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Abstract: We study the geometry of Euclidean instantons in loop quantum cosmology (LQC) such as
those relevant for the no-boundary proposal. Confining ourselves to the simplest case of a cosmological
constant in minisuperspace cosmologies, we analyze solutions of the semiclassical (Euclidean) path
integral in LQC. We find that the geometry of LQC instantons have the peculiar feature of an infinite
tail which distinguishes them from Einstein gravity. Moreover, due to quantum-geometry corrections,
the small-a behaviour of these instantons seem to naturally favor a closing-off of the geometry in a
regular fashion, as was originally proposed for the no-boundary wavefunction.

Keywords: no-boundary proposal; loop quantum cosmology; LQC instanton

1. Introduction

Recently, the introduction of the ‘no-boundary’ proposal in loop quantum cosmology (LQC), for
minisuperspace models, has unveiled a lot of interesting physical possibilities [1]. It has been shown
that the original Hartle-Hawking formulation [2], improved by an effective action which includes
corrections due to LQC, can lead to an expanded solution space due to singularity-resolution [3,4]
coming from the latter. In particular, it has been shown that not only is the probability for a de-Sitter (dS)
universe nucleating from nothing increased in such a scenario, there can now be compact, non-singular
instantonic solutions in cases where there were none in Einstein gravity. As an example, the model
of a Friedmann-Robertson-Lemaitre-Walker (FLRW) closed universe, coupled to a massless scalar
field, was considered in [1] and shown to have a nontrivial compact instanonic solution with a finite
probability for nucleation. This study has opened the doors for revisiting the original no-boundary
proposal augmented by quantum-geometry effects governing the dynamics of the early-universe
which are, in any case, expected for a meaningful UV-completion. A detailed study of such effects for
physically relevant questions such as the probability of inflation and number of e-folds predicted by
the (improved) no-boundary measure can now be answered within the purview of LQC. However,
this is not the intention of present work and shall be pursued later elsewhere.

In this work, we focus on the geometry of these Euclidean instanton solutions in LQC. This is
a necessary first step before using such solutions to consider nucleation of universes from nothing
and employing the measure provided by the associated wavefunction for predicting the probabilities
of physically interesting phenomena for the Lorentzian histories. Our starting point shall be the
(Euclidean) path integral for quantum gravity, along with the prescription that the initial conditions
are provided by the no-boundary proposal. The main new ingredient, in comparison to the original
Hartle-Hawking proposal, shall be the ‘effective’ action appearing in the path integral derived from
LQC, as opposed to the usual Einstein-Hilbert one. (It was established in [5,6] that by replacing
the standard FLRW action by the ‘polymerized’ version of it, the path integral formulation of LQC,
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in its phase space realization, retains all the crucial aspects of the quantum geometry which appear
in the canonical LQC.) Other than this, our formalism shall be exactly the same as in the original
no-boundary proposal: We shall look only at the saddle-point approximation of the Euclidean path
integral and consider the wavefunction to be a functional of the value of the scale factor only at the final
(spatial) boundary. Moreover, as shall be obvious throughout our paper, we make a minisuperspace
approximation for all our calculations and consider the matter content to be only that due to a
cosmological constant. The latter approximation ensures that we always have a compact instantonic
solution and do not require dealing with subtleties which can give rise to Euclidean wormholes [7,8].
Since we want to show new features of the LQC instantons with respect to its geometry, as compared
to the original Hartle-Hawking ones, these approximations shall help us emphasize our main result
without unnecessarily complicating the system.

For our purposes, the effective action consists of two main types of quantum corrections specific
to LQC—the holonomy and inverse-triad modifications [9]. The first appears due to the fact that there
are no quantum operators corresponding to the connection or extrinsic curvature (in other words, the
momenta conjugate to the spatial metric) on the kinematic1 Hilbert space of the theory. On the other
hand, there are well-defined operators corresponding to the holonomy (or parallel transport) of the
connection [10]. Therefore, one expresses the curvature operator in terms of these holonomies instead
of the connection itself. Classically, one can take the limit such that one recovers the expression of the
curvature written in terms of the connection from the expression given for the holonomies. However,
the geometrical operators in the full loop quantun gravity have discrete spectra for quantities such as
area and volume [11] on the kinematical Hilbert space spanned by the spin-network states, rendering
taking such a limit unviable. Therefore, one inherits an ‘area-gap’, in analogy with the minimum
energy-gap of the harmonic oscillator, from the full theory in LQC [12,13]. The main effect of this
regularization of the curvature in terms of holonomies, for symmetry-reduced models, lie in replacing
the extrinsic curvature by matrix elements of SU(2)-holonomies which are periodic functions of the
connection. Specifically, for minisuperspace cosmologies, we have H → sin(δH)/δ, where H is the
Hubble parameter and δ is related to the area-gap.

