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Abstract

:

In this paper we give a brief account of the relations between non-projected supermanifolds and projectivity in supergeometry. Following the general results (L. Sergio et al., 2018), we study an explicit example of non-projected and non-projective supermanifold over the projective plane and show how to embed it into a super Grassmannian. The geometry of super Grassmannians is also reviewed in detail.
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1. Introduction: Projectivity and Non-Projectivity in Supergeometry


The problem of projectivity in supergeometry is a long-standing one. Indeed, large classes of complex supermanifolds whose reduced complex manifolds Mred are projective—i.e., there exists an embedding Mred↪Pn—are known to be non-superprojective (henceforth, projective), that is they do not admit an embedding M↪Pn|m for some projective superspace Pn|m. This is the case, for example, of a large class of complex super Grassmannians (see [1] and Section 4 of this paper).



The problem of projectivity is related to another central problem characterizing the theory of complex supermanifold, that of the so-called non-projected supermanifolds: these are complex supermanifolds that do not possess a projection to their reduced manifold M→Mred. Indeed, it has been shown that any projected supermanifold whose reduced manifold is projective, is also superprojective. In other words, if Mred is a projective complex manifolds and ℳ is projected, the embedding Mred↪Pn can be lifted to an embedding of supermanifolds M↪Pn|m (see for example [2]). Notice that, for this to be true, the existence of the projection map M→Mred is crucial: indeed, if we let Lred be a very ample line bundle on Mred, then π*Lred will be very ample on ℳ, in the sense that π*Lred will allow for the embedding at the level of the supermanifolds M↪Pn|m [2,3].



The story is different when a supermanifold is non-projected. The obstruction theory to find an embedding into projective superspace for a complex supermanifold has been studied for example in [2], back in the early days of supergeometry. There, it is shown that the obstruction to extend the embedding map Mred↪Pn at the level of the reduced complex manifolds, to an embedding Mred↪Pn|m at the level of complex supermanifolds lies in the cohomology groups H2(Sym2kFM) for k=1,…,rankFM/2 and where the vector bundle FM=JM/JM2 is constructed via a suitable quotient of the nilpotent bundleJM of the supermanifold, encoding the behavior of the anti-commutative nilpotent part of the geometry, see [1,3]. This result has some obvious, yet remarkable, consequences: for example, by dimensional reasons, one sees that any supercurve, i.e., any supermanifold of dimension 1|m constructed over a projective curve, is actually projective, and the issues regarding projectivity start to arise in dimension n|m, for n,m≥2.



Following these considerations, whilst the literature fully acknowledged that in the realm of supergeometry projective superspaces Pn|m are not as important as they are in ordinary complex algebraic geometry, nothing has been said, by the way, about which sort of space is to be considered when one looks for a universal embedding space for complex supermanifolds. In the recent [4], this problem was taken on starting from dimension 2|2, working over the projective plane P2, and it has been shown that a large class of non-projected complex supermanifolds does not indeed admit projective embeddings, while all of these non-projected and non-projective supermanifolds admit embeddings in some complex super Grassmannians, thus hinting that the same might happen also in higher dimensions.



In the paper, we consider again the problem of embedding a supermanifold into a super Grassmannians, enriching and clarifying the abstract results of [4] by very explicit constructions and examples. In particular, in the first section of the paper, the key concepts of supergeometry are revised and the notation is fixed, and the main result of [4] is reported and put in context as to make the paper self-consistent. Next, following [1], the supergeometry of complex super Grassmannians is explained. In the last section, it is shown how to build maps to super Grassmannians and the example of the 2|2 dimensional supermanifold over P2 characterized by a decomposable fermionic bundle FM=ΠOP2(−1)⊕ΠOP2(−2) is carried out in full detail.



The interested reader might find further general references about supergeometry in [1,5,6]. On the problem of projectivity in supergeometry, the reader might refer to [2,7], and the recent [8,9,10].




2. Basics of Supermanifolds


In this section, we recall the basic definitions in the theory of (complex) supermanifolds. The interested reader might find more details in [1] or [3], which we will follow closely. The most important notion in supergeometry is the one of superspace, which is defined as follows.



Definition 1

(Superspace). A superspace is a pair (|M|,OM), where |M|is a topological space and OMis a sheaf of Z2-graded supercommutative rings (super rings for short) defined over |M|and such that the stalks OM,xat every point of |M|are local rings.



In other words, a superspace is a locally ringed space having a structure sheaf given by a sheaf of super rings.





The requirement about the stalks being local rings is the same thing as asking that the even component of the stalk is a usual commutative local ring, for in superalgebra one has that if A=A0⊕A1 a super ring, then A is local if and only if its even part A0 is (see for example [6]).



It is important to observe that one can always construct a superspace out of two classical data: a topological space, call it again |M|, and a vector bundle over |M|, call it E (analogously: a locally free sheaf of O|M|-modules). Now, we denote O|M| the sheaf of continuous functions (with respect to the given topology) on |M| and we put ⋀0E*=O|M|. The sheaf of sections of the bundle of exterior algebras ⋀•E* has an obvious Z2-grading (by taking its natural Z-grading mod 2); therefore, in order to realize a superspace, it is enough to take the structure sheaf OM of the superspace to be the sheaf of sections valued in O|M| of the bundle of exterior algebras. This is what is called a local model.



Definition 2

(Local Model S(|M|,E)). Given a pair (|M|,E), where |M|is a topological space and Eis a vector bundle over |M|, we call S(|M|,E)the superspace modeled on the pair (|M|,E), where the structure sheaf is given by the O|M|-valued sections of the exterior algebra ⋀•E*.





This is a minimal definition of a local model: we have let |M| be no more than a topological space and as such we are only allowed to take O|M| to be the sheaf of continuous functions on it. One can obviously work in a richer and more structured category, such as the differentiable, complex analytic, or algebraic category: from now on, we will work in the complex analytic category and we consider local models based on the pair (Mred,E), where Mred is a complex manifold (its underlying topological space will be denoted with |M| and the sheaf of holomorphic functions on Mred with OMred) and where E is a holomorphic vector bundle on Mred. We will call a holomorphic local model a local model constructed on this kind of data.



The concept of a local model enters in the definition of the main character of this paper.



Definition 3

(Complex Supermanifold). A complex supermanifold ℳ of dimension n|mis a superspace that is locally isomorphic to some holomorphic local model S(Mred,E), where Mredis a complex manifold of dimension n and Eis a holomorphic vector bundle of rank m.





In other words, if the topological space |M| underlying Mred has a basis {Ui}i∈I, the structure sheaf OM=OM,0⊕OM,1 of the supermanifold ℳ is described via a collection {ψUi}i∈I of local isomorphisms of sheaves


Ui⟼ψUi:OM⌊Ui⟶≅⋀•E*⌊Ui



(1)




where we have denoted with ⋀•E* the sheaf of sections of the exterior algebra of E considered with its Z2-gradation.



In general, given two superspaces, we can define a morphism relating these two.



Definition 4

(Morphisms of Superspaces). Given two superspaces ℳ and 𝒩 a morphism φ:M→Nis a pair φ:=(ϕ,ϕ♯)where

	
ϕ:|M|→|N|is a continuous map of topological spaces;



	
ϕ♯:ON→ϕ*OMis a morphism of sheaves ofZ2-graded rings, having the property that it preserves theZ2-grading and that, given any pointx∈|M|, the homomorphismϕx♯:ON,ϕ(x)→OM,xis local, that is it preserves the (unique) maximal ideal,ϕx♯(mϕ(x))⊆mx.










