Asymptotic Charges at Null Infinity in Any Dimension
Abstract
:1. Introduction
2. Yang–Mills Theory
2.1. Boundary Conditions
2.1.1. Even Space-Time Dimension
2.1.2. Odd Space-Time Dimension
2.1.3. Three and Four Space-Time Dimensions
2.2. Asymptotic Symmetries and Charges
3. Linearised Gravity
3.1. Boundary Conditions
3.1.1. Even Space-Time Dimension
3.1.2. Odd Space-Time Dimension
3.1.3. Three and Four Space-Time Dimensions
3.2. Asymptotic Symmetries and Charges
4. Spin 3
4.1. Boundary Conditions
4.1.1. Even Space-Time Dimension
4.1.2. Odd Space-Time Dimension
4.1.3. Three and Four Space-Time Dimensions
4.2. Asymptotic Symmetries and Charges
5. Arbitrary Spin
5.1. Boundary Conditions
5.2. Asymptotic Symmetries and Charges
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Spin-s Charges in Bondi Gauge
Appendix A.1. On-Shell Closed Two-Form for Arbitrary Spin
Appendix A.2. Rewriting in Bondi Gauge
References
- Campoleoni, A.; Francia, D.; Heissenberg, C. On higher-spin supertranslations and superrotations. J. High Energy Phys. 2017, 2017, 120. [Google Scholar] [CrossRef]
- Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. VII. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A 1962, 269, 21–52. [Google Scholar] [CrossRef]
- Sachs, R. Asymptotic symmetries in gravitational theory. Phys. Rev. 1962, 128, 2851–2864. [Google Scholar] [CrossRef]
- Strominger, A. On BMS Invariance of Gravitational Scattering. J. High Energy Phys. 2014, 2014, 152. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Lysov, V.; Mitra, P.; Strominger, A. BMS supertranslations and Weinberg’s soft graviton theorem. J. High Energy Phys. 2015, 2015, 151. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A. Lectures on the Infrared Structure of Gravity and Gauge Theory. arXiv, 2017; arXiv:1703.05448. [Google Scholar]
- Weinberg, S. Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass. Phys. Rev. B 1964, 135, 1049–1056. [Google Scholar] [CrossRef]
- Weinberg, S. Infrared photons and gravitons. Phys. Rev. B 1965, 140, 516–524. [Google Scholar] [CrossRef]
- Barnich, G.; Troessaert, C. Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 2010, 105, 111103. [Google Scholar] [CrossRef] [PubMed]
- Barnich, G.; Troessaert, C. Aspects of the BMS/CFT correspondence. J. High Energy Phys. 2010, 2010, 62. [Google Scholar] [CrossRef]
- Hollands, S.; Ishibashi, A. Asymptotic flatness and Bondi energy in higher dimensional gravity. J. Math. Phys. 2005, 46, 022503. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R.M. Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions. Class. Quantum Gravity 2004, 21, 5139–5145. [Google Scholar] [CrossRef]
- Tanabe, K.; Kinoshita, S.; Shiromizu, T. Asymptotic flatness at null infinity in arbitrary dimensions. Phys. Rev. D 2011, 84, 044055. [Google Scholar] [CrossRef]
- Barnich, G.; Lambert, P.H. Einstein-Yang–Mills theory: Asymptotic symmetries. Phys. Rev. D 2013, 88, 103006. [Google Scholar] [CrossRef]
- Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A. Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem. Ann. Math. Sci. Appl. 2017, 2, 69–94. [Google Scholar] [CrossRef]
- Barnich, G.; Lambert, P.H.; Mao, P. Three-dimensional asymptotically flat Einstein-Maxwell theory. Class. Quantum Gravity 2015, 32, 245001. [Google Scholar] [CrossRef]
- Mao, P.; Ouyang, H. Note on soft theorems and memories in even dimensions. Phys. Lett. B 2017, 774, 715–722. [Google Scholar] [CrossRef]
- Campiglia, M.; Coito, L. Asymptotic charges from soft scalars in even dimensions. arXiv, 2017; arXiv:1711.05773. [Google Scholar]
- Pate, M.; Raclariu, A.M.; Strominger, A. Gravitational Memory in Higher Dimensions. arXiv, 2017; arXiv:1712.01204. [Google Scholar]
- Strominger, A. Asymptotic Symmetries of Yang–Mills Theory. J. High Energy Phys. 2014, 2014, 151. [Google Scholar] [CrossRef]
- He, T.; Mitra, P.; Porfyriadis, A.P.; Strominger, A. New Symmetries of Massless QED. J. High Energy Phys. 2014, 2014, 112. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Mitra, P.; Strominger, A. 2D Kac–Moody Symmetry of 4D Yang–Mills Theory. J. High Energy Phys. 2016, 2016, 137. [Google Scholar] [CrossRef]
- Adamo, T.; Casali, E. Perturbative gauge theory at null infinity. Phys. Rev. D 2015, 91, 125022. [Google Scholar] [CrossRef]
- Campiglia, M.; Laddha, A. Asymptotic symmetries of QED and Weinberg’s soft photon theorem. J. High Energy Phys. 2015, 2015, 115. [Google Scholar] [CrossRef]
