On the High-Energy Neutrino Emission from Active Galactic Nuclei †
Abstract
:1. Introduction
2. Active Galactic Nuclei and Their Jets
3. High-Energy Neutrino Emission in AGN
4. Observation of Possible Sources of Low-Frequency GWs
5. Detection of Neutrinos by the IceCube Neutrino Observatory
6. Discussion: Reorienting Jets, as Sources of High-Energy Neutrinos
- (i)
- the high Lorentz factor of the freshly made jet due to the gravitational shock-wave,
- (ii)
- enhanced radiation in all EM frequencies,
- (iii)
- the spectrum of the AGN is flat up to THz frequencies due to the energetic synchrotron-radiating electrons,
- (iv)
- its radio flux density is increasing as the electrons are speeding, leading to enhanced synchrotron radiation,
- (v)
- neutrino emission.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cowan, C.L.; Reines, F.; Harrison, F.B.; Kruse, H.W.; McGuire, A.D. Detection of the Free Neutrino: A Confirmation. Science 1956, 124, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Linsley, J. Eidence for a Primary Cosmic-Ray Particle with Energy 1020 eV. Phys. Rev. Lett. 1963, 10, 146–148. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Phys. Rev. X 2016, 6, 041015. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar]
- Amaro-Seoane, P.; Aoudia, S.; Babak, S.; Binétruy, P.; Berti, E.; Bohé, A.; Caprini, C.; Colpi, M.; Cornish, N.J.; Danzmann, K.; et al. eLISA: Astrophysics and cosmology in the millihertz regime. Gravit. Waves Notes 2013, 6, 4–110. [Google Scholar]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Theory of extragalactic radio sources. Rev. Mod. Phys. 1984, 56, 255–351. [Google Scholar] [CrossRef]
- Villata, M.; Raiteri, C.M. Helical jets in blazars. I. The case of MKN 501. Astron. Astrophys. 1999, 347, 30–36. [Google Scholar]
- Roos, N.; Kaastra, J.S.; Hummel, C.A. A massive binary black hole in 1928+738? Astrophys. J. 1993, 409, 130–133. [Google Scholar] [CrossRef]
- Britzen, S.; Roland, J.; Laskar, J.; Kokkotas, K.; Campbell, R.M.; Witzel, A. On the origin of compact radio sources. The binary black hole model applied to the gamma-bright quasar PKS 0420-014. Astron. Astrophys. 2001, 374, 784–799. [Google Scholar] [CrossRef]
- Britzen, S.; Kudryavtseva, N.A.; Witzel, A.; Campbell, R.M.; Ros, E.; Karouzos, M.; Mehta, A.; Aller, M.F.; Aller, H.D.; Beckert, T.; et al. The kinematics in the pc-scale jets of AGN. The case of S5 1803+784. Astron. Astrophys. 2010, 511, A57. [Google Scholar] [CrossRef]
- Britzen, S.; Zamaninasab, M.; Aller, M.; Aller, H.; Kurtanidze, O.; Vercellone, S.; Richter, G.M.; Witzel, A.; Krichbaum, T.P.; Zensus, J.A. Detecting supermassive binary black holes with VLBI—Discovery of a ring-structure in 3C454.3. J. Phys. Conf. Ser. 2012, 372, 012029. [Google Scholar] [CrossRef]
- Kun, E.; Gabányi, K.É.; Karouzos, M.; Britzen, S.; Gergely, L.Á. A spinning supermassive black hole binary model consistent with VLBI observations of the S5 1928+738 jet. Mon. Not. R. Astron. Soc. 2014, 445, 1370–1382. [Google Scholar]
- Kun, E.; Frey, S.; Gabányi, K.É.; Britzen, S.; Cseh, D.; Gergely, L.Á. Constraining the parameters of the putative supermassive binary black hole in PG 1302-102 from its radio structure. Mon. Not. R. Astron. Soc. 2015, 454, 1290–1296. [Google Scholar] [CrossRef]
- Bon, E.; Jovanović, P.; Marziani, P.; Shapovalova, A.I.; Bon, N.; Jovanović, V.B.; Borka, D.; Sulentic, J.; Popović, L.Č. The First Spectroscopically Resolved Sub-parsec Orbit of a Supermassive Binary Black Hole. Astrophys. J. 2012, 759, 118–126. [Google Scholar] [CrossRef]
- Keel, W.C.; Lintott, C.J.; Maksym, W.P.; Bennert, V.N.; Chojnowski, S.D.; Moiseev, A.; Smirnova, A.; Schawinski, K.; Sartori, L.F.; Urry, C.M.; et al. Fading AGN Candidates: AGN Histories and Outflow Signatures. Astrophys. J. 2017, 835, 256. [Google Scholar] [CrossRef]