This definition applies in particular to the case of complex supermanifolds and enters the definition of sub-supermanifolds. Indeed, as in the ordinary theory, a sub-supermanifold is defined in general as a pair (N,ι), where 𝒩 is a supermanifold and ι:=(ι,ι♯):(N,ON)→(M,OM) is an injective morphism with some regularity property. In particular, depending on these regularity properties, we can distinguish between two kinds of sub-supermanifolds. We start from the milder notion.



Definition 5

(Immersed Supermanifold). Let ι:=(i,i♯):(|N|,ON)→(|M|,OM)be a morphism of supermanifolds. We say that (N,ι)is an immersed supermanifold if i:|N|→|M|is injective and the differential (dι)(x):TN(x)→TM(i(x))is injective for all x∈|N|.





Making stronger requests, we can give instead the following definition.



Definition 6

(Embedded Supermanifold). Let ι:=(i,i♯):(|N|,ON)→(|M|,OM)be a morphism of supermanifolds. We say that (N,ι)is an embedded supermanifold if it is an immersed submanifold and i:|M|→|N|is an homeomorphism onto its image.



In particular, ifι(|N|)⊂|M|is a closed subset of|M|we will say that(N,ι)is a closed embedded supermanifold.





In what follows, we will always deal with closed embedded supermanifolds. Remarkably, it is possible to show that a morphism ι:N→M is an embedding if and only if the corresponding morphism ι♯:OM→ON is a surjective morphism of sheaves. Notice that, for example, given a supermanifold M, one always has a natural closed embedding: the map ι:Mred→M, which embeds the reduced manifold underlying the supermanifold into the supermanifold itself.



We now introduce some further pieces of information carried by a supermanifold.



Definition 7

(Nilpotent Sheaf/Fermionic Sheaf). We call the nilpotent sheaf JMthe sheaf of ideals of OM=OM,0⊕OM,1generated by all of the nilpotent sections, that is we put JM:=OM,1⊕OM,12.



We also call fermionic sheafFMthe locally free sheaf ofOMred-module of rank0|mgiven by the quotientFM:=JMJM2.





It is crucial to note that modding out all of the nilpotent sections from the structure sheaf OM of the supermanifold ℳ, we recover the structure sheaf OMred of the underlying ordinary complex manifold Mred that the local model was based on. We call the complex manifold Mred the reduced manifold of the supermanifold M: loosely speaking, the reduced manifold arises by setting all of the nilpotents in OM to zero.



In other words, more invariantly, attached to any complex supermanifold, there is a short exact sequence that relates the supermanifold with its reduced manifold:


0→JM→OM→ιOMred→0



(2)




where OMred≅OMJM and the surjective sheaf morphism ι:OM→OMred corresponds to the existence of an embedding Mred→ιM of the reduced manifold Mred inside the supermanifold ℳ. Notice that JM=ker(ι), where ι:OM→OMred is the surjective sheaf morphism in Equation (2).



We will refer to the short exact sequence of Equation (2) as the structural exact sequence of ℳ.



A very natural question arising when looking at the structural exact sequence of Equation (2) associated to a certain supermanifold is whether it is a split exact sequence or not, that is whether there exists a retraction—called projection in this context—π:OMred→OM such that ι∘π=idOMred:


[image: Universe 04 00114 i001]



(3)







Notice that, more precisely, this shall be recast into the splitting of two exact sequences—the even and the odd part of Equation (2), as we are only dealing with parity preserving morphisms. In particular, we shall give the following definition.



Definition 8

(Projected Supermanifold). We say that a supermanifold is projected if the even part of its structural exact sequence of Equation (2) splits:


[image: Universe 04 00114 i002]



(4)









It is important to observe that, if the structure sheaf of a supermanifold is a sheaf of OMred-modules if and only if the supermanifold is projected, indeed in this case one has that OM≅OMred⊕JM: is this case the theory simplifies considerably as all of the sheaves of OM-modules defined on the supermanifold are also sheaves of OMred-modules.



Notably, if also the odd part of the structural exact sequence attached to the supermanifold ℳ is split, that is
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(5)




then the supermanifold ℳ is called split: this expresses in a more invariant and meaningful form the isomorphism M≅S(Mred,ΠFM*): the supermanifold is globally isomorphic to the local model onto which it is based. In other words, we might say that a supermanifold ℳ is split if and only if it is projected and the short exact sequence of Equation (5) is split. There indeed exists projected supermanifolds that are not split.



Notice that all of the complex supermanifolds having odd dimension 1 are projected and split for dimensional reasons. When going up to odd dimension 2 a supermanifold can instead be non-projected—the short exact sequence of Equation (4) indicates that OM,0 is an extension of OMred by the line bundle Sym2FM. If we call a N=2 supermanifold a complex supermanifold having an odd dimension equal to 2, we have the following important result.



Theorem 1

(𝒩 = 2 Supermanifolds). Let ℳ be a N=2supermanifold. Then ℳ is defined up to an isomorphism by the triple (Mred,FM,ωM)where FMis a rank 0|2sheaf of locally free OMred-modules, the fermionic sheaf of ℳ, and ωM∈H1(Mred,TMred⊗Sym2FM).The supermanifold ℳ is non-projected if and only if ωM≠0.





The proof of the statement can be originally found in [1] and has been reproduced in full detail in [3].




3. Non-Projected N=2 Supermanifolds over P2


Using Theorem 1 of the previous section, in the recent [4], all the non-projected N=2 supermanifolds over the projective plane P2 were described through their characterizing cohomological invariants and their transition functions have been given. These non-projected supermanifolds reveal interesting features.



We first set out conventions: we consider a set of homogeneous coordinates [X0:X1:X2] on P2 and the set of the affine coordinates and their algebras over the three open sets of the covering U:={U0,U1,U2} of P2. In particular, modulo JM2, we have the following


U0:=X0≠0⇝z10modJM2:=X1X0,z20modJM2:=X2X0;U1:=X1≠0⇝z11modJM2:=X0X1,z21modJM2:=X2X1;U2:=X2≠0⇝z12modJM2:=X0X2,z22modJM2:=X1X2.



(6)







The transition functions between these charts reads


U0∩U1:z10modJM2=1z11modJM2,z20modJM2=z21z11modJM2;U0∩U2:z10modJM2=z22z12modJM2,z20modJM2=1z12modJM2;U1∩U2:z11modJM2=z12z22modJM2,z21modJM2=1z22modJM2.



(7)







We also denote θ1i,θ2i a basis of the rank 0|2 locally free sheaf FM on any of the open sets Ui, for i=0,1,2, and, since JM3=0, the transition functions among these bases will have the form


Ui∩Uj:θ1iθ2i=Mij·θ1jθ2j,



(8)




with Mij a 2×2 matrix with coefficients in OP2(Ui∩Uj). Note that in the transformation of Equation (8) one can write Mij as a matrix with coefficients given by some even rational functions of z1j,z2j, because of the definitions (6) and the facts that θhj∈JM and JM3=0.



Finally we note the transformation law for the products θ1iθ2i is given by


θ1iθ2i=(detMij)θ1jθ2j.



(9)







Since detM is a transition function for the invertible sheaf Sym2FM≅OP2(−3) over Ui∩Uj, this can be written, up to constant changes of bases in F⌊Ui and F⌊Uj, in the more precise form


θ1iθ2i=XjXi3θ1jθ2j.



(10)







Thus, we can identify the base θ1iθ2i of Sym2FM⌊Ui with the standard base 1Xi3 of OP2(−3) over Ui.



Having set these conventions and notations, we can give the following theorem, whose detailed proof can be found in [4].