The discrete spectra of area and volume operators also lead to other type of corrections in LQC.
The most significant of them are the inverse-triad corrections which arise from the requirement of
having a well-defined operator corresponding to the inverse of some power of the scale factor whose
spectra contains the zero eigenvalue. Naively, it is impossible to have a densely-defined operator in
such a case. However, using the aforementioned holonomy operators and what is commonly known
as the ‘Thiemann trick’ in the literature, one can express the relation [14,15]

ĥ−1[ĥ,
√

â] = −1
2

h̄δâ−1/2 . (1)

In this definition, ĥ := ̂exp(iδpa), for the momentum, pa ∝ ȧ, conjugate to the scale factor a, is
precisely a SU(2)-valued holonomy operator mentioned previously. Using the usual properties of
a commutator, it is clear from this relation that one can have an operator, whose classical limit
is some inverse power of the scale factor on the RHS although we do not require any inverse
operator on the LHS [16,17]. Using this, one gets rid of the singular behaviour of any function
which contains some inverse power of a due to the replacement by these aforementioned inverse-triad
corrections. Once again, their form for minisuperspace cosmologies is rather simple, as shall be
explicitly demonstrated later.

1 ‘Kinematic’ here refers to the fact that the Gauss and the (spatial) diffeomorphism constraints have been solved whereas
‘physical’ would imply the solution of the Hamiltonian constraint as well. For a minisuperspace model, these distinctions
are not very important since the only leftover symmetry of the system is time-reparameterization invariance.
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Let us briefly summarize our main result. Conceptually, at least in the cosmological constant case,
the main effect of the LQC quantum-geometry corrections lies in the small-a behaviour of the Euclidean
LQC instantons. As shall be demonstrated, due to the inverse-triad corrections, the LQC-modified
Friedmann equation is such that the solution tails off to zero at the symmetry point of the theory.
The geometry of the LQC instanton will emerge to be quite different from the original Hartle-Hawking
proposal with an infinitely stretched tail in Euclidean time; however, their topology remains the same.
Moreover, such an infinitely long tail of the instanton (in imaginary time) is not an inherent problem
since the only meaningful physical quantity is the probability of nucleation which remains finite for
this system. The interesting fact is the quantum-geometry regularization is such that this tail closes
the geometry in a regular way without requiring any additional fine-tuning even though the field
equations are heavily modified in LQC. This is suggestive of the fact that the no-boundary proposal is
robust and, if anything, such a necessary tail-off of LQC instantons to zero points towards it being
more natural in the presence of quantum-geometry corrections.

2. The Hartle-Hawking Proposal Revisited

In this section, we first briefly review the geometry of the no-boundary instantons in Einstein
gravity. In the process, we also fix our notation for the rest of the paper.

2.1. The Wheeler-de Witt Equation and Boundary Conditions

Let us consider Einstein gravity with a scalar field

S =
∫ √

−g dx4
[
R

16π
− 1

2
(∇φ)2 −V(φ)

]
. (2)

In this paper, we shall exclusively focus on a minisuperspace cosmological model [18]

ds2 = σ2
[
−N2(t)dt2 + a2(t)dΩ2

3

]
, (3)

where σ2 = 2/3π is some normalization constant2. Throughout this paper, we shall work with a closed
k = 1 FLRW cosmology, as is typically required for the Hartle-Hawking proposal3. By assuming the
slow-roll limit φ̇ ≈ 0, the Lagrangian can be simplified as

L =
1
2

N
[

a
(

1− ȧ2

N2

)
− V̄a3

]
, (4)

where V̄ = 16V/9. From this, one can get the conjugate momentum pa = −aȧ/N. The HamiltonianH
is obtained by the usual Legendre transform

L = pa ȧ− NH , (5)

where

H = −1
2

[
p2

a
a

+ a− V̄a3
]

. (6)

2 Note that we choose this normalization at this point for historical reasons and to keep the resulting equations simple.
However, we shall change this normalization later on to facilitate comparison with LQC.