- Searle, L.; Zinn, R. Compositions of halo clusters and the formation of the galactic halo. Astrophys. J. 1978, 225, 357–379. [Google Scholar] [CrossRef]
- Kauffmann, G.; Haehnelt, M. A unified model for the evolution of galaxies and quasars. Mon. Not. R. Astron. Soc. 2000, 311, 576–588. [Google Scholar] [CrossRef]
- Andrade-Santos, F.; Bogdán, Á.; Romani, R.W.; Forman, W.R.; Jones, C.; Murray, S.S.; Taylor, G.B.; Zavala, R.T. Binary Black Holes, Gas Sloshing, and Cold Fronts in the X-ray Halo Hosting 4C+37.11. Astrophys. J. 2016, 826, 91. [Google Scholar] [CrossRef]
- Komossa, S. Observational evidence for binary black holes and active double nuclei. Mem. Soc. Astron. Ital. 2006, 77, 733–741. [Google Scholar]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Merritt, D.; Milosavljevic, M. Massive Black Hole Binary Evolution. Living Rev. Relativ. 2005, 8, 8. [Google Scholar] [CrossRef]
- Mestel, L. On the galactic law of rotation. Mon. Not. R. Astron. Soc. 1963, 126, 553–575. [Google Scholar] [CrossRef]
- Hobson, M.P.; Efstathiou, G.P.; Lasenby, A.N. General Relativity: An Introduction for Physicists; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0-521-82951-9. [Google Scholar]
- Beckmann, V.; Shrader, C. Active Galactic Nuclei; Wiley-VCH: Weinheim, Germany, 2012; ISBN 978-3-527-41078-1. [Google Scholar]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. General Relativistic Modeling of Magnetized Jets from Accreting Black Holes. J. Phys. Conf. Ser. 2012, 372, 012040. [Google Scholar] [CrossRef]
- Boettcher, M.; Harris, D.E.; Krawczynski, H. (Eds.) Relativistic Jets from Active Galactic Nuclei; Wiley-VCH: Weinheim, Germany, 2012; ISBN 978-3-527-41037-8. [Google Scholar]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Britzen, S.; Fendt, C.; Eckart, A.; Karas, V. A new view on the M 87 jet origin: Turbulent loading leading to large-scale episodic wiggling. Astron. Astrophys. 2017, 601, A52. [Google Scholar] [CrossRef]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; Wiley-VCH: Weinheim, Germany, 1985; ISBN 978-0-471-82759-7. [Google Scholar]
- Klein, U.; Fletcher, A. Galactic and Intergalactic Magnetic Fields; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-08941-6. [Google Scholar]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA observations of objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195–1207. [Google Scholar] [CrossRef]
- Padovani, P. The Radio Loud Fraction of QSOS and its Dependence on Magnitude and Redshift. Mon. Not. R. Astron. Soc. 1993, 263, 461–470. [Google Scholar] [CrossRef]
- Pierre Auger Collaboration. Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects. Science 2007, 318, 938–943. [Google Scholar] [Green Version]
- Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; et al. Auger Collaboration. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 2008, 29, 188–204. [Google Scholar]
- Saba, I.; Becker Tjus, J.; Halzen, F. Limits on the source properties of FR-I galaxies from high-energy neutrino and gamma observations. Astropart. Phys. 2013, 48, 30–36. [Google Scholar] [CrossRef]
- Kalashev, O.; Semikoz, D.; Tkachev, I. Neutrinos in IceCube from active galactic nuclei. J. Exp. Theor. Phys. 2015, 120, 541–548. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. IceCube Collaboration The Contribution of Fermi-2LAC Blazars to Diffuse TeV-PeV Neutrino Flux. Astrophys. J. 2017, 835, 45. [Google Scholar] [CrossRef]
- Mannheim, K.; Biermann, P.L. Photomeson production in active galactic nuclei. Astron. Astrophys. 1989, 221, 211–220. [Google Scholar]
