Higher Spin Extension of Fefferman-Graham Construction
Abstract
:1. Introduction
2. Off-Shell Fefferman-Graham Theory
3. On-Shell Fefferman-Graham Theory
- This system is equivalent to on-shell gravity in dimensions with a nonvanishing cosmological constant (in other words the metric is Einstein). The spacetime manifold can be identified with the curved hyperboloid ;
- This system describes conformal gravity in d dimensions. For d odd it is off-shell, while for d even it is on-shell, the field equations resulting from the conformal anomaly (For d even, in the original FG approach the Ricci flatness was imposed only up to a certain power of the defining function so that the conformal gravity was always off-shell. Another point of view is to require Ricci flatness at all orders which results in conformal gravity equations. Note that in this case the system also describes subleading solutions). The spacetime manifold can be identified with the projectivization of the curved hypercone ;
4. Higher-Spin Extension of Fefferman-Graham Theory
4.1. Off-Shell Higher-Spin Fields on Gravitational Backgrounds
4.2. Poisson Bracket vs. Star-Product
5. Towards on-Shell Higher-Spin Theory
5.1. Parent Reformulation
5.2. Factorization
5.3. Relation to Unfolded Equations
6. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. FG Ambient Construction as Algebra of Constraints
Appendix A.1. Klein Flat Ambient Model
Appendix A.2. Fefferman-Graham Ambient Construction
- its signature has one more timelike and one more spacelike direction with respect to ,
- it is homogeneous of degree two with respect to the homotheties: ,
- it is an extension to of the degenerate metric (A2) on N,
- the one-form is closed.
Appendix A.3. Properties of the Ambient Metric and of the Homothety Vector Field
- (I)
- The ambient metric is of homogeneity degree two with respect to the homothety vector field:
- (II)
- The homothety one-form is closed:
- (III)
- The ambient metric is equal to the covariant derivative of the homothety one-form:
- (IV)
- The homothety one-form is equal to half the gradient of the homothety vector field squared:
Appendix A.4. Hypersurface Orthogonality and Homogeneity as Algebra
- the scalar field is equal to ,
- the symmetric tensor field and the vector field obey the properties (I)-(IV).
Appendix B. Covariant Derivatives
Appendix C. Off-shell vs On-shell, Boundary vs. Bulk
Appendix C.1. Off-Shell Boundary Scalar Field
Appendix C.2. On-Shell Bulk Scalar Field
Appendix C.3. On-Shell Boundary Scalar Field (Aka Singleton)
References
- Maldacena, J.M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 1998, 428, 105–114. [Google Scholar] [CrossRef]
- Sundborg, B. Stringy gravity, interacting tensionless strings and massless higher spins. Nucl. Phys. Proc. Suppl. 2001, 102, 113–119. [Google Scholar] [CrossRef]
- Sezgin, E.; Sundell, P. Massless higher spins and holography. Nucl. Phys. B 2002, 644, 303–370. [Google Scholar] [CrossRef]
- Klebanov, I.; Polyakov, A. AdS dual of the critical O(N) vector model. Phys. Lett. B 2002, 550, 213–219. [Google Scholar] [CrossRef]
- Flato, M.; Fronsdal, C. One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. Lett. Math. Phys. 1978, 2, 421–426. [Google Scholar] [CrossRef]
- Fefferman, C.; Graham, C. Conformal Invariants. Astérisque Numero Hors. Ser. 1985, 95–116. [Google Scholar]