3 The reason why one traditionally has to consider a k = 1 universe is because it is the only case which provides a potential
barrier for the tunneling of the universe from nothing. In other words, from the Friedmann equation, only for the k = 1 case
can the right hand side go to zero for certain choices of matter (a flat potential or a pure cosmological constant). However,
this can be generalized for LQC since one gets a “bounce” in all types of tolopologies for a FLRW universe. We intend to
establish this generalization in future work.
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On quantization, by replacing pa = −i (d/da), one gets the Wheeler-de Witt equation for the
wave function of the scale factor[

d2

da2 +
γ

a
d
da
−U(a)

]
ψ(a) = 0 , (7)

where γ is a constant due to the ambiguity in operator-ordering and

U(a) = a2
(

1− V̄a2
)

. (8)

In the semi-classical regime, the ambiguity due to operator ordering is not that important and can
be ignored in a first approximation [18]. It is straightforward to see that the behavior of the system
in the classically allowed region U < 0 (hence, a > 1/

√
V̄) and in the classically forbidden region

U > 0 (hence, a < 1/
√

V̄) are different. For the classically allowed region, the solution is essentially
oscillatory and can be a superposition of in-going and out-going modes; for the classically forbidden
region, the solution is a superposition of exponentially growing and decaying modes.

In order to extract a specific solution from these general solutions, one needs to impose boundary
conditions. However, quantum cosmology is a closed system in which a set of boundary conditions
cannot be determined by the environment external to the setup as is the normal practice. In general,
there is no fundamental principle to assign all the boundary conditions necessary to specify the wave
function of the universe Ψ. At best, the general consensus is that these boundary conditions need to be
supplied as additional fundamental laws of nature. There are two famous, mathematically consistent
wavefunctions corresponding to the following boundary conditions:

1. The Hartle-Hawking proposal [2]—If we choose the exponentially growing mode for a < 1/
√

V̄, then
the wave function becomes a superposition of in-going and out-going modes for a > 1/

√
V̄.

2. The tunneling proposal [19]—If we choose the out-going mode for a > 1/
√

V̄, then the wave function
becomes a superposition of growing and decaying modes for a < 1/

√
V̄.

The probability of the universe nucleating from ‘nothing’ mainly depends on the contribution
from the classically disallowed (hence, quantum) regime. Therefore, the (leading-order contribution to
the) probability distribution is approximately

P(a, φ) ' exp
(
± 3

8V(φ)

)
, (9)

where + corresponds to the Hartle-Hawking wavefunction, and − to the tunneling
wavefunction, respectively.

2.2. Euclidean Path Integral

Since there is no fundamental principle to choose a boundary condition for the universe in general,
we can look towards the path integral quantization for some guidance. In this paper, we shall take
this route of quantizing gravity in the path integral formulation instead of the canonical one outlined
above. We believe this is the most elegant presentation of the original Hartle-Hawking proposal [2]
and shall, therefore, stick to it for the LQC-modified case [1]. However, as an aside, we note that the
Wheeler-de Witt equation mentioned above transforms into a “difference” equation (of finite step-size)
in LQC resulting from a modified Hamiltonian constraint on a non-separable Hilbert space arising in
the theory. It is completely natural to ask if one might impose boundary conditions analogous to the
ones mentioned above for this difference equation in a canonical quantization [20]. We are currently
investigating if it is possible to impose the no-boundary conditions on the (minisuperspace of the)
wave function in order to solve the difference equation in LQC.
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Between two hypersurfaces (which take given values of the 3-metric and scalar field specified on
it) at the initial boundary (hi, φi) and the final one (hf, φ f ), the (Feynmann) propagator is given by

Ψ [hf, φf; hi, φi] =
∫
D[g]D[φ] eiS[g,φ] , (10)

where we sum over all geometries, allowing for topology-changes, which have the specified initial
and final boundaries. This integration is highly-oscillatory and ill-defined, and it was hoped that its
convergence properties can perhaps be improved on introducing a Wick-rotation to Euclidean time
dt = −idτ, as is often done in standard quantum field theories,

Ψ0 [hf, φf; hi, φi] =
∫
D[g]D[φ] e−SE[g,φ], (11)

where now we sum over all Euclidean geometries and corresponding field combinations with the
given boundaries (left of Figure 1). For usual quantum field theories, this corresponds to the ground
state wavefunction. Although there is no straightforward way to define the ground state in quantum
gravity (since the action is unbounded from below), but Hartle and Hawking proposed that the above
form of the Euclidean path integral may correspond to the ground state wavefunction of the universe.

Figure 1. Left: Euclidean path integral that connects from the initial state to the final state. Right: If
two states are disconnected at the Euclidean manifold, one can consider a wave function for the only
final state.

Let us further assume that the intermediating Euclidean geometries between the initial and final
boundaries are disconnected (right of Figure 1). Especially, if we consider a closed universe (i.e., k = +1
FLRW cosmology), then the wavefunction remains well-defined if we remove the initial boundary

Ψ0 [hf, φf] =
∫
D[g]D[φ] e−SE[g,φ]. (12)

This unique boundary condition has been given the so-called nickname no-boundary proposal,
because it has no initial boundary.