- Mao, P.; Ouyang, H.; Wu, J.B.; Wu, X. New electromagnetic memories and soft photon theorems. Phys. Rev. D 2017, 95, 125011. [Google Scholar] [CrossRef]
- Mao, P.; Wu, J.-B. Note on asymptotic symmetries and soft gluon theorems. Phys. Rev. D 2017, 96, 065023. [Google Scholar] [CrossRef]
- Pate, M.; Raclariu, A.M.; Strominger, A. Color Memory: A Yang-Mills Analog of Gravitational Wave Memory. Phys. Rev. Lett. 2017, 119, 261602. [Google Scholar] [CrossRef] [PubMed]
- Hollands, S.; Ishibashi, A.; Wald, R.M. BMS Supertranslations and Memory in Four and Higher Dimensions. Class. Quantum Gravity 2017, 34, 155005. [Google Scholar] [CrossRef]
- Tanabe, K.; Shiromizu, T.; Kinoshita, S. Angular momentum at null infinity in higher dimensions. Phys. Rev. D 2012, 85, 124058. [Google Scholar] [CrossRef]
- Garfinkle, D.; Hollands, S.; Ishibashi, A.; Tolish, A.; Wald, R.M. The Memory Effect for Particle Scattering in Even Spacetime Dimensions. Class. Quantum Gravity 2017, 34, 145015. [Google Scholar] [CrossRef]
- Gross, D.J. High-Energy Symmetries of String Theory. Phys. Rev. Lett. 1988, 60, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Moeller, N.; West, P.C. Arbitrary four string scattering at high energy and fixed angle. Nucl. Phys. B 2005, 729, 1–48. [Google Scholar] [CrossRef]
- Sagnotti, A.; Taronna, M. String Lessons for Higher-Spin Interactions. Nucl. Phys. B 2011, 842, 299–361. [Google Scholar] [CrossRef] [Green Version]
- Sagnotti, A. Notes on Strings and Higher Spins. J. Phys. A 2013, 46, 214006. [Google Scholar] [CrossRef]
- Casali, E.; Tourkine, P. On the null origin of the ambitwistor string. J. High Energy Phys. 2016, 2016, 036. [Google Scholar] [CrossRef]
- Abbott, L.F.; Deser, S. Charge Definition in Nonabelian Gauge Theories. Phys. Lett. B 1982, 116, 259–263. [Google Scholar] [CrossRef]
- Barnich, G.; Brandt, F. Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 2002, 633, 3–82. [Google Scholar] [CrossRef]
- Avery, S.G.; Schwab, B.U.W. Noether’s second theorem and Ward identities for gauge symmetries. J. High Energy Phys. 2016, 2016, 31. [Google Scholar] [CrossRef]
- Wald, R.M.; Zoupas, A. A General definition of ’conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D 2000, 61, 084027. [Google Scholar] [CrossRef] [Green Version]
- Hollands, S.; Thorne, A. Bondi mass cannot become negative in higher dimensions. Commun. Math. Phys. 2015, 333, 1037–1059. [Google Scholar] [CrossRef]
- Barnich, G.; Compere, G. Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions. Class. Quantum Gravity 2007, 24, 5. [Google Scholar] [CrossRef]
- Riegler, M.; Zwikel, C. Canonical Charges in Flatland. arXiv, 2017; arXiv:1709.09871. [Google Scholar]
- Barnich, G.; Troessaert, C. BMS charge algebra. J. High Energy Phys. 2011, 2011, 105. [Google Scholar] [CrossRef]
- Metsaev, R.R. BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields. Phys. Lett. B 2013, 720, 237–243. [Google Scholar] [CrossRef]
- Joung, E.; Lopez, L.; Taronna, M. Solving the Noether procedure for cubic interactions of higher spins in (A)dS. J. Phys. A 2013, 46, 214020. [Google Scholar] [CrossRef]
- Boulanger, N.; Ponomarev, D.; Skvortsov, E.D. Non-abelian cubic vertices for higher-spin fields in anti-de Sitter space. J. High Energy Phys. 2013, 2013, 8. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings. Phys. Rev. Lett. 2016, 116, 181602. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Joung, E.; Mkrtchyan, K. Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions. J. High Energy Phys. 2016, 2016, 40. [Google Scholar] [CrossRef]
- Francia, D.; Monaco, G.L.; Mkrtchyan, K. Cubic interactions of Maxwell-like higher spins. J. High Energy Phys. 2017, 2017, 68. [Google Scholar] [CrossRef]
- Francia, D. Low-spin models for higher-spin Lagrangians. Prog. Theor. Phys. Suppl. 2011, 188, 94–105. [Google Scholar] [CrossRef]
- Campoleoni, A.; Francia, D. Maxwell-like Lagrangians for higher spins. J. High Energy Phys. 2013, 2013, 168. [Google Scholar] [CrossRef]
- Francia, D. Generalised connections and higher-spin equations. Class. Quantum Gravity 2012, 29, 245003. [Google Scholar] [CrossRef]
- Afshar, H.; Bagchi, A.; Fareghbal, R.; Grumiller, D.; Rosseel, J. Spin-3 Gravity in Three-Dimensional Flat Space. Phys. Rev. Lett. 2013, 111, 121603. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.A.; Matulich, J.; Pino, M.; Troncoso, R. Asymptotically flat spacetimes in three-dimensional higher spin gravity. J. High Energy Phys. 2013, 2013, 16. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S. Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields. J. High Energy Phys. 2010, 2010, 7. [Google Scholar] [CrossRef]
