Generic Features of Thermodynamics of Horizons in Regular Spherical Space-Times of the Kerr-Schild Class
Abstract
:1. Introduction
2. Basic Equations
2.1. Basic Features of Regular Spherical Space-Times with Vacuum Dark Fluid
2.2. Basic Formulae for Thermodynamics of Horizons
3. Thermodynamics of Horizons in Spherical Spacetimes with De Sitter Center
3.1. Evolution during Evaporation
3.2. Thermodynamics of a Regular Black Hole
3.3. Triple-Horizon Spacetime Singled Out by the Holographic Principle
4. Summary and Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Black-hole evaporation. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Statistical black-hole thermodynamics. Phys. Rev. D 1975, 12, 3077–3085. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191–197. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738–2751. [Google Scholar] [CrossRef]
- Bousso, R. Positive vacuum energy and the N-bound. J. High Energy Phys. 2000, 2000. [Google Scholar] [CrossRef]
- Bousso, R. Bekenstein bounds in de Sitter and flat space. J. High Energy Phys. 2001, 2001. [Google Scholar] [CrossRef]
- Padmanabhan, T. Classical and Quantum Thermodynamics of horizons in spherically symmetric spacetimes. Class. Quantum Gravity 2002, 19, 5387–5408. [Google Scholar] [CrossRef]
- Padmanabhan, T. The Holography of gravity encoded in a relation between Entropy, Horizon Area and the Action for gravity. Gen. Relativ. Gravit. 2002, 34, 2029–2035. [Google Scholar] [CrossRef]
- Choudhury, T.R.; Padmanabhan, T. Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric. Gen. Relativ. Gravit. 2007, 39, 1789–1811. [Google Scholar] [CrossRef]
- Cai, R.G. Cardy-Verlinde formula and asymptotically de Sitter spaces. Phys. Lett. B 2002, 525, 331–336. [Google Scholar] [CrossRef]
- Teitelboim, C. Gravitational Thermodynamics of Schwarzschild-de Sitter Space. In Proceedings of the 5th Francqui Colloquium on Strings and Gravity, Brussels, Belgium, 19–21 October 2001. [Google Scholar]
- Gomberoff, A.; Teitelboim, C. de Sitter black holes with either of the two horizons as a boundary. Phys. Rev. D 2003, 67, 104024. [Google Scholar] [CrossRef]
- Aros, R. de Sitter thermodynamics: A glimpse into nonequilibrium. Phys. Rev. D 2008, 77, 104013. [Google Scholar] [CrossRef]
- Kerr, R.P.; Schild, A. Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proc. Symp. Appl. Math. Am. Math. Soc. 1965, 17, 199–207. [Google Scholar]
- Gürses, M.; Gürsey, F. Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys. 1975, 16, 2385–2396. [Google Scholar] [CrossRef]
- Guendelman, E.I.; Rabinowitz, A.I. Linearity of Non Self-Interacting Spherically Symmetric Gravitational Fields, the “Sphereland Equivalence Principle” and Hamiltonian Bubbles. Gen. Relativ. Gravit. 1996, 28, 117–128. [Google Scholar] [CrossRef]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quantum Gravity 2002, 19, 725–740. [Google Scholar] [CrossRef]
- Dymnikova, I. Vacuum nonsingular black hole. Gen. Relativ. Gravit. 1992, 24, 235–242. [Google Scholar] [CrossRef]
- Dymnikova, I. The algebraic structure of a cosmological term in spherically symmetric solutions. Phys. Lett. B 2000, 472, 33–38. [Google Scholar] [CrossRef]
- Dymnikova, I. Spherically symmetric space-time with the regular de Sitter center. Int. J. Mod. Phys. D 2003, 12, 1015–1034. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Vacuum dark fluid. Phys. Lett. B 2007, 645, 358–364. [Google Scholar] [CrossRef]
- Dymnikova, I. Dark Energy and Spacetime Symmetry. Universe 2017, 3, 20. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Dymnikova, I.; Galaktionov, E. Multihorizon spherically symmetric spacetimes with several scales of vacuum energy. Class. Quantum Gravity 2012, 29, 095025. [Google Scholar] [CrossRef]
- Dymnikova, I. Triple-horizon spherically symmetric spacetime and holographic principle. Int. J. Mod. Phys. D 2012, 21, 1242007. [Google Scholar] [CrossRef]
- Dymnikova, I.; Dobosz, A.; Soltysek, B. Lemaitre dark energy model singled out by the holographic principle. Gravit. Cosmol. 2017, 23, 28–34. [Google Scholar] [CrossRef]
- Dymnikova, I.; Dobosz, A.; Sołtysek, B. Lemaître Class Dark Energy Model for Relaxing Cosmological Constant. Universe 2017, 3, 39. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Dobosz, A.; Dymnikova, I. Nonsingular vacuum cosmologies with a variable cosmological term. Class. Quantum Gravity 2003, 20, 3797–3814. [Google Scholar] [CrossRef]
