Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX †
Abstract
:1. Introduction
2. Results
Acknowledgments
Conflicts of Interest
References
- Csanád, M.; Csörgő, T.; Lörstad, B.; Ster, A. Indication of quark deconfinement and evidence for a Hubble flow in 130-GeV and 200-GeV Au + Au collisions. J. Phys. G 2004, 30, S1079–S1082. [Google Scholar] [CrossRef]
- Aoki, Y.; Endrődi, G.; Fodor, Z.; Katz, S.D.; Szabó, K.K. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program. Phys. Rev. C 2017, 96, 044904. [Google Scholar] [CrossRef]
- Csörgő, T. Particle interferometry from 40-MeV to 40-TeV. Heavy Ion Phys. 2002, 15, 1–80. [Google Scholar] [CrossRef]
- Lisa, M.A.; Pratt, S.; Soltz, R.; Wiedemann, U. Femtoscopy in relativistic heavy ion collisions. Ann. Rev. Nucl. Part. Sci. 2005, 55, 357–402. [Google Scholar] [CrossRef]
- Csanad, M. Measurement and analysis of two- and three-particle correlations. Nucl. Phys. A 2006, 774, 611–614. [Google Scholar] [CrossRef]
- Adare, A.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Al-Ta’ani, H.; Angerami, A.; Aoki, K.; et al. Lévy-stable two-pion Bose-Einstein correlations in 200 GeV Au + Au collisions. arXiv, 2017; arXiv:nucl-ex/1709.05649. [Google Scholar]
- Csanád, M.; Csörgő, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys. 2007, 37, 1002–1013. [Google Scholar] [CrossRef]
- Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. C 2004, 36, 67–78. [Google Scholar] [CrossRef]
- Bolz, J.; Ornik, U.; Plumer, M.; Schlei, B.R.; Weiner, R.M. Resonance decays and partial coherence in Bose-Einstein correlations. Phys. Rev. D 1993, 47, 3860–3870. [Google Scholar] [CrossRef]
- Rieger, H. Critical behavior of the three-dimensional random-field Ising model: Two-exponent scaling and discontinuous transition. Phys. Rev. B 1995, 52, 6659–6667. [Google Scholar] [CrossRef]
- Csörgő, T. Correlation Probes of a QCD Critical Point. In Proceedings of the PoS (HIGH-PTLHC 08), Tokaj, Hungary, 16–19 March 2008. [Google Scholar]
- Halasz, A.M.; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, J.J.M. On the phase diagram of QCD. Phys. Rev. D 1998, 58, 096007. [Google Scholar] [CrossRef]
- Stephanov, M.A.; Rajagopal, K.; Shuryak, E.V. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 1998, 81, 4816–4819. [Google Scholar] [CrossRef]
- El-Showk, S.; Paulos, M.F.; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A. Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents. J. Stat. Phys. 2014, 157. [Google Scholar] [CrossRef]
- Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc. 2006, 828, 525–532. [Google Scholar]
- Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.N. Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV. Phys. Rev. Lett. 2004, 93, 152302. [Google Scholar] [CrossRef] [PubMed]
- Csanad, M. Lévy femtoscopy with PHENIX at RHIC. arXiv, 2017; arXiv:nucl-ex/1711.05575. [Google Scholar] [CrossRef]
- Kapusta, J.I.; Kharzeev, D.; McLerran, L.D. The Return of the prodigal Goldstone boson. Phys. Rev. D 1996, 53, 5028–5033. [Google Scholar] [CrossRef]
- Vance, S.E.; Csörgő, T.; Kharzeev, D. Partial U(A)(1) restoration from Bose-Einstein correlations. Phys. Rev. Lett. 1998, 81, 2205–2208. [Google Scholar] [CrossRef]
- Lacey, R.A. Indications for a critical point in the phase diagram for hot and dense nuclear matter. Nucl. Phys. A 2016, 956, 348–351. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kincses, D. Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX. Universe 2018, 4, 11. https://doi.org/10.3390/universe4010011
Kincses D. Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX. Universe. 2018; 4(1):11. https://doi.org/10.3390/universe4010011
Chicago/Turabian StyleKincses, Dániel. 2018. "Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX" Universe 4, no. 1: 11. https://doi.org/10.3390/universe4010011
APA StyleKincses, D. (2018). Lévy Analysis of HBT Correlation Functions in s N N = 62 GeV and 39 GeV Au + Au Collisions at PHENIX. Universe, 4(1), 11. https://doi.org/10.3390/universe4010011