- Campoleoni, A.; Henneaux, M. Asymptotic symmetries of three-dimensional higher-spin gravity: The metric approach. J. High Energy Phys. 2015, 2015, 143. [Google Scholar] [CrossRef]
- Eastwood, M.G. Higher symmetries of the Laplacian. Ann. Math. 2005, 161, 1645–1665. [Google Scholar] [CrossRef]
- Campoleoni, A.; Henneaux, M.; Hörtner, S.; Leonard, A. Higher-spin charges in Hamiltonian form. I. Bose fields. J. High Energy Phys. 2016, 2016, 146. [Google Scholar] [CrossRef]
- Francia, D. Geometric Lagrangians for massive higher-spin fields. Nucl. Phys. B 2008, 796, 77–122. [Google Scholar] [CrossRef]
- Henneaux, M.; Rey, S.-J. Nonlinear W∞ as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity. J. High Energy Phys. 2010, 2010, 7. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Hartman, T. Symmetries of Holographic Minimal Models. J. High Energy Phys. 2011, 2011, 31. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S.; Pfenninger, S. Asymptotic W-symmetries in three-dimensional higher-spin gauge theories. J. High Energy Phys. 2011, 2011, 113. [Google Scholar] [CrossRef]
- Barnich, G.; Bouatta, N.; Grigoriev, M. Surface charges and dynamical Killing tensors for higher spin gauge fields in constant curvature spaces. J. High Energy Phys. 2005, 2005, 10. [Google Scholar] [CrossRef]
1 | See also [6] for a general review and more references. |
2 | In the three-dimensional case (), to be discussed in Section 2.1.3, we shall also consider a logarithmic dependence in r. |
3 | The D-dimensional wave equation , where , admits spherically symmetric solutions whose large-r behaviour is . |
4 | The Yang–Mills Lagrangian for anti-Hermitian fields is , while the stress-energy tensor has the form . The energy flux across is then given by as . |
5 | With hindsight, our choice is legitimated, e.g., by the agreement between the charges and asymptotic symmetries derived in this framework and those obtained by assuming only suitable falloff conditions on the components of the metric that cannot be set to zero with an off-shell gauge fixing (compare e.g. the conditions (63) with Equation (8) of [11]). |
6 | From now on, we shall often denote a derivative with respect to u with a dot, i.e., . |
7 | The massless Fierz–Pauli Lagrangian gives rise, in Bondi gauge, to the canonical stress-energy tensor
|
8 | The exception is given by . Accordingly with the discussion in Section 3.1.3, in three dimensions, the conditions (94) are substituted by
|
9 | The same expression for the charges holds also when the dimension of spacetime is equal to three, and it corresponds to the natural presentation of Q that one obtains in the Chern–Simons formulation of three-dimensional gravity (see e.g. Section 4.2 of [42]). The only difference is that when T and are arbitrary functions of the angular coordinate on the circle at null infinity. |
10 | While this work was under completion, analogous, u-dependent asymptotic charges, associated with infinite-dimensional asymptotic symmetries in any even space-time dimension, were presented in [19]. In addition, in this case, the arbitrary function on the sphere generating the residual symmetry is conjugated to the boundary data of the radiation branch. |
11 | |
12 | |
13 | We already encoded the information on the minimum power of r entering the decomposition that can be extracted starting from the inspection of the equation and substituting the result in the other variations of the form . |
14 | For instance, the dependence of the on the tensors can be eliminated by redefining in (169). |
15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campoleoni, A.; Francia, D.; Heissenberg, C. Asymptotic Charges at Null Infinity in Any Dimension. Universe 2018, 4, 47. https://doi.org/10.3390/universe4030047
Campoleoni A, Francia D, Heissenberg C. Asymptotic Charges at Null Infinity in Any Dimension. Universe. 2018; 4(3):47. https://doi.org/10.3390/universe4030047
Chicago/Turabian StyleCampoleoni, Andrea, Dario Francia, and Carlo Heissenberg. 2018. "Asymptotic Charges at Null Infinity in Any Dimension" Universe 4, no. 3: 47. https://doi.org/10.3390/universe4030047
APA StyleCampoleoni, A., Francia, D., & Heissenberg, C. (2018). Asymptotic Charges at Null Infinity in Any Dimension. Universe, 4(3), 47. https://doi.org/10.3390/universe4030047