- Poisson, E.; Israel, W. Structure of the black hole nucleus. Class. Quantum Gravity 1988, 5, L201–L205. [Google Scholar] [CrossRef]
- Frolov, V.P.; Markov, M.A.; Mukhanov, V.F. Black holes as possible sources of closed and semiclosed worlds. Phys. Rev. D 1990, 41, 383–394. [Google Scholar] [CrossRef]
- Dymnikova, I. Internal structure of nonsingular spherical black holes. In Internal Sructure of Black Holes and Spacetime Singularities; Burko, M., Ori, A., Eds.; Annals of the Israel Physical Society 13; Bristol In-t of Physics Pulishing: Bristol, UK; Philadelphia, PA, USA, 1997; pp. 422–440. [Google Scholar]
- Dymnikova, I. De Sitter-Schwarzschild black hole: Its particlelike core and thermodynamical properties. Int. J. Mod. Phys. D 1996, 5, 529–540. [Google Scholar] [CrossRef]
- Perez, A. Spin foam models for quantum gravity. Class. Quantum Gravity 2003, 20, R43–R104. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bonanno, A.; Reuter, M. Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 2006, 73, 083005. [Google Scholar] [CrossRef]
- Nicolini, P. Noncommutative black holes, the final appeal to quantum gravity: A review. Int. J. Mod. Phys. A 2009, 24, 1229–1308. [Google Scholar] [CrossRef]
- Dymnikova, I.; Korpusik, M. Regular black hole remnants in de Sitter space. Phys. Lett. B 2010, 685, 12–18. [Google Scholar] [CrossRef]
- Dymnikova, I.; Korpusik, M. Thermodynamics of Regular Cosmological Black Holes with the de Sitter Interior. Entropy 2011, 13, 1967–1991. [Google Scholar] [CrossRef]
- Myung, Y.S.; Kim, Y.-W.; Park, Y.-J. Thermodynamics of regular black hole. Gen. Relativ. Gravit. 2009, 41, 1051–1067. [Google Scholar] [CrossRef]
- Sharif, M.; Jawed, W. Thermodynamics of a Bardeen black hole in noncommutative space. Can. J. Phys. 2011, 89, 1027–1033. [Google Scholar] [CrossRef]
- Man, J.; Cheng, H. The calculation of the thermodynamic quantities of the Bardeen black hole. Gen. Relativ. Gravity 2014, 46, 1660. [Google Scholar] [CrossRef]
- Hayward, S.A. Formation and evaporation of nonsingular black holes. Phys. Rev. Lett. 2006, 96, 031103. [Google Scholar] [CrossRef] [PubMed]
- Myung, Y.S.; Kim, Y.W.; Park, Y.J. Quantum Cooling Evaporation Process in Regular Black Holes. Phys. Lett. B 2007, 656, 221–225. [Google Scholar] [CrossRef]
- Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geomtery inspired Schwarzschild black hole. Phys. Lett. B 2006, 632, 547–551. [Google Scholar] [CrossRef]
- Kim, W.; Shin, H.; Yoon, M. Anomaly and Hawking radiation from regular black holes. J. Koran Phys. Soc. 2008, 53, 1791–1796. [Google Scholar] [CrossRef]
- Deng, G.-M.; Fan, J.; Li, X.; Huang, Y.-C. Thermodynamics and phase transition of charged AdS black holes with a global monopole. Int. J. Mod. Phys. A 2018, 33, 1850022. [Google Scholar] [CrossRef]
- Bardeen, J.M. Non-singular general relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–13 September 1968. [Google Scholar]
- Ayon-Beato, E.; Garcia, A. The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 2000, 493, 149–152. [Google Scholar] [CrossRef] [Green Version]
- Ayon-Beato, E.; Garcia, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Tharanath, R.; Suresh, J.; Kuriakose, V.C. Phase transitions and Geometrodynamics of Regular black holes. Gen. Relativ. Gravit. 2015, 47. [Google Scholar] [CrossRef]
- Maluf, R.V.; Neves, J.C.S. Thermodynamics of a class of regular black holes with a generalized uncertainty principle. arXiv, 2018; arXiv:1801.02661. [Google Scholar]
- Berej, W.; Matyjasek, J.; Tryniecki, D.; Woronowicz, M. Regular black holes in quadratic gravity. Gen. Relativ. Gravity 2006, 38, 885–906. [Google Scholar] [CrossRef]
- Ma, M.-S.; Zhao, R. Corrected form of the first law of thermodynamics for regular black holes. Gen. Relativ. Gravity 2014, 31, 245014. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmological and Black Hole Apparent Horizons; Springer: Berlin, Germany, 2015. [Google Scholar]
- Gliner, E.B. Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. J. Exp. Theor. Phys. 1966, 22, 378–381. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1975. [Google Scholar]
