Centrality Dependent Lévy-Stable Two-Pion Bose-Einstein Correlations in \( {\sqrt{s_{NN}}} \) = 200 GeV Au+Au Collisions at the PHENIX Experiment
Abstract
:1. Introduction
2. PHENIX Experiment
3. Two-Particle Correlation Functions and the Lévy Distribution
4. Results of the Centrality Dependent Analysis
4.1. The Lévy Shape Parameter
4.2. The Lévy Scale Parameter R
4.3. The Lévy Strength
4.4. New Scaling Parameter
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Brown, R.H.; Twiss, R.Q. Correlation between Photons in two Coherent Beams of Light. Nature 1956, 177, 27–29. [Google Scholar] [CrossRef]
- Goldhaber, G.; Goldhaber, S.; Lee, W.; Pais, A. Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process. Phys. Rev. 1960, 120, 300–312. [Google Scholar] [CrossRef]
- Afanasiev, S.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S.H.; Averbeck, R.; et al. Evidence for a long-range component in the pion emission source in Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 2007, 98, 132301. [Google Scholar] [CrossRef] [PubMed]
- Csörgő, T.; Hegyi, S.; Zajc, W.A. Bose-Einstein correlations for Levy stable source distributions. Eur. Phys. J. C 2004, 36, 67–78. [Google Scholar] [CrossRef]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach. Phys. Rev. Lett. 1999, 82, 3563–3567. [Google Scholar] [CrossRef]
- Csanád, M.; Csörgő, T.; Nagy, M. Anomalous diffusion of pions at RHIC. Braz. J. Phys. 2007, 37, 1002–1013. [Google Scholar] [CrossRef]
- Csanád, M. Measurement and analysis of two- and three-particle correlations. Nucl. Phys. A 2006, 774, 611–614. [Google Scholar] [CrossRef]
- Kincses, D. PHENIX results on Lévy analysis of Bose-Einstein correlation functions. In Proceedings of the 10th International Workshop on Critical Point and Onset of Deconfinement (CPOD 2016), Wrocław, Poland, 30 May–4 June 2016. [Google Scholar]
- Adare, A.; Aidala, C.; Ajitanand, N.N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Apadula, N.; Alfred, M.; Al-Ta’ani, H.; Angerami, A.; et al. Lévy-stable two-pion Bose-Einstein correlations in = 200 GeV Au+Au collisions. arXiv, 2017; arXiv:1709.05649. [Google Scholar]
- Csanád, M. Lévy femtoscopy with PHENIX at RHIC. Universe 2017, 3, 85. [Google Scholar] [CrossRef]
- Adcox, K.; Bennett, M.J.; Bobrek, M.; Boissevain, J.B.; Boose, S.; Bosze, E.; Conway, R.; Aphecetche, L.; Aronson, S.H.; Zhou, S.; et al. PHENIX detector overview. Nucl. Instrum. Meth. A 2003, 499, 469–479. [Google Scholar] [CrossRef]
- Yano, F.B.; Koonin, S.E. Determining Pion Source Parameters in Relativistic Heavy Ion Collisions. Phys. Lett. B 1978, 78, 556–559. [Google Scholar] [CrossRef]
- Bolz, J.; Ornik, U.; Plumer, M.; Schlei, B.R.; Weiner, R.M. Resonance decays and partial coherence in Bose-Einstein correlations. Phys. Rev. D 1993, 47, 3860–3870. [Google Scholar] [CrossRef]
- Csörgő, T.; Lorstad, B.; Zimanyi, J. Bose-Einstein correlations for systems with large halo. Z. Phys. C Part. Fields 1996, 71, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Csörgő, T. Particle interferometry from 40-MeV to 40-TeV. Heavy Ion Phys. 2002, 15, 1–80. [Google Scholar] [CrossRef]
- Vértesi, R.; Csörgő, T.; Sziklai, J. Significant in-medium η’ mass reduction in = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2011, 83, 054903. [Google Scholar] [CrossRef]
- Csörgő, T.; Vértesi, R.; Sziklai, J. UA(1) Symmetry Restoration from an In-Medium η ’ Mass Reduction in = 200 GeV Au + Au Collisions, Quantum chromodynamics and beyond: Gribov-80 memorial volume. In Proceedings of the Memorial Workshop Devoted to the 80th Birthday of V N Gribov, Trieste, Italy, 26–28 May 2010; pp. 307–318. [Google Scholar]
- Csörgő, T.; Hegyi, S.; Novák, T.; Zajc, W.A. Bose-Einstein or HBT correlation signature of a second order QCD phase transition. AIP Conf. Proc. 2006, 828, 525–532. [Google Scholar]
- Gavrilik, A.M.; Mishchenko, Yu.A. Correlation function intercepts for μ˜,q-deformed Bose gas model implying effective accounting for interaction and compositeness of particles. Nucl. Phys. B 2015, 891, 466–481. [Google Scholar] [CrossRef]
- Sinyukov, Yu.; Lednicky, R.; Akkelin, S.V.; Pluta, J.; Erazmus, B. Coulomb corrections for interferometry analysis of expanding hadron systems. Phys. Lett. B 1998, 432, 248–257. [Google Scholar] [CrossRef]
- Makhlin, A.N.; Sinyukov, Y.M. The hydrodynamics of hadron matter under a pion interferometric microscope. Z. Phys. C Part. Fields 1988, 39, 69–73. [Google Scholar] [CrossRef]
- Csörgő, T.; Lörstad, B. Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems. Phys. Rev. C 1996, 54, 1390–1403. [Google Scholar] [CrossRef]
- Chapman, S.; Scotto, P.; Heinz, U.W. A New cross term in the two particle HBT correlation function. Phys. Rev. Lett. 1995, 74, 4400–4403. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lökös, S. Centrality Dependent Lévy-Stable Two-Pion Bose-Einstein Correlations in \( {\sqrt{s_{NN}}} \) = 200 GeV Au+Au Collisions at the PHENIX Experiment. Universe 2018, 4, 31. https://doi.org/10.3390/universe4020031
Lökös S. Centrality Dependent Lévy-Stable Two-Pion Bose-Einstein Correlations in \( {\sqrt{s_{NN}}} \) = 200 GeV Au+Au Collisions at the PHENIX Experiment. Universe. 2018; 4(2):31. https://doi.org/10.3390/universe4020031
Chicago/Turabian StyleLökös, Sándor. 2018. "Centrality Dependent Lévy-Stable Two-Pion Bose-Einstein Correlations in \( {\sqrt{s_{NN}}} \) = 200 GeV Au+Au Collisions at the PHENIX Experiment" Universe 4, no. 2: 31. https://doi.org/10.3390/universe4020031
APA StyleLökös, S. (2018). Centrality Dependent Lévy-Stable Two-Pion Bose-Einstein Correlations in \( {\sqrt{s_{NN}}} \) = 200 GeV Au+Au Collisions at the PHENIX Experiment. Universe, 4(2), 31. https://doi.org/10.3390/universe4020031