Theorem 2

(Non-Projected 𝒩 = 2 Supermanifolds over 𝕡2). Every non-projected N=2supermanifold over P2is characterized up to isomorphism by a triple Pω2(FM):=(P2,FM,ω)where FMis a rank 0|2sheaf of OP2-modules such that Sym2FM≅OP2(−3)and ω is a non-zero cohomology class ω∈H1(TP2(−3)).



The transition functions for an element of the familyPω2(FM)from coordinates onU0to coordinates onU1are given by


z10z20θ10θ20=1z11z21z11+λθ11θ21(z11)2Mθ11θ21



(11)




whereλ∈Cis a representative of the classω∈H1(TP2(−3))≅Cand M is a2×2matrix with coefficients inC[z11,z11−1,z21]such thatdetM=1z113.



Similar transformations hold between the other pairs of open sets.





We remark that the form of transition functions above is shared by all the supermanifolds Pω2(FM), regardless the form of its fermionic sheaf FM, which is encoded in the matrix M.



Some remarkable properties of this family of non-projected supermanifolds has been given by the authors in [4]. We condensate these results in the following theorem.



Theorem 3.

Let ℳ be a non-projected supermanifold in the familyPω2(FM).Then

	
ℳ is non-projective, that is ℳ cannot be embedded into any projective superspace of the kindPn|m;



	
ℳ can be embedded into a super Grassmannian.



In particular, letTMbe the tangent sheaf of ℳ, if we letV:=H0(SymkTM), for anyk≫0the evaluation mapevM:V⊗OM→SymkTMinduces an embedding:


Φk:M→G(2k|2k,V).



(12)














We observe that the theorem proves the existence of an embedding into some super Grassmannian, but it is not effective in that it does not give an esteem of the symmetric power of the tangent sheaf needed in order to set up the embedding. In the next sections, we will first review the geometry of super Grassmannians, and we will then treat explicitly an interesting example of embedding into a super Grassmannian, by choosing a decomposable fermionic sheaf satisfying the hypotheses of Theorem 2.




4. Elements of Super Grassmannians


This section is dedicated to the introduction of some elements of geometry of super Grassmannians. We remark that this section contains no original result and it is fully expository: all of the results are originally due to Y. Manin and his school, see in particular [1,5,7]. Nonetheless, we believe that since the cited literature is somewhat difficult and largely sketchy in the proofs of the various statements, it might be useful to have the constructions revised and readily at hand. In the present section, our emphasis will be on the non-projectedness and non-projectivity issues.



Super Grassmannians are the supergeometric generalization of the ordinary Grassmannians. This means that G(a|b;Vn|m) is a universal parameter space for a|b-dimensional linear subspaces of a given n|m-dimensional space Vn|m. We will deal with the simplest possible situation, choosing the n|m-dimensional space Vn|m to be a super vector space of the kind Cn|m.



We start reviewing how to construct a super Grassmannian by patching together the “charts” that cover it: this is nothing but a generalization of the usual construction of ordinary Grassmannians making use of the so-called big cells.

	
We let Cn|m be such that n|m=c0|c1+d0|d1 and look at Cn|m as given by Cc0+d0⊕(ΠC)c1+d1. This is obviously freely generated, and we will write its elements as row vectors with respect to a certain basis, Cn|m=Span{e10,…,en0|e11,…,em1}, where the upper indices refer to the Z2-parity.



	
Consider a collection of indices I=I0∪I1 such that I0 is a collection of d0 out of the n indices of Cn and I1 is a collection of d1 indices out of m indices of ΠCm. If I is the set of such collections of indices I one obtains


card(I)=card(I0×I1)=nd0·md1.



(13)




This will give the number of super big cells covering the super Grassmannian.



	
Choosing an element I∈I, we associate to it a set of even and odd (complex) variables, we call them {xIαβ|ξIαβ}. These are arranged as to fill in the places of a d0|d1×n|m=a|b×(c0+d0)|(c1+d1) matrix a way such that the columns having indices in I∈II forms a (d0+d1)×(d0+d1) unit matrix if brought together. To make this clear, for example, a certain choice of I∈I yields the following


[image: Universe 04 00114 i004]



(14)




where we have chosen to pick that particular I∈I that underlines the presence of the (d0+d1)×(d0+d1) unit matrix.



	
We now define the superspace UI→SpecC≅{pt} to be the analytic superspace {pt}×Cd0·c0+d1·c1|d0·c1+d1·c0≅Cd0·c0+d1·c1|d0·c1+d1·c0, where {xIαβ|ξIαβ} are the complex coordinates over the point. Whenever represented as above, the superspace related to UI is called a super big cell of the Grassmannian, and denoted with ZI or, again, simply by UI (which encodes the topological information).



	
We now show how to patch together two superspaces UI and UJ for two different I,J∈I. If ZI is the super big cell related to UI, we consider the super submatrix BIJ formed by the columns having indices in J. Let UIJ=UI∩UJ be the (maximal) sub-superspace of UI such that on UIJ the submatrix BIJ is invertible. As usual, the odd coordinates do not affect the invertibility, so it is enough that the two determinants of the even parts of the matrix BIJ (that are, respectively, a d0×d0 and a d1×d1 matrix) are different from zero. When this is the case, on the superspace UIJ, one has common coordinates {xIαβ|ξIαβ} and {xJαβ|ξJαβ}, and the rule to pass from one system of coordinates to the other one is provided by ZJ=BIJ−1ZI.



For example, let us consider the following two super big cells:


[image: Universe 04 00114 i005]



(15)







Looking at ZI, we see that the columns belonging to J are the first, the third, and the fourth, so that


BIJ=1x100x200η1.



(16)







When computing the determinant of the upper-right 2×2 matrix, the invertibility of BIJ corresponds to x2≠0 (as seen from the point of view of UI. Likewise one would have found x˜2≠0 by looking at ZJ and UJ). The inverse of BIJ−1 is


BIJ−1=1−x1/x2001/x100η/x21



(17)




so that we can compute the coordinates of UJ as functions of the ones of UI via the rule ZJ=BIJ−1ZI:


[image: Universe 04 00114 i006]



(18)




so that the change of coordinates can be read out of this. Observe that the denominator x2 is indeed invertible on UIJ.



	
Patching together the superspaces UI, one obtains the Grassmannian supermanifold G(d0|d1;Cn|m) as the quotient supermanifold


G(d0|d1;Cn|m):=⋃I∈I/R,



(19)




where we have written R for the equivalence relations generated by the change of coordinates that have been described above. Notice that, as a (complex) supermanifold, a super Grassmannian has dimension


dimCG(d0|d1;Cn|m)=d0(n−d0)+d1(m−d1)|d0(m−d1)+d1(n−d0).



(20)




We stress that the maps ψUI:UI→G(d0|d1;Cn|m) are isomorphisms onto (open) sub-superspaces of the super Grassmannian, so that the various super big cells offer a local description of it, in the same way a usual (complex) supermanifold is locally isomorphic to a superspace of the kind Cn|m.








Clearly, the easiest possible example of super Grassmannians are projective superspaces that are realized as Pn|m=G(1|0;Cn+1|m), exactly as in the ordinary case: these are split supermanifolds, a feature that they do not in general share with a generic Grassmannian G(d0|d1;Cn|m), as we shall see in a moment.



For convenience, in what follows we call G a super Grassmannian of the kind G(d0|d1;Cn|m) and we give the following, see [1].



Definition 9

(Tautological Sheaf on a Super Grassmannian). Let G be a super Grassmannian and let it be covered by the super big cells {UI}I∈I. We call tautological sheaf SGof the super Grassmannian G the sheaf of locally free OG-modules of rank d0|d1defined as


U∩UI⟼SG(U∩UI):=rows of the matrixZIOG(U∩UI).