- Fefferman, C.; Graham, C.R. The ambient metric. arXiv, 2017; arXiv:0710.0919. [Google Scholar]
- De Haro, S.; Solodukhin, S.N.; Skenderis, K. Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 2001, 217, 595–622. [Google Scholar] [CrossRef]
- Henningson, M.; Skenderis, K. The Holographic Weyl anomaly. J. High Energy Phys. 1998, 1998, 23. [Google Scholar] [CrossRef]
- Dirac, P. The Electron Wave Equation in de Sitter Space. Ann. Math. 1935, 36, 657–669. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Wave equations in conformal space. Ann. Math. 1936, 37, 429–442. [Google Scholar] [CrossRef]
- Liu, H.; Tseytlin, A.A. D = 4 superYang-Mills, D = 5 gauged supergravity, and D = 4 conformal supergravity. Nucl. Phys. B 1998, 533, 88–108. [Google Scholar] [CrossRef]
- Metsaev, R.R. Gauge invariant two-point vertices of shadow fields, AdS/CFT, and conformal fields. Phys. Rev. D 2010, 81, 106002. [Google Scholar] [CrossRef]
- Bekaert, X.; Grigoriev, M. Notes on the ambient approach to boundary values of AdS gauge fields. J. Phys. A 2013, 46, 214008. [Google Scholar] [CrossRef]
- Bekaert, X.; Grigoriev, M. Higher order singletons, partially massless fields and their boundary values in the ambient approach. Nucl. Phys. B 2013, 876, 667–714. [Google Scholar] [CrossRef]
- Graham, C.R.; Jenne, R.; Mason, L.J.; Sparling, G.A.J. Conformally invariant powers of the laplacian, I: Existence. J. Lond. Math. Soc. 1992, 2, 557–565. [Google Scholar] [CrossRef]
- Bars, I. Survey of two-time physics. Class. Quantum Gravity 2001, 18, 3113–3130. [Google Scholar] [CrossRef]
- Bonezzi, R.; Latini, E.; Waldron, A. Gravity, Two Times, Tractors, Weyl Invariance and Six Dimensional Quantum Mechanics. Phys. Rev. D 2010, 82, 064037. [Google Scholar] [CrossRef]
- Bonezzi, R.; Corradini, O.; Waldron, A. Is Quantum Gravity a Chern-Simons Theory? Phys. Rev. D 2014, 90, 084018. [Google Scholar] [CrossRef]
- Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A. Quantum Gravity and Causal Structures: Second Quantization of Conformal Dirac Algebras. Phys. Rev. D 2015, 91, 121501. [Google Scholar] [CrossRef] [Green Version]
- Marnelius, R. Manifestly Conformal Covariant Description of Spinning and Charged Particles. Phys. Rev. D 1979, 20, 2091–2095. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Consistent Equations for Interacting Massless Fields of All Spins in the First Order in Curvatures. Ann. Phys. 1989, 190, 59–106. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Higher Spin Gauge Theories: Star-Product and AdS Space; World Scientific: Singapore, 2000. [Google Scholar]
- Sezgin, E.; Sundell, P. 7-D bosonic higher spin theory: Symmetry algebra and linearized constraints. Nucl. Phys. B 2002, 634, 120–140. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Nonlinear equations for symmetric massless higher spin fields in (A)dS(d). Phys. Lett. B 2003, 567, 139–151. [Google Scholar] [CrossRef]
- Bars, I.; Deliduman, C. High spin gauge fields and two-time physics. Phys. Rev. D 2001, 64, 247–256. [Google Scholar] [CrossRef]
- Grigoriev, M. Parent formulations, frame-like Lagrangians, and generalized auxiliary fields. J. High Energy Phys. 2012, 2012, 48. [Google Scholar] [CrossRef]