- Dymnikova, I.; Soltysek, B. Spherically symmetric space-time with two cosmological constants. Gen. Relativ. Gravit. 1998, 30, 1775–1793. [Google Scholar] [CrossRef]
- Coleman, S. Classical lumps and their quantum descendants. In New Phenomena in Subnuclear Physics; Zichichi, A., Ed.; Plenum: New York, NY, USA, 1977. [Google Scholar]
- Hayward, S.A. Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Gravity 1998, 15, 3147–3162. [Google Scholar] [CrossRef]
- Adler, R.J.; Chen, P.; Santiago, D. The generalized uncertainty principle and black hole remnants. Gen. Relativ. Gravit. 2001, 33, 2101–2108. [Google Scholar] [CrossRef]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Astrophysical black holes may radiate, but they do not evaporate. arXiv, 2013; arXiv:1310.4771. [Google Scholar]
- Dymnikova, I. Regular black hole remnants. In Proceedings of the nternational Conference on Invisible Universe, Paris, France, 29 June–3 July 2009. [Google Scholar]
- Lin, F.L. Black hole in de Sitter space. In Proceedings of the International Symposium on Particles, Strings and Cosmology PASCOS 98, Boston, MA, USA, 22–29 March 1998. [Google Scholar]
- Kin, F.K.; Soo, C. Quantum field theory with and without conical singularities: Black holes with a cosmological constant and the multi-horizon scenario. Class. Quantum Gravity 1999, 16, 551–562. [Google Scholar]
- Hooft, G. Dimensional reduction in quantum gravity. arXiv, 1999; arXiv:9310026. [Google Scholar]
- Corasaniti, P.S.; Kunz, M.; Parkinsonm, D.; Copeland, E.J.; Bassett, B.A. Foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe. Phys. Rev. D 2004, 70, 083006. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Dark ingredients in one drop. Cent. Eur. J. Phys. 2011, 9, 644–653. [Google Scholar] [CrossRef]
- Dymnikova, I.; Khlopov, M. Regular black hole remnants and graviatoms with de Sitter interior as heavy dark matter candidates probing inhomogeneity of the early universe. Int. J. Mod. Phys. D 2015, 24, 1545002. [Google Scholar] [CrossRef]
- Polnarev, A.G.; Khlopov, M.Y. Cosmology, primordial black holes, and supermassive particles. Sov. Phys. Uspekhi 1985, 28, 213–232. [Google Scholar] [CrossRef]
- MacGibbon, J.H. Can Planck-mass relics of evaporating black holes close the Universe? Nature 1987, 329, 308–309. [Google Scholar] [CrossRef]
- Carr, B.J.; Gilbert, J.H.; Lidsey, J.E. Black hole relics and inflation: Limits on blue perturbation spectra. Phys. Rev. D 1994, 50, 4853–4867. [Google Scholar] [CrossRef]
- Boyanovsky, D.; de Vega, H.J.; Schwarz, D.J. Phase transitions in the early and present universe. Annu. Rev. Nucl. Part. Sci. 2006, 56, 441–500. [Google Scholar] [CrossRef]
- Dymnikova, I.; Fil’chenkov, M. Graviatoms with de Sitter interior. Adv. High Energy Phys. 2013, 2013, 746894. [Google Scholar] [CrossRef]
- Grib, A.A.; Pavlov, Y.V. Do active galactic nuclei convert dark matter unto visible particles? Mod. Phys. Lett. A 2008, 23, 1151–1159. [Google Scholar] [CrossRef]
- Dey, U.K.; Kar, D.; Mitra, M.; Spannowsky, M.; Vincent, A.C. Searching for Leptoquarks at IceCube and the LHC. arXiv, 2017; arXiv:1709.02009. [Google Scholar]
- Kalashev, O.E.; Rubtsov, G.I.; Troitsky, S.V. Sensitivity of cosmic-ray experiments to ultrahigh-energy photons: reconstruction of the spectrum and limits on the superheavy dark matter. Phys. Rev. D 2009, 80, 103006. [Google Scholar] [CrossRef]
- Dymnikova, I. Space-time symmetry and mass of a lepton. J. Phys. A Math. Theor. 2008, 41, 304033. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymnikova, I. Generic Features of Thermodynamics of Horizons in Regular Spherical Space-Times of the Kerr-Schild Class. Universe 2018, 4, 63. https://doi.org/10.3390/universe4050063
Dymnikova I. Generic Features of Thermodynamics of Horizons in Regular Spherical Space-Times of the Kerr-Schild Class. Universe. 2018; 4(5):63. https://doi.org/10.3390/universe4050063
Chicago/Turabian StyleDymnikova, Irina. 2018. "Generic Features of Thermodynamics of Horizons in Regular Spherical Space-Times of the Kerr-Schild Class" Universe 4, no. 5: 63. https://doi.org/10.3390/universe4050063
APA StyleDymnikova, I. (2018). Generic Features of Thermodynamics of Horizons in Regular Spherical Space-Times of the Kerr-Schild Class. Universe, 4(5), 63. https://doi.org/10.3390/universe4050063