(21)









Notice that this definition is well-posed, since one has that SG(UI)⌊UIJ and SG(UJ)⌊UJI are identified by means of the transition functions BIJ.



One can have insights about the geometry of a super Grassmannian by looking at its reduced space—which, we recall, encloses all the topological information—and at the filtration of its trivial sheaf OG.



We start observing that, given a super Grassmannian G, one automatically has two ordinary even sub-Grassmannians.



Definition 10

(G0 and G1). Let G=G(d0|d1;Cn|m)be a super Grassmannian. Then we call G0and G1the two purely even sub-Grassmannians defined as


G0:=G(d0|0;Cn|0),G1:=G(0|d1;C0|m).



(22)









Given a super big cell UI, G0 and G1 can be visualized as the upper-left and the lower-right parts, respectively, and they come endowed with their tautological sheaves. We call them S0 and S1. Notice, though, that S1 defines a sheaf of locally free OG1-modules and, as such, it has rank 0|d1.



Let us now consider an ordinary even complex Grassmannian G of the kind G(d;Cn) together with its tautological sheaf SG. One can then also define the sheaf orthogonal to the tautological sheaf, we call it S˜, whose dual fits into the short exact sequence


0→SG→OG⊕n→S˜G*→0.



(23)







Notice that in the case the Grassmannian corresponds to a certain projective space G(1|0;Cn+1)=Pn, the sheaf orthogonal to the tautological sheaf can be read off the Euler exact sequence twisted by the tautological sheaf itself SPn=OPn(−1), and, indeed, we have that S˜G*≅TPn(−1), so that S˜G≅ΩPn1(+1).



In the case of a super Grassmannian G(d0|d1;n|m), the sequence (23) is generalized to the canonical sequence


0→SG→OG⊕n|m→S˜G*→0.



(24)







Recalling that GrOG:=⨁imGriOG and GriOG:=JGi/JGi+1, we now have all the ingredients to state the following theorem, whose proof is contained in [1].



Theorem 4.

LetG=G(d0|d1;Cn|m)be a super Grassmannian, and letG0andG1be their even sub-Grassmannians together with the sheavesS0,S1, andS˜0,S˜1. Then the following (canonical) isomorphisms hold true:

	(1)

	
Gred≅G0×G1;




	(2)

	
GrOG≅Sym(S0⊗S˜1⊕S˜0⊗S1),






where bySymwe mean the super-symmetric algebra overOG0×G1.





The fundamental example, yet enclosing all the features characterizing the peculiar geometry of super Grassmannians, is given by G(1|1,C2|2)—which is of dimension 2|2. We now study its geometry in some detail.



The Geometry ofG(1|1;C2|2): We start studying the geometry of G(1|1;C2|2), G for short, from its reduced manifold, which is easily identified using the previous Theorem 4.



Lemma 1

(G(1|1;C2|2)red≅P01×P11). Let G be the super Grassmannian as above. Then


G(1|1;C2|2)red≅P01×P11.



(25)









Proof. 

Keeping the same notation as above, one obtains G0=G(1|0;C2|0) and G1=G(0|1;C0|2). Therefore, topologically, one has G0≅P01 and G1≅P11, where the subscripts refer to the two copies of projective lines. The conclusion follows by the first point of the previous theorem. □





It is fair to observe that we would have arrived at the same conclusion by looking at the big cells of this super Grassmannian, after having set the nilpotents to zero.



We thus have the following situation
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(26)




that helps us to recover the geometric data of Gred and G out of those of the two copies of projective lines.



Along this line, we recall that OP1×P1(ℓ1,ℓ2) is the external tensor product OP01(ℓ1)⊠OP11(ℓ2):=π0*OP01(ℓ1)⊗OP01×P11π1*OP11(ℓ2). Since the tautological sheaf on P1 is OP1(−1), we have that


S0=OP01(−1)⊠OP11=OP01×P11(−1,0)



(27)






S1=ΠOP01⊠OP11(−1)=ΠOP01×P11(0,−1).



(28)







Similarly, observing that the sheaf dual to the tautological sheaf on P1 is given again by the sheaf OP1(+1), as the (twisted) Euler sequence reads


0→OP1(−1)→OP1⊕2→TP1(−1)→0,



(29)




and therefore S˜P1≅(TP1(−1))*≅ΩP11(+1)≅OP1(−1), one has the following:


S˜0=OP01(−1)⊠OP11=OP01×P11(−1,0)



(30)






S˜1=ΠOP01⊠OP11(−1)=ΠOP01×P11(0,−1).



(31)







This is enough to identify the fermionic sheaf of G, since FG=Gr(1)OG. Therefore, by virtue of the second point of the previous Theorem 4, one has FG≅S0⊗S˜1⊕S˜0⊗S1, so


FG≅ΠOP01×P11(−1,−1)⊕OP01×P11(−1,−1),



(32)




which, in turns, shows that


Sym2FG=OP01×P11(−2,−2),



(33)




and one can prove the following.



Theorem 5

(G(1|1;C2|2) is Non-Projected). The supermanifold G=G(1|1;C2|2)is in general non-projected. In particular, H1(TP01×P11⊗Sym2FG)≅C⊕C.





Proof. 

In order to compute the cohomology group H1(TP01×P11⊗Sym2FG), we observe that in general, on the product of two varieties, we have TX×Y≅p1*TX⊕p2*TY, where the pi are the projections on the factors, so that, in particular, we find


TP01×P11≅π0*TP01⊕π1*TP11≅π0*OP01(2)⊕π1*OP11(2)=OP01×P11(2,0)⊕OP01×P11(0,2).











Taking the tensor product with Sym2FG, one has


TP01×P11⊗Sym2FG≅OP01×P11(2,0)⊕OP01×P11(0,2)⊗OP01×P11(−2,−2)≅OP01×P11(0,−2)⊕OP01×P11(−2,0).



(34)







Now, by the Künneth formula, one has


HnX×Y,p1*FX⊗OX×Yp2*GY≅⨁i+j=nHiX,FX⊗Hj(Y,FY),



(35)




so that


H1(TP01×P11⊗Sym2FG)≅H1(OP01×P11(0,−2)⊕OP01×P11(−2,0))≅H1(OP01×P11(0,−2))⊕H1(OP01×P11(−2,0))≅H0(OP01)⊗H1(OP11)(−2)⊕H1(OP01)(−2)⊗H0(OP11)≅C⊕C,



(36)




which concludes the proof. □





There are different ways to find the representatives in the obstruction cohomology group for G. We will first use the super big cells of G(1|1;C2|2) to identifies these representatives and to establish that in the isomorphisms H1(TP01×P11⊗Sym2FG)≅C⊕C, the cohomology class corresponds to the choice ωG=(1,1). This is an explicit and immediate way to do this.



First, we observe that, since the reduced manifold underlying G(1|1;C2|2) has the topology of P01×P11, it is covered by four open sets. If we call U(0)={Uℓ(0)}ℓ=0,1 the usual open sets covering P01 and U(1)={Uℓ(1)}ℓ=0,1, the open sets covering P11, we then have a system of open sets covering their product P01×P11 given by


U1:=U0(0)×U0(1)=([X0:X1],[Y0:Y1])∈P01×P11:X0≠0,Y0≠0U2:=U1(0)×U0(1)=([X0:X1],[Y0:Y1])∈P01×P11:X1≠0,Y0≠0U3:=U0(0)×U1(1)=([X0:X1],[Y0:Y1])∈P01×P11:X0≠0,Y1≠0U3:=U1(0)×U1(1)=([X0:X1],[Y0:Y1])∈P01×P11:X1≠0,Y1≠0.