- Begelman, M.C.; Rudak, B.; Sikora, M. Consequences of relativistic proton injection in active galactic nuclei. Astrophys. J. 1990, 362, 38. [Google Scholar] [CrossRef]
- Mücke, A.; Rachen, J.P.; Engel, R.; Protheroe, R.J.; Stanev, T. Photohadronic Processes in Astrophysical Environments. Publ. Astron. Soc. Aust. 1999, 16, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Biermann, P.L.; Strittmatter, P.A. Synchrotron emission from shock waves in active galactic nuclei. Astrophys. J. 1987, 322, 643–649. [Google Scholar] [CrossRef]
- Stecker, F.W.; Done, C.; Salamon, M.H.; Sommers, P. High-energy neutrinos from active galactic nuclei. Phys. Rev. Lett. 1991, 66, 2697–2700. [Google Scholar] [CrossRef] [PubMed]
- Mannheim, K. High-energy neutrinos from extragalactic jets. Astropart. Phys. 1995, 3, 295–302. [Google Scholar] [CrossRef]
- Becker, J.K.; Biermann, P.L. Neutrinos from active black holes, sources of ultra high energy cosmic rays. Astropart. Phys. 2009, 31, 138–148. [Google Scholar] [CrossRef]
- Kun, E.; Wiita, P.J.; Gergely, L.Á.; Keresztes, Z.; Gopal-Krishna; Biermann, P.L. Constraints on supermassive black hole spins from observations of active galaxy jets. Astron. Nachr. 2013, 334, 1024–1027. [Google Scholar] [CrossRef]
- Kun, E.; Biermann, P.L.; Gergely, L.Á. A flat-spectrum candidate for a track-type high-energy neutrino emission event, the case of blazar PKS 0723-008. Mon. Not. R. Astron. Soc. Lett. 2017, 466, L34–L38. [Google Scholar] [CrossRef]
- Biermann, P.L.; Caramete, L.I.; Fraschetti, F.; Gergely, L.A.; Harms, B.C.; Kun, E.; Lundquist, J.P.; Meli, A.; Nath, B.B.; Seo, E.S.; et al. The Nature and Origin of Ultra-High Energy Cosmic Ray Particles. arXiv, 2016; arXiv:1610.00944. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Adhikari, R.X.; Ananyeva, A.; Anderson, S.B.; Appert, S.; Arai, K.; Araya, M.C.; Barayoga, J.C.; Barish, B.C.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Falcke, H.; Biermann, P.L. The jet-disk symbiosis. I. Radio to X-ray emission models for quasars. Astron. Astrophys. 1995, 293, 665–682. [Google Scholar]
- Markoff, S.; Falcke, H.; Yuan, F.; Biermann, P.L. The Nature of the 10 kilosecond X-ray flare in Sgr A*. Astron. Astrophys. 2001, 379, L13–L16. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; D’Arcangelo, F.D.; Smith, P.S.; Williams, G.G.; Larionov, V.M.; Oh, H.; Olmstead, A.R.; Aller, M.F.; Aller, H.D.; et al. The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature 2008, 452, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Gergely, L.Á.; Biermann, P.L. The Spin-Flip Phenomenon in Supermassive Black hole binary mergers. Astrophys. J. 2009, 697, 1621. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar]
- Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L. Pint-source and diffuse high-energy neutrino emission from Type IIn supernovae. Mon. Not. R. Astron. Soc. 2017, 470, 1881–1893. [Google Scholar] [CrossRef]
- Fang, K.; Metzger, B.D. High-energy Neutrinos from Millisecond Magnetars Formed from the Merger of Binary Neutron Stars. Astrophys. J. 2017, 849, 153. [Google Scholar] [CrossRef]
- Britzen, S.; Qian, S.J.; Steffen, W.; Kun, E.; Karouzos, M.; Gergely, L.; Schmidt, J.; Aller, M.; Aller, H.; Krause, M.; et al. A swirling jet in the quasar 1308+326. Astron. Astrophys. 2017, 602, A29. [Google Scholar] [CrossRef]
- Graham, M.J.; Djorgovski, S.G.; Stern, D.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Glikman, E.; Larson, S.; Christensen, E. A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey. Mon. Not. R. Astron. Soc. 2015, 453, 1562–1576. [Google Scholar] [CrossRef]
- Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A.M.; Graham, M.J.; Bellm, E.C.; Laher, R.R.; Márka, S. A population of short-period variable quasars from PTF as supermassive black hole binary candidates. Mon. Not. R. Astron. Soc. 2016, 463, 2145–2171. [Google Scholar] [CrossRef]
- Bon, E.; Zucker, S.; Netzer, H.; Marziani, P.; Bon, N.; Jovanović, P.; Shapovalova, A.I.; Komossa, S.; Gaskell, C.M.; Popović, L.Č.; et al. Evidence for Periodicity in 43 year-long Monitoring of NGC 5548. Astrophys. J. Suppl. Ser. 2016, 225, 29. [Google Scholar] [CrossRef]
- Bon, E.; Marziani, P.; Bon, N. Periodic optical variability of AGN. Proc. Int. Astron. Union 2017, 324, 176–179. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1987; ISBN 9781400828722. [Google Scholar]
- Kidder, L.E. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin Effects. Phys. Rev. D 1995, 52, 821–847. [Google Scholar] [CrossRef]
- Lincoln, C.W.; Will, C.M. Coalescing binary systems of compact objects to (post)5/2-Newtonian order: Late-time evolution and gravitational-radiation emission. Phys. Rev. D 1990, 42, 1123–1143. [Google Scholar] [CrossRef]
- McKernan, B.; Ford, K.E.S.; Kocsis, B.; Haiman, Z. Ripple effects and oscillations in the broad FeKα line as a probe of massive black hole mergers. Mon. Not. R. Astron. Soc. 2013, 432, 1468–1482. [Google Scholar] [CrossRef]
- IceCube Collaboration. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [Green Version]
- IceCube Collaboration. The IceCube Neutrino Observatory—Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors. arXiv, 2015; arXiv:1510.05223. [Google Scholar]
- Schoenen, S.; Raedel, L. Detection of a Multi-PeV Neutrino-Induced Muon Event from the Northern Sky with IceCube. Available online: http://www.astronomerstelegram.org/?read=7856 (accessed on 24 January 2018).
- Halzen, F. High-energy neutrino astrophysics. Nat. Phys. 2017, 13, 232–238. [Google Scholar] [CrossRef]
- IceCube Collaboration. Measurement of the cosmic ray energy spectrum with IceTop-73. Phys. Rev. D 2013, 88, 042004. [Google Scholar] [Green Version]
- Braun, J.; Dumm, J.; De Palma, F.; Finley, C.; Karle, A.; Montaruli, T. Methods for point source analysis in high energy neutrino telescopes. Astropart. Phys. 2008, 29, 299–305. [Google Scholar] [CrossRef]
- Barr, G.D.; Gaisser, T.K.; Lipari, P.; Robbins, S.; Stanev, T. Three-dimensional calculation of atmospheric neutrinos. Phys. Rev. D 2004, 70, 023006. [Google Scholar] [CrossRef]
- Barker, B.M.; O’Connell, R.F. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 1975, 12, 329–335. [Google Scholar] [CrossRef]
- Barker, B.M.; O’Connell, R.F. The gravitational interaction: Spin, rotation, and quantum effects—A review. Gen. Relativ. Gravit. 1979, 11, 149–175. [Google Scholar] [CrossRef]
- Gopal-Krishna; Biermann, P.L.; Gergely, L.Á.; Wiita, P.J. On the origin of X-shaped radio galaxies. Res. Astron. Astrophys. 2012, 12, 127–146. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kun, E.; Biermann, P.L.; Britzen, S.; Gergely, L.Á. On the High-Energy Neutrino Emission from Active Galactic Nuclei. Universe 2018, 4, 24. https://doi.org/10.3390/universe4020024
Kun E, Biermann PL, Britzen S, Gergely LÁ. On the High-Energy Neutrino Emission from Active Galactic Nuclei. Universe. 2018; 4(2):24. https://doi.org/10.3390/universe4020024
Chicago/Turabian StyleKun, Emma, Peter L. Biermann, Silke Britzen, and László Á. Gergely. 2018. "On the High-Energy Neutrino Emission from Active Galactic Nuclei" Universe 4, no. 2: 24. https://doi.org/10.3390/universe4020024
APA StyleKun, E., Biermann, P. L., Britzen, S., & Gergely, L. Á. (2018). On the High-Energy Neutrino Emission from Active Galactic Nuclei. Universe, 4(2), 24. https://doi.org/10.3390/universe4020024