- Alkalaev, K.; Grigoriev, M.; Skvortsov, E. Uniformizing higher-spin equations. J. Phys. A 2015, 48, 015401. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Conformal Supergravity. Phys. Rep. 1985, 119, 233–362. [Google Scholar] [CrossRef]
- Segal, A.Y. Conformal higher spin theory. Nucl. Phys. B 2003, 664, 59–130. [Google Scholar] [CrossRef]
- Tseytlin, A.A. On limits of superstring in AdS(5) x S**5. Theor. Math. Phys. 2002, 133, 1376–1389. [Google Scholar] [CrossRef]
- Bekaert, X.; Joung, E.; Mourad, J. Effective action in a higher-spin background. J. High Energy Phys. 2011, 2011, 48. [Google Scholar] [CrossRef]
- Maldacena, J.; Zhiboedov, A. Constraining Conformal Field Theories with A Higher Spin Symmetry. arXiv, 2011; arXiv:1112.1016. [Google Scholar]
- Alba, V.; Diab, K. Constraining conformal field theories with a higher spin symmetry in d = 4. arXiv, 2013; arXiv:1307.8092. [Google Scholar]
- Boulanger, N.; Ponomarev, D.; Skvortsov, E.; Taronna, M. On the uniqueness of higher-spin symmetries in AdS and CFT. Int. J. Mod. Phys. A 2013, 28, 1350162. [Google Scholar] [CrossRef]
- Stanev, Y.S. Constraining conformal field theory with higher spin symmetry in four dimensions. Nucl. Phys. B 2013, 876, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Alba, V.; Diab, K. Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions. arXiv, 2015; arXiv:1510.02535. [Google Scholar]
- Fronsdal, C. Massless Fields with Integer Spin. Phys. Rev. D 1978, 18, 3624–3629. [Google Scholar] [CrossRef]
- Grigoriev, M. Off-shell gauge fields from BRST quantization. arXiv, 2006; arXiv:hep-th/0605089. [Google Scholar]
- Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C. Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory. J. High Energy Phys. 2015, 2015, 149. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Higher spin gauge theories and bulk locality: A no-go result. arXiv, 2017; arXiv:1704.07859. [Google Scholar]
- Ponomarev, D. A Note on (Non)-Locality in Holographic Higher Spin Theories. arXiv, 2017; arXiv:1710.00403. [Google Scholar]
- Bekaert, X.; Erdmenger, J.; Ponomarev, D.; Sleight, C. Towards holographic higher-spin interactions: Four-point functions and higher-spin exchange. J. High Energy Phys. 2015, 2015, 170. [Google Scholar] [CrossRef]
- Kessel, P.; Gomez, G.L.; Skvortsov, E.; Taronna, M. Higher Spins and Matter Interacting in Dimension Three. arXiv, 2015; arXiv:1505.05887. [Google Scholar]
- Skvortsov, E.D. On (Un)Broken Higher-Spin Symmetry in Vector Models. In Proceedings of the International Workshop on Higher Spin Gauge Theories, Singapore, 4–6 November 2015; pp. 103–137. [Google Scholar]
- Sleight, C.; Taronna, M. Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings. Phys. Rev. Lett. 2016, 16, 181602. [Google Scholar] [CrossRef] [PubMed]
- Bekaert, X.; Boulanger, N.; Sundell, P. How higher-spin gravity surpasses the spin two barrier: No-go theorems versus yes-go examples. arXiv, 2010; arXiv:1007.0435. [Google Scholar]
- Barnich, G.; Grigoriev, M.; Semikhatov, A.; Tipunin, I. Parent field theory and unfolding in BRST first-quantized terms. Commun. Math. Phys. 2005, 260, 147–181. [Google Scholar] [CrossRef]
- Barnich, G.; Grigoriev, M. Parent form for higher spin fields on anti-de Sitter space. J. High Energy Phys. 2006, 2006, 747–748. [Google Scholar] [CrossRef]
- Barnich, G.; Grigoriev, M. First order parent formulation for generic gauge field theories. J. High Energy Phys. 2011, 2011, 122. [Google Scholar] [CrossRef]