(37)







These correspond to the following matrices ZUi, out of which we can read the coordinates on the big cells:


[image: Universe 04 00114 i008]



(38)
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(39)







Following the procedure illustrated above or by rows and columns operations on the ZUi, one finds the transition rules between the various charts:


U1∩U2⇝x1=x2−1ξ1=ξ2x2−1η1=−η2x2−1y1=y2+ξ2η2x2−1U1∩U3⇝x1=x3−ξ3η3y3−1ξ1=−ξ3y3−1η1=η3y3−1y1=y3−1U1∩U4⇝x1=x4−1+ξ4η4x4−2y4−1ξ1=−ξ4x4−1y4−1η1=−η4x4−1y4−1y1=y4−1−ξ4η4x4−1y4−2U2∩U3⇝x2=x3−1+ξ3η3x3−2y3−1ξ2=−ξ3x3−1y3−1η2=−η3x3−1y3−1y2=y3−1−ξ3η3x3−1y3−2U2∩U4⇝x2=x4−ξ4η4y4−1ξ2=−ξ4y4−1η2=η4y4−1y2=y4−1U3∩U4⇝x3=x4−1ξ3=ξ4x4−1η3=−η4x4−1y3=y4+ξ4η4x4−1.



(40)







By looking at these transformation rules, we therefore have that, in the isomorphism above, the class is represented by (1,1)∈C⊕C and the cocycles representing ω are given by ω=(ω12,ω13,ω14,ω23,ω24,ω34), where the ωij are (in tensor notation)


ω12=ξ2η2x2⊗∂y1,ω13=−ξ3η3y3⊗∂x1ω14=+ξ4η4x42y4⊗∂x1−ξ4η4x4y42⊗∂y1ω23=+ξ3η3x32y3⊗∂x2−ξ3η3x3y32⊗∂y2ω24=−ξ4η4y4⊗∂x2ω34=+ξ1η4x4⊗∂y3.



(41)







One can arrive at the same result by means of a different computation, as remarked above. Observing that H1(OP01×P11(−2,0))⊕H1(OP01×P11(0,−2)) is generated by the two elements


H1(OP01×P11(−2,0))⊕H1(OP01×P11(0,−2))≅1X0X1⊠1,1⊠1Y0Y1OP01⊗P11,



(42)




we can then look at these generators in the intersections, keeping in mind that FG≅ΠOP01×P11(−1,−1)⊕ΠOP01×P11(−1,−1), in order to identify the cocycles that enter in the transition functions. We examine the various intersections.

	
U1∩U2: The following identifications can be made:


ξ1=Π1X0⊠1Y0,0η1=Π0,1X0⊠1Y0ξ2=Π1X1⊠1Y0,0η2=Π0,1X1⊠1Y0.



(43)




These yield the transition functions above between ξ1 and ξ2 and between η1 and η2. Notice that, in the intersection U1∩U2, only the bit H1(OP01×P11(−2,0)) contributes. We have therefore


ω12=±ℓ11X0X1⊠1=±ℓ11X0X1⊠Y02Y02=±ℓ11X0X1⊠1Y02⊗∂y1=±ℓ1X1X0Π1X1⊠1Y0,0⊙Π0,1X1⊠1Y0⊗∂y1=±ℓ1ξ2η2x2⊗∂y1



(44)




where we have denoted by ⊙ the supersymmetric product of the two (local) sections on FG, as represented above.



	
U1∩U3: Here we have a contribution from H1(OP01×P11(0,−2)) only and, therefore, we have to deal with ω13=ℓ21⊠1/Y0Y1. By a completely analogous treatment as above, one finds that


ω13=±ℓ21⊠1Y0Y1=±ℓ2ξ3η3y3⊗∂x1.



(45)







	
U1∩U4: In this case, we have both contributions, so


ω14=±ℓ11X0X1⊠1±ℓ21⊠1Y0Y1,



(46)




so that by analogous manipulations as the one above one finds


ω14=±ℓ1ξ4η4x4y42⊗∂y1±ℓ2ξ4η4x42y4⊗∂x1.



(47)












All the other ωij are identified in the same way and enter one of these three categories.



To conclude, one then imposes the cocycle conditions as to fix the various signs of the ℓ1 and ℓ2 above, which agrees with the one we found above by looking at the coordinates of the big cells: choosing (ℓ1=1,ℓ2=1)—this can always be done up to a change of coordinates—one obtains the same even transition functions as above.



This is enough to use the theorem classifying the complex supermanifold of dimension n|2 (see [1] or [4]) as to conclude that G(1|1;C2|2) can be defined up to isomorphism as follows.



Definition 11

(G(1|1;C2|2) as a Non-Projected Supermanifold). The super Grassmnannian G(1|1;C2|2)can be defined up to isomorphism as the 2|2dimensional supermanifold characterized by the triple (P01×P11,FG,ωG), where FG=ΠOP01×P11(−1,−1)⊕ΠOP01×P11(−1,−1)and where ωG=(ℓ1,ℓ2), with ℓ1≠0and ℓ2≠0, in the isomorphism ωG∈H1(TP01×P11⊗Sym2FG)≅C⊕C.





On a very general ground, apart from projective superspaces, super Grassmannians are in general non-projected: the case of G(1|1;C2|2) we treated is the first non-trivial example of non-projected super Grassmannian.



Now, we jump to the second issue we are interested in: We show that G(1|1;C2|2) is not a projective supermanifold.



Theorem 6

(G(1|1;C2|2) is Non-Projective). Let G(1|1;C2|2)be super Grassmannian defined as above. Then G(1|1;C2|2)is non-projective.





Proof. 

In order to prove the non-projectivity of G:=G(1|1;C2|2), we consider the following short exact sequence that comes from the structural exact sequence of G:


0→OP01×P11(−2,−2)→OG,0*→OP01×P11*→0.



(48)







Ordinary results in algebraic geometry yield H0(OP01×P11(−2,−2))=0=H1(OP01×P11(−2,−2)), whereas H2(OP01×P11(−2,−2))≅C. Likewise, one has H0(OP01×P11*)≅C* and Pic(P01×P11)=H1(OP01×P11*)≅Z⊕Z, by means of the ordinary exponential exact sequence. This is enough to realize that the cohomology sequence induced by the sequence above splits into two exact sequences. The first one gives an isomorphism H0(OG,0)≅C*, while the second one instead reads


0→H1(OG,0*)→Pic(P01×P11)≅Z⊕Z→H2(OP01×P11(−2,−2))≅C→⋯.



(49)







Thus, in order to establish the fate of the cohomology group H1(OG,0*), one has to look at the boundary map δ:Pic(P01×P11)→H2(OP01×P11(−2,−2)). Let us then consider the following diagram of cochain complexes:
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(50)




obtained by combining Equation (48) with the Čech cochain complexes of the sheaves that appear.



Since ⟨OP01×P11(1,0),OP01×P11(0,1)⟩OP01×P11≅Pic(P01×P11), given the usual cover of P01×P11 by the open sets Ui above, OP01×P11*(1,0) could be represented by (six) cocycles gij∈Z1(Ui∩Uj,OP01×P11*). Explicitly, these cocycles are the transition functions of the line bundle


OP01×P11*(1,0)⟷g12=X1X0,g13=1,g14=X1X0,g23=X0X1,g24=1,g34=X1X0








where, with an abuse of notation, we dismiss the second bit of the external tensor product, which is just the identity. Since the map j:C1(OG,0*)→C1(OP01×P11*) is surjective, these cocycles are images of elements in C1(OG,0*). Notice that j is induced by the inclusion of the reduced variety P01×P11 into G, so the cochains in C1(OG,0*) are exactly the {gij}i,j∈I we have written above (notice also that these are no longer cocycles in OG,0*). Using the Čech coboundary map δ(j*OP01×P11(1,0)) over G, one finds, for example,


g12·g23·g31⌊U1∩U2∩U3=1⊠1+1X0X1⊠1Y0Y1.



