14.We assume that the coefficients of the higher-curvature terms in the effective action are renormalized to order one. However,[image: there is no content] and [image: there is no content] are proportional to the degrees of freedom N because they are not canceled by counterterms [25]. Therefore, we can ignore the contributions from the higher curvature terms if [image: there is no content].



	
15.See, e.g., [27] for another application of the 4D Weyl anomaly to black holes.



	
16.However, [image: there is no content] holds for any kind of massless fields [25], and [image: there is no content] is always positive at infinity. Here, the boundary condition (63) plays an important role. Later, we will discuss the origin of the radiation more closely.



	
17.We note that [image: there is no content] is independent of f.



	
18.For given [image: there is no content] and [image: there is no content], we solve (45) with respect to [image: there is no content] and have [image: there is no content], where [image: there is no content] has been used. Then, [image: there is no content] satisfies [image: there is no content]. Applying (99) and (66) to this and integrating it from [image: there is no content] to r, we obtain (101) if (100) is considered.



	
19.We can see that this definition is consistent with the concept of J, as follows. To do that, we first note that (14) suggests [image: there is no content] as the natural time for description of the evaporation of each shell, and that in the continuum limit the redshift factor between U and [image: there is no content] is [image: there is no content], as (25) shows. Then, we introduce the energy-momentum vector observed by [image: there is no content] as Pμ≡−⟨Tμν⟩uν. Here, [image: there is no content] is the four-vector with time [image: there is no content], which is defined by [image: there is no content]. Here, we have used (29) and (43). Thus, we can identify J with [image: there is no content], where [image: there is no content] is the ingoing null vector along the shell.



	
20.We can see explicitly this by constructing the Tolman–Oppenheimer–Volkoff equation with [image: there is no content] and using [image: there is no content].



	
21.See also [33].



	
22.The entropy can also be understood by the matter in the interior. The area law is reproduced by evaluating the entropy density and integrating it over the proper volume of the interior region. See Section 4-F and Appendix H in [5]. There are other approaches using the interior volume. See, e.g., [34].



	
23.See, e.g., [35,36] for the analysis of matter fields around the black hole.



	
24.There are many interesting approaches for the information problem. In [37,38,39], analyses are made based on an infalling observer, and in [40,41,42], the black hole is identified with a gravitational Bohr’s hydrogen atom.
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