- Grigoriev, M. Parent formulation at the Lagrangian level. J. High Energy Phys. 2011, 2011, 1–24. [Google Scholar] [CrossRef]
- Sharapov, A.A.; Skvortsov, E.D. Formal higher-spin theories and Kontsevich–Shoikhet–Tsygan formality. Nucl. Phys. B 2017, 921, 538–584. [Google Scholar] [CrossRef]
- Aragone, C.; Deser, S. Consistency Problems of Hypergravity. Phys. Lett. B 1979, 86, 161–163. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S. Towards metric-like higher-spin gauge theories in three dimensions. J. Phys. A 2013, 46, 214017. [Google Scholar] [CrossRef]
- Ammon, M.; Gutperle, M.; Kraus, P.; Perlmutter, E. Black holes in three dimensional higher spin gravity: A review. J. Phys. A 2013, 46, 214001. [Google Scholar] [CrossRef]
- Boulanger, N. A Weyl-covariant tensor calculus. J. Math. Phys. 2005, 46, 053508. [Google Scholar] [CrossRef]
- Boulanger, N.; Erdmenger, J. A Classification of local Weyl invariants in D = 8. Class. Quantum Gravity 2004, 21, 4305–4316. [Google Scholar] [CrossRef]
- Čap, A.; Gover, A.R. Standard Tractors and the Conformal Ambient Metric Construction. Ann. Glob. Anal. Geom. 2003, 24, 231–259. [Google Scholar] [CrossRef]
- Gover, A.R.; Peterson, L.J. The ambient obstruction tensor and the conformal deformation complex. Pac. J. Math. 2006, 226, 309–351. [Google Scholar] [CrossRef]
- Gover, A. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission. Phys. Rev. Spec. Top. Accel Beams 2006, 9, 060703. [Google Scholar] [CrossRef]
- Gover, A.R.; Shaukat, A.; Waldron, A. Tractors, Mass and Weyl Invariance. Nucl. Phys. B 2009, 812, 424–455. [Google Scholar] [CrossRef]
- Gover, A.R.; Shaukat, A.; Waldron, A. Weyl Invariance and the Origins of Mass. Phys. Lett. B 2009, 675, 93–97. [Google Scholar] [CrossRef]
- Gover, A.; Waldron, A. The so(d+2,2) Minimal Representation and Ambient Tractors: The Conformal Geometry of Momentum Space. Adv. Theor. Math. Phys. 2009, 13, 1875–1894. [Google Scholar] [CrossRef]
- Gover, A.R.; Silhan, J. Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds. arXiv, 2011; arXiv:0911.5265. [Google Scholar]
- Grigoriev, M.; Waldron, A. Massive Higher Spins from BRST and Tractors. Nucl. Phys. B 2011, 853, 291–326. [Google Scholar] [CrossRef]
- Barnich, G.; Brandt, F. Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 2002, 633, 3–82. [Google Scholar] [CrossRef]
- Grigoriev, M.; Tseytlin, A.A. On conformal higher spins in curved background. J. Phys. A 2017, 50, 125401. [Google Scholar] [CrossRef]
- Bonezzi, R. Induced Action for Conformal Higher Spins from Worldline Path Integrals. arXiv, 2017; arXiv:1709.00850. [Google Scholar]
- Bekaert, X.; Grigoriev, M. Manifestly conformal descriptions and higher symmetries of bosonic singletons. Symmetry Integrability Geom. Method Appl. 2010, 6, 038. [Google Scholar] [CrossRef]
- Gover, A.R.; Peterson, L.J. Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus. Commun. Math. Phys. 2002, 235, 339–378. [Google Scholar] [CrossRef]
- Manvelyan, R.; Mkrtchyan, K.; Mkrtchyan, R. Conformal invariant powers of the Laplacian, Fefferman- Graham ambient metric and Ricci gauging. Phys. Lett. B 2007, 657, 112–119. [Google Scholar] [CrossRef]
- Chekmenev, A.; Grigoriev, M. Boundary values of mixed-symmetry massless fields in AdS space. Nucl. Phys. B 2016, 913, 769–791. [Google Scholar] [CrossRef]