(51)







Indeed, by looking at the affine coordinates in the big cells, these read x2x3=1+ξ2η2x2y2. Setting, as we have done above,


ξ2=Π1X1⊠1Y0,0,η2=Π0,1X1⊠1Y0,



(52)




and taking their supersymmetric product, one has ξ2η2x2y2=1X0X1⊠1Y0Y1. Now, by exactness of the diagram, this element is in the kernel of the map j:C2(OG,0*)→C2(OP01×P11*), which equals the image of the map i:C2(OP01×P11(−2,−2))→C2(OG,0*), therefore there exists an element N∈C2(OP01×P11(−2,−2)) such that i(N)=1⊠1+1X0X1⊠1Y0Y1 and it is a cocycle. Then, considering that the map i is induced by the map OP01×P11(−2,−2)∋a⊠b↦1⊠1+a⊠b∈OG,0*, we have that the element 1⊠+1X0X1⊠1Y0Y1 is the image of 11X0X1⊠1Y0Y1 via i. By symmetry, the same applies to the second generator of Pic(P01×P11), which is given by OP01×P11(0,1); thus, the map δ:Pic(P01×P11)≅Z⊕Z→H2(OP01×P11(−2,−2))≅C reads Z⊕Z∋(a,b)⟼a+b∈C. By exactness, it follows that the only invertible sheaves on P01×P11 that lift to the whole G are those of the kind OP01×P11(a,−a), as the composition of the maps yields (a,−a)↦(a,−a)↦a−a=0 as it should. Since these invertible sheaves have no cohomology, they cannot give any embedding in projective superspaces, and this completes the proof. □





Notice the subtlety: the above theorem says that Pic(P01×P11)≠0 (actually Pic(P01×P11)≅Z), but still there are no ample invertible sheaves that allow for an embedding of G(1|1;C2|2) into some projective superspaces.



The fundamental consequence is that non-projectivity is not confined to this particular super Grassmannian only.



Theorem 7

(Super Grassmannians are Non-Projective). The super Grassmannian space G(a|b;Cm|n)for 0<a<nand 0<b<mis non-projective.





Proof. 

As in [1], it is enough to observe that the inclusion C2|2⊂Ca+1|b+1 induces in turn the inclusion G(1|1;C2|2)↪G(1|1;Ca+1|b+1). This last super Grassmannian is isomorphic, as for the usual Grassmannians, to G(a|b;(Ca+1|b+1)*), which in turn embeds into G(a|b;Cn|m). This leads to G(1|1;C2|2)↪G(a|b;Cn|m): as G(1|1;C2|2) is non-projective, and so is G(a|b;Cn|m), completing the proof. □





The upshot of this result is that, working in the context of algebraic supergeometry, it is no longer true that projective superspaces are a privileged ambient: this is a substantial departure from usual context of complex algebraic geometry, which deserves to be stressed out.




5. Maps and Embeddings into a Super Grassmannian: An Explicit Example


Having reviewed the geometry of super Grassmannians in the previous section, we now consider the problem of setting up maps to super Grassmannians.



First we recall the universal property characterizing the construction of maps into projective superspaces Pn|m, which is nothing but a direct generalization of the usual criterium in algebraic geometry for projective spaces Pn, using invertible sheaves, i.e., for any supermanifold or superscheme ℳ, any locally free sheaf L of rank 1|0 on ℳ and any vector superspace V having a surjective sheaf-theoretical map V⊗OM→L, then there exists a unique (up to isomorphisms) map ΦL:M→Pn|m such that the inclusion L*→V*⊗OM is the pull-back of the inclusion OPn|m(−1)→OPn|m⊕n+1|m coming from the Euler exact sequence. More concretely, this is sometimes reported simply asking L to be globally generated, which means that there exists a surjective sheaf-theoretical map H0(L)⊗OM→E, with dimH0(L)=n+1|m. If this is the case, there exists a unique map up to isomorphism ΦL:M→Pn|m such that E=ΦL*(OPn|m(1)) and such that, if H0(L)=spanC{si|ξj}, then si=ΦL*(Xi) and ξj=ΦL*(Θj) for i=0,…,n and j=1,…,m, where Xi|Θj are the generating sections of H0(OPn|m(1)), where we recall also that OPn|m(1):=π*OPn(1)=π−1OPn(1)⊗π−1OPnOPn|m. See [11], where invertible sheaves on projective superspaces are studied.



A very similar situation happens in the case of super Grassmannians, but instead of invertible sheaves one has to deal with locally free sheaves of higher rank/vector bundles, in order to appropriately set up maps. Indeed, let G=G(a|b,V) be a super Grassmannian. Then it is has the following universal property that characterizes the maps toward it [4]:



Universal Property:

For any supermanifold or superscheme ℳ, any locally free sheaf of OM-modules E of rank a|b on ℳ and any vector superspace V with a surjective sheaf-theoretical map V⊗OM→E, there exists a unique map Φ:M→G(a|b,V) such that the inclusion E*→V*⊗OM is the pull-back of the inclusion SG→OG⊕n|m from the sequence


0→SG→OG⊕n|m→S˜G*→0



(53)




where SG is the tautological sheaf of the super Grassmannian.





Using the universal property above, we now explicitly show that there exists a map from a non-projected non-projective supermanifold of the family Pω2(FM), namely that one characterized by the decomposable fermionic sheaf FM:=ΠOP2(−1)⊕ΠOP2(−2), to a certain super Grassmannian, namely G(2|2,C12|12).



For future use, we start giving in the following lemma the explicit form of the transition functions of this supermanifold in the case one chooses a decomposable fermionic sheaf, as the one above.



Lemma 2

(Transition functions). Let Pω2(FM)be the non-projected supermanifold with FM=ΠOP2(−1)⊕ΠOP2(−2). Then its transition functions take the following form:


U0∩U1:z10=1z11,z20=z21z11+λθ11θ21(z11)2;θ10=θ11z11,θ20=θ21(z11)2;U1∩U2:z11=z12z22+λθ12θ22(z22)2,z21=1z22;θ11=θ12z22,θ21=θ22(z22)2;U2∩U0:z12=1z20,z22=z10z20+λθ10θ20(z20)2;θ12=θ10z10,θ22=θ20(z10)2.



(54)









Proof. 

The conclusion follows immediately from Theorem 2, taking into account the transition matrix for the given FM, which have the form M=1z01001z012 on U0∩U1 and a similar form on the other two intersections of the fundamental open sets. □





Now we have to identify a suitable locally free sheaf to set up the map into the super Grassmannian: A natural choice is given by the tangent sheaf TM of M=Pω2(FM)—which is obviously a rank 2|2 locally free sheaf in the case we are dealing with—and, possibly, its higher-symmetric powers SymkTM: we will see that, in this case, TM is actually enough and one does not need to resort to its higher symmetric products.



In the following, we will show that the vector superspace of global sections of the tangent sheaf TM, that is the 0-Čech cohomology space H0(TM), is isomorphic to C12|12 and that one has a surjective map H0(TM)⊗OM→TM, that is the tangent sheaf TM is globally generated. As in the universal property above, this implies that the choices of the tangent sheaf TM for E and of H0(TM) for V lead to the existence of a (unique) map M→G(2|2,C12|12).



In order to prove the above statement, one needs to carefully study the tangent sheaf TM. We start considering the restriction of the tangent sheaf to the reduced manifold P2, that is


TM⌊P2=TM⊕OMred.



