Geometry of Bigravity
Abstract
:1. Introduction
2. Bigravity and Cosmology
- one matter minimally couples to (no BD ghost at all);
- g-matter and f-matter minimally couple to and (no BD ghost at all);
- one matter minimally couples to both and (BD ghost is present);
- one matter minimally couples to “the effective metric” [11] (no BD ghost below the cut-off).
3. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
LIGO | Laser Interferometer Gravitational-Wave Observatory |
References
- Einstein, A.; Grossmann, M. Entwurf einer verallgemeinerten Relativitätstheorie und eine Theorie der Gravitation. Z. Math. Phys. 1913, 62, 225–261. [Google Scholar]
- Einstein, A. Feldgleichungen der Gravitation. 1915, pp. 844–847. Available online: https://scholar.googleusercontent.com/scholar?q=cache:VsmRnX3drKkJ:scholar.google.com/+Feldgleichungen+der+Gravitation.+1915,+%28part+2%29,+844%E2%80%93847.&hl=en&as_sdt=0,5&as_vis=1 (accessed on 27 December 2017).
- Hilbert, D. Die Grundlagen der Physik. Nachrichten K. Gessellschaft Wiss. Göttingen Math-Phys. Klasse 1915, 1915, 395–408. (In German) [Google Scholar]
- Friedmann, A. Über die Krümmung des Raumes. Z. Phys. 1922, 10, 377–386. [Google Scholar] [CrossRef]
- Soloviev, V.O. Evolution of the equations of dynamics of the Universe: From Friedmann to the present day. Theor. Math. Phys. 2017, 48, 287–308. [Google Scholar] [CrossRef]
- The Project Gutenberg EBook of Pascal’s Pensées, by Blaise Pascal. Available online: http://www.gutenberg.org/files/18269/18269-h/18269-h.htm (accessed on 27 December 2017).
- Boulware, D.; Deser, S. Can gravitation have a finite range? Phys. Rev. D 1972, 6, 3368–3382. [Google Scholar] [CrossRef]
- De Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of massive gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.F.; Rosen, R. Bimetric gravity from ghost-free massive gravity. J. High Energy Phys. 2012, 2012, 126. [Google Scholar] [CrossRef]
- Soloviev, V. Hamiltonian cosmology of bigravity. Phys. Part. Nucl. 2017, 48, 287–308. [Google Scholar] [CrossRef]
- De Rham, C.; Heisenberg, L.; Ribeiro, R.H. On couplings to matter in massive (bi-)gravity. Class. Quantum Grav. 2015, 32, 035022. [Google Scholar] [CrossRef]
- Akrami, Y.; Hassan, S.F.; Könnig, F.; Schmidt-May, A.; Solomon, A.R. Bimetric gravity is cosmologically viable. Phys. Lett. B 2015, 748, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, L.; Heisenberg, L. Dark matter via massive (bi-)gravity. Phys. Rev. D 2015, 91, 103518. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soloviev, V. Geometry of Bigravity. Universe 2018, 4, 19. https://doi.org/10.3390/universe4020019
Soloviev V. Geometry of Bigravity. Universe. 2018; 4(2):19. https://doi.org/10.3390/universe4020019
Chicago/Turabian StyleSoloviev, Vladimir. 2018. "Geometry of Bigravity" Universe 4, no. 2: 19. https://doi.org/10.3390/universe4020019
APA StyleSoloviev, V. (2018). Geometry of Bigravity. Universe, 4(2), 19. https://doi.org/10.3390/universe4020019