- Alexandrov, M.; Kontsevich, M.; Schwartz, A.; Zaboronsky, O. The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 1997, 12, 1405–1430. [Google Scholar] [CrossRef]
- Grigoriev, M.A.; Damgaard, P.H. Superfield BRST charge and the master action. Phys. Lett. B 2000, 474, 323–330. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Holography, Unfolding and Higher-Spin Theory. J. Phys. A 2013, 46, 1558–1561. [Google Scholar] [CrossRef]
- Eastwood, M.G. Higher symmetries of the Laplacian. Ann. Math. 2005, 161, 1645–1665. [Google Scholar] [CrossRef]
- Bekaert, X.; Cnockaert, S.; Iazeolla, C.; Vasiliev, M.A. Nonlinear higher spin theories in various dimensions. arXiv, 2005; arXiv:hep-th/0503128. [Google Scholar]
- Sullivan, D. Infinitesimal computations in topology. Publ. Math. I’IHÉS 1977, 47, 269–331. [Google Scholar] [CrossRef]
- D’Auria, R.; Fre, P.; Townsend, P.K.; van Nieuwenhuizen, P. Invariance of actions, rheonomy and the new minimal n = 1 supergravity in the group manifold approach. Ann. Phys. 1984, 155, 423–446. [Google Scholar] [CrossRef]
- Van Nieuwenhuizen, P. Free graded differential superalgebras. In Proceedings of the 11th International Colloquium on Group Theoretical Methods in Physics, Istanbul, Turkey, 23–28 August 1982. [Google Scholar]
- Barnich, G.; Grigoriev, M. BRST extension of the non-linear unfolded formalism. In Proceedings of the International School/Seminar on Quantum Field Theory, Supersymmetry, High Spin Fields, Gravity Tomsk, Russia, 20–26 March 2005. [Google Scholar]
- Sharapov, A.A.; Skvortsov, E.D. Hochschild cohomology of the weyl algebra and vasiliev’s equations. Lett. Math. Phys. 2017, 2, 1–18. [Google Scholar] [CrossRef]
- Bekaert, X.; Joung, E.; Mourad, J. Comments on higher-spin holography. arXiv, 2012; arXiv:1202.0543. [Google Scholar]
- Brust, C.; Hinterbichler, K. Partially Massless Higher-Spin Theory. J. High Energy Phys. 2017, 2017, 86. [Google Scholar] [CrossRef]
- Joung, E.; Mkrtchyan, K. Partially-massless higher-spin algebras and their finite-dimensional truncations. J. High Energy Phys. 2016, 2016, 3. [Google Scholar] [CrossRef]
- Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A. Quantum Mechanics and Hidden Superconformal Symmetry. Phys. Rev. D 2017, 96, 126005. [Google Scholar] [CrossRef]
- Bailey, T.; Eastwood, M.; Gover, A. Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 1994, 24, 1191–1217. [Google Scholar] [CrossRef]
- Gover, A.R.; Waldron, A. Boundary calculus for conformally compact manifolds. Indiana Univ. Math. J. 2014, 63, 119–163. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekaert, X.; Grigoriev, M.; Skvortsov, E. Higher Spin Extension of Fefferman-Graham Construction. Universe 2018, 4, 17. https://doi.org/10.3390/universe4020017
Bekaert X, Grigoriev M, Skvortsov E. Higher Spin Extension of Fefferman-Graham Construction. Universe. 2018; 4(2):17. https://doi.org/10.3390/universe4020017
Chicago/Turabian StyleBekaert, Xavier, Maxim Grigoriev, and Evgeny Skvortsov. 2018. "Higher Spin Extension of Fefferman-Graham Construction" Universe 4, no. 2: 17. https://doi.org/10.3390/universe4020017
APA StyleBekaert, X., Grigoriev, M., & Skvortsov, E. (2018). Higher Spin Extension of Fefferman-Graham Construction. Universe, 4(2), 17. https://doi.org/10.3390/universe4020017