(55)







It is a general result that TM⌊Mred≅TMred⊕FM*, see for example [1] or [3]. This result can be readily read off once one has the explicit form of the transition functions of the tangent sheaf. Indeed, using the chain rule and starting from the above lemma, with obvious notation, one finds


∂z10=−(z11)2∂z11+[−z11z21+θ11θ21]∂z21−θ11z11∂θ11−2θ21z11∂θ21∂z20=z11∂z21∂θ10=−θ21∂z21+z11∂θ11∂θ20=z11θ11∂z21+(z11)2∂θ21,



(56)




so that the related Jacobian has the following matrix representation


[Jac10]=−(z11)2−z11z21+θ11θ21−θ11z11−2θ21z110z11000−θ21z1100z11θ110(z11)2.



(57)







The transition functions in the other intersections can be found by S3-symmetry.



We now recall that, having at disposal the structure sheaf of OM, we can also form a sub-superscheme of ℳ through the pair (P2,OM(2):=OMJM2). We stress that this is not a supermanifold: indeed it fails to be locally isomorphic to any local model of the kind Cm|n: more generally, it is locally isomorphic to an affine superscheme for some super ring. We call M(2) the superscheme defined by the pair (P2,OM(2)) and we characterize its geometry in the following lemma.



Lemma 3

(The Superscheme M(2)). Let M(2)be the superscheme as above. Then ℳ is a projected scheme and its structure sheaf OM(2)is given by a locally free sheaf of OP2-algebras such that


OM(2)≅OP2⊕FM.



(58)









Proof. 

It is enough to observe that the parity splitting of the structure sheaf reads OM(2)=OM,0JM2⊕OM,1JM2, so the defining short exact sequence for the even part reduces to an isomorphism OM,0(2)≅OP2. The structure sheaf is endowed with a structure of OP2-module given by OP2⊕FM, which actually coincides with the parity splitting.



We observe that in the OP2-algebra OM(2)≅OP2⊕FM, the product FM⊗OP2FM→OP2 is null. □





Pushing the characterization of the tangent sheaf a little bit further, we have to study the geometry of tangent bundle TM when restricted to the sub-superscheme M(2). Once again, it can be proved that the following general isomorphism holds true:


TM⌊M(2)≅TMred⊕End(FM)⊕FM*⊕(TMred⊗FM)



(59)




where the first two summands are the even part and the second two summands are the odd part of the sheaf. In particular, in our case one obtains.



Lemma 4

(The Sheaf TM⌊M(2)). The sheaf TM⌊M(2)is a locally free of OP2-module; moreover, the following isomorphism holds:


TM⌊M(2)≅TM/J2TM≅TM⌊P2⊕TM⌊P2⊗OP2FM.



(60)









Proof. 

The claim is proved by computing


TM⌊M(2):=TM⊗OMOM(2)≅TM⊗OMOP2⊕FM≅TM⌊P2⊕TM⌊P2⊗OP2FM



(61)




where we have used that, since FM is a locally free sheaf of OP2-module, we have that FM≅FM⊗OP2OP2. The first isomorphism is a standard result in modules theory (note we have suppressed the subscript ℳ in the sheaf of nilpotent element JM for a better notation). □





For computational purposes, the sheaf E⌊M(2) can be made more explicit in its OP2-module structure, indeed by making explicit its components, one finds


TM/JM2TM≅TP2⊕OP2(1)⊕OP2⊕2⊕OP2(−1)⊕ΠTP2(−2)⊕TP2(−1)⊕OP2(2)⊕OP2(1).



(62)







This decomposition will be useful once we have to compute the cohomology.



In order to compute the number of the global sections of the tangent sheaf of ℳ, to identify the supposed target super Grassmannian, we actually need one further sheaf, which we will study in the following lemma.



Lemma 5

(The Sheaf 𝒯ℳ ⊗𝒪ℳ𝒥ℳ2). The sheaf TM⊗OMJM2is isomorphic to J2TM. Moreover, it is a locally free sheaf of OP2-modules and, as such, it is isomorphic to TM⌊P2(−3).





Proof. 

First of all we recall that JM2 is a OP2-module as it is killed by multiplication by JM. Moreover, the tangent sheaf TM is locally free and is therefore flat, so the functor −⊗OME is exact. Let us then consider the short exact sequence


0→JM2→OM→OMJM2→0.



(63)







By tensoring with TM, we obtain the short exact sequence


0→JM2⊗OMTM→OM⊗OMTM≅TM→OMJM2⊗OMTM≅TM/J2TM→0,








which implies that J2⊗OMTM is indeed isomorphic to JM2TM. Moreover, we have that JM2≅Sym2FM, and, as such, it is a OP2-module. Moreover, since FM=ΠOP2(−1)⊕OP2(−2), we have that Sym2FM≅OP2(−3). □





We are now in the position to study the global sections of the tangent sheaf TM. The main tool we will use is the following exact sequence:


0→J2TM→TM→TM/JM2TM→0



(64)




together with its long cohomology exact sequence. The previous lemmas together yield the following result.



Lemma 6.

The zeroth and the first cohomology groups of the sheavesJM2TMandTM/JM2TMare given by


H0(JM2TM)=0H1(J2TM)=C1|0



(65)






H0T/JM2TM=C13|12H1TM/JM2TM=0.



(66)









Proof. 

The result follows from a straightforward computation, once given the decomposition into direct sums of the sheaves above. □





We are thus led to the following theorem, which is the main step toward the realization of an embedding into a super Grassmannian.



Theorem 8

(Global Sections of 𝒯ℳ). The tangent sheaf TMof Pω2(FM)has 12|12global sections.





Proof. 

Using the results of the previous lemma, the long exact cohomology sequence given by (64) reads


0→H0(TM)→C13|12→δC1|0→H1(TM)→0.



(67)







Therefore, since H1(JM2TM)≅C1|0 is 1-dimensional, in order to prove surjectivity of the connection homomorphism δ:H0(TM/JM2TM)→H1(JM2TM), it is enough to show that it is not zero. To this end, we observe that in the decomposition (62), there is a term of the kind OP2⊕2⊃TM/JM2TM. It is easy to realize that the corresponding global sections H0(OP2⊕OP2)⊂H0(E/J2E) are of the form


s1=θ1i⊗∂θ1is2=θ2i⊗∂θ2i,



(68)




which we write multiplicatively as θ1i∂θ1i and θ2i∂θ2i (both taken modJM2). Indeed, changing coordinates, by means of the transformation rules obtained above, we obtain, for example,


θ10∂θ10=θ11∂θ11−θ11θ21z11∂z21=θ11∂θ11modJM2,



(69)




and, on the other hand, we have


θ10∂θ10−θ10∂θ10⌊U0∩U1=θ11θ21z11∂z21∈JM2TM(U0∩U1).



(70)







That is, we have that δ(s1)≠0. Now, observing that θ11θ21z11∂z21=θ11θ21(z11)2∂z20, we conclude that


θ11∂θ11−θ10∂θ10,θ12∂θ12−θ11∂θ11,θ10∂θ10−θ12∂θ12∈Z1(TP2(−3))








represents the same cocycle of TP2(−3) that determines the non-vanishing class ω∈H1(TP2(−3)), as we have described early on. Observing that H1(TM/JM2TM)≅H1(TP2⊗Sym2FM), we conclude that the connecting homomorphism is non-null and hence surjective. This splits the first part of the cohomology long exact sequence above in two pieces. In particular, we have


0→H0(TM)→C13|12→δC1|0→0,



(71)




which proves that H0(TM)≅C12|12. □





We are left to prove that the tangent sheaf TM is actually globally generated. This is achieved in the following lemma.



Lemma 7

(𝒯ℳ is globally generated). The tangent sheaf TMof ℳ is such that the evaluation map evTM:H0(TM)⊗OMOM→TMis surjective. That is, TMis globally generated.





Proof. 

We let W:=H0(OP2⊕OP2)⊂H0(TM/JM2TM) and V be its complement into H0(TM/JM2TM), so that V⊕W=H0(TM/JM2TM), and we call U:=H0(TM). We have the following commutative diagram:


[image: Universe 04 00114 i011]



(72)




where C1|0 corresponds to H1(JM2TM), as computed above. Then, by snake lemma, we have an exact sequence:


0→cokeri˜→V→0.



(73)




Therefore, cokeri˜≅V, and we have a surjection U↠V. In particular, since H0(TM⌊P2)⊂V, we have a surjective map ψ:H0(TM)→H0(TM⌊P2). Now, let us consider the evaluation map evTM:H0(TM)⊗OMOM→TM, which is a homomorphism of locally free sheaves of OM-modules. Upon using Nakayama Lemma (see for example [6]), it is enough to show that for all x∈P2, the linear map


evTM(x):H0(TM)→TM(x)s↦s(x),



(74)




which sends a global section s to its evaluation s(x) in x∈P2 is surjective. This map can in turn be factored through ψ as follows:


H0(TM)→ψH0(TM⌊P2)→TM(x)x∈P2.



(75)







Then, the first one has been just shown to be surjective, while the second one is well-known to be surjective as TM⌊P2 is a direct sum of globally generated sheaves of OP2-modules. This concludes the proof. □





The universal property, thus leads to the following.



Theorem 9

(Map to G(2|2,TM)). There exists a unique map ΦTM:M⟶G(2|2,C12|12)up to isomorphism.





More can be said about this map, which is actually an embedding of ℳ into G(2|2,C12|12): that is, it is an injective map, and its differential dΦTM is injective as well. We prove this in a completely explicit fashion by realizing the actual embedding in a certain chart.



We explain the strategy to do this in a general setting: once one has a map into a super Grassmannian and a local basis {e1,…,ea|f1,…,fb} is fixed for E over some open set U, then, over U, the evaluation map V⊗OM→E is defined by a (a|b)×(n|m) matrix MU with coefficients in OM(U), and any reduction of MU into a standard form of type
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(76)




by means of elementary row operations, is a local representation of the map Φ:M→G(a|b,Cn|m). One can then easily verify injectivity and the injectivity of the differential of this map via this local representation, to establish whether the map constitutes an embedding.



In order to do this, we need the explicit form of the global sections generating TM. Notice that, to keep the discussion as general as possible we will keep a parameterλ∈C representing the cohomology class ωM∈H1(TP2(−3))≅C, which we recall to be the same λ appearing in the transition functions provided by Theorem 2.



Theorem 10

(Generators of H0(TM)). The tangent sheaf TMof ℳ has 12|12global sections and in particular, in the local chart U0, a basis for H0(TM)is given by spanC{V1,…,V12|Ξ1,…,Ξ12}, where


V1=∂z10,V2=∂z20,V3=z20∂z10,V4=z10∂z20,V5=z10∂z10−z20∂z20,V6=θ10∂θ20,V7=z10θ10∂θ20,V8=z20θ10∂θ20,V9=θ10∂θ10+z20∂z20,V10=θ20∂θ20+z20∂z20,V11=(z10)2∂z10+(z10z20+λθ10θ20)∂z20+z10θ10∂θ10+2z10θ20∂θ20,V12=(z10z20−λθ10θ20)∂z10+(z20)2∂z20+z20θ10∂θ10+2z20θ20∂θ20,Ξ1=∂θ10,Ξ2=∂θ20,Ξ3=θ10∂z10,Ξ4=θ10∂z20,Ξ5=z10∂θ20,Ξ6=z20∂θ20,Ξ7=(z10)2∂θ20−λz10θ10∂z20,Ξ8=(z20)2∂θ20+λz20θ10∂z10,Ξ9=z10∂θ10+λθ20∂z20,Ξ10=−z20∂θ10+λθ20∂z10,Ξ11=z10θ10∂z10+z20θ10∂z20+2θ10θ20∂θ20,Ξ12=(z10z20−λθ10θ20)∂θ20−λz20θ10∂z20



(77)




where λ∈Cis a complex number representing the cohomology class H1(TP2(−3))≅C.





Proof. 

The theorem is proved by evaluating the 0-Čech cohomology group of TM, by means of a computation in charts. □





Now, following that explained above, the coefficients of the expansion are mapped into 12|12 columns, so that the resulting matrix is a super Grassmannian of the kind G(2|2,C12|12), represented in a certain super big-cell. The full super Grassmannian is then reconstructed via its transition functions, as explained in the previous section.



In our particular case, the global sections lead to an image into G(2|2,C12|12) as follows:


ΦTM(M)=10A1×1000B1×1001A2×1000B2×1000C1×1010D1×1000C2×1001D2×10



(78)




where we have highlighted the super big-cell singled out by the four global sections {V1=∂z1,V2=∂z2,Ξ1=∂θ1,Ξ2=∂θ2} in the chart U0, and the Ai×10,Bi×10,Ci×10,Di×10 for i=1,2, make up four 2×10 matrices:


A:=(A1×10A2×10)=(z20z100000z12z1z2−λθ1θ20z1−z2000z2z2z1z2+λθ1θ2z22)B:=(B1×10B2×10)=(θ10000λz2θ10λθ2z1θ100θ100−λz1θ10λθ20z2θ1−λz2)C:=(C1×10C2×10)=(000000θ10z1θ1z2θ1000θ1z1θ1z2θ10θ22z1θ22z2θ2)D:=(D1×10D2×10)=(000000z1−z20000z1z2z12z22002θ1θ2z1z2−λθ1θ2)



(79)




where the subscript referring to the chart U0 of ℳ has been suppressed for readability purpose. One can then confirm that the map ΦTM is indeed an embedding via this explicit expression.



Theorem 11.

LetPω2(FM)be the non-projected supermanifold endowed with a fermionic sheafFM:=ΠOP2(−1)⊕ΠOP2(−2). The map theni:Pω2(FM)→G(2|2,C12|12)is an embedding of supermanifolds.





Proof. 

One can check from the expressions above that the map is injective on the geometric points, that is on P2, and that its super differential is injective. This can be checked, for example, by representing the super differential as a 4×80 matrix, where the four 1×80 rows are given by the derivatives of a row vector (Ai×10,Bi×10,Ci×10,Di×10) with respect to ∂z1,∂z2,∂θ1,∂θ2. The resulting matrix has indeed Rank 4. □





It is fair to say that one can simplify the proof and avoid cumbersome computation, by considering just a subset of the global sections found above in order to prove global generation and injectivity of the differential. For example, the subset of H0(TM) given by the sections


S:=V1,V2,V5,V9−V10,Ξ1,Ξ2⊂H0(TM).



(80)




does the job. Indeed, these sections make up a sub-matrix of the 12|12×4|4 matrix given, having columns given by coordinates of the global sections with respect to the basis ∂z1,∂z2,∂θ1,∂θ2 in the chart U0 as above. Writing the columns in a suitable order, one obtains


i(S)=V9−V10V5V1V2Ξ1Ξ2∂z10z11000∂z20−z20100∂θ1θ100010∂θ2−θ200001.



(81)







This is a linear embedding of U0 into a super big-cell of the super Grassmannian, which proves both global generation and injectivity at the level of the differential over U0 at once. Additionally, by symmetry, or analogously by the homogeneity of ℳ and TM with respect to the action of PGL(3), the same result holds true over U1 and U2 as well.
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