There is a lot of justifiable controversy whether this Euclidean path integral is a good
approximation of the original Lorentzian path integral or not [21–27]. However, this no-boundary
proposal, defined as an Euclidean path integral, is attractive because of several nice properties
it possesses.
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• The Euclidean path integral can be interpreted as the partition function of a thermal system [28]

Z = Tr exp
(
−βĤ

)
=
∫
D[g]D[φ] e−SE[g,φ], (13)

where Ĥ is the quantum Hamiltonian of the system and β is the inverse of the Hawking
temperature. The right-hand side can be evaluated in the steepest-descent approximation as

Z = exp (−βF ) ' exp
(
+

3
8V0

)
= eA/4, (14)

where F = E− TS is the Helmholtz free energy, E and S being energy and entropy of the system,
respectively. Here, A is the area of the cosmological horizon. Since the ADM energy E is zero
for dS space, we can consistently recover the Bekenstein-Hawking entropy formula S = A/4.
This reveals that the Euclidean path integral is consistent with the expected thermodynamic
properties of gravity.

• Building on this result, one may consider other semi-classical effects in dS space as well.
The classical (Lorentzian) equation of motion for a scalar field on a fixed dS background is
given by

φ̈ = −3Hφ̇−V′ , (15)

where H = ȧ/a. On inserting random ‘white noise’ in the slow-roll limit as a thermal effect due to
Hawking temperature, one obtains the Langevin equation [29,30]

d
dt

φ = − V′

3H
+

H3/2

2π
ξ(t) , (16)

where one imposes the white noise conditions:

〈ξ(t)〉 = 0 , (17)

〈ξ(t)ξ(t′)〉 = δ(t− t′) . (18)

Then, the probability to have the field value φ at t will follow the Fokker-Planck equation [31]

∂P(φ, t)
∂t

=
2
√

2
3
√

3π

∂

∂φ

[
V3/4(φ)

∂

∂φ

(
V3/4(φ)P(φ, t)

)
+

3V′(φ)
8V1/2(φ)

P(φ, t)
]

, (19)

while the probability to have the field value initially χ at t = 0 will follow the equation

∂P(φ, t|χ)
∂t

=
2
√

2
3
√

3π

[
V3/4(χ)

∂

∂χ

(
V3/4(χ)

∂P(φ, t|χ)
∂χ

)
− 3V′(χ)

8V1/2(χ)

∂P(φ, t|χ)
∂χ

]
. (20)

In the static limit, a solution that satisfies both of these equations is given by

P(φ, t|χ) ∼ V−3/4(φ) exp
[

3
8V(φ)

− 3
8V(χ)

]
. (21)

We can interpret this as the tunneling probability of a homogeneous part of a universe that tunnels
from the field value χ to φ via stochastic quantum fluctuations when the wavelength is of the
order of the Hubble radius.

This wave function is consistent with the Euclidean path integral approximated by the
Hawking-Moss instantons [32,33]. On further normalizing the initial boundary, one can obtain
the no-boundary wave function. Therefore, we can conclude that the Euclidean path integral
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describes the stationary limit, or thermal equilibrium, of quantum fluctuations of the Hubble-scale
wavelength modes consistently, whereas in many situations, such a thermal equilibrium is
coincident with the ground state of the system [30].

The above physical motivations are reason enough to investigate and apply the Euclidean path
integral with the no-boundary condition as the wavefuntion of the universe, not only due to its
mathematical simplicity but also due to its self-consistency in the low-energy limit with quantum field
theory in curved spacetime.

2.3. Semiclassical Approximation: Instanton Solutions

One can calculate the Euclidean path integral in the saddle-point approximation by using
Euclidean on-shell solutions, or so-called instantons, as∫

D[g]D[φ] e−SE[g,φ] ' ∑
instanton

e−Sinstanton
E . (22)

The on-shell solution in pure dS space, on imposing the no-boundary condition a(0) = 0, becomes
regular to give

a(τ) =
1

H0
sin (H0τ) , (23)

where H2
0 = 8πV̄/3. This solution reveals that at the a(0) = 0 (“South Pole”) point, we need to impose

the condition ȧ = 1 from the Hamiltonian constraint.
Inserting this solution, one can evaluate the Euclidean action. In the phase space formulation, the

action takes the form

SE =
∫

dτ L =
∫

dτ
(

pa ȧ + pφφ̇− NH
)

. (24)

On plugging the on-shell condition,H = 0 is automatically satisfied. Hence,

Sinstanton
E =

∫
dτ
(

pa ȧ + pφφ̇
)

. (25)

This solution can be analytically continued to Lorentzian time for any constant-τ hypersurface,
but after the Wick-rotation, the metric is in general complex-valued except at the ȧ = 0 hypersurface
(i.e., τ = π/2H0, left of Figure 2). If we Wick-rotate on this surface, then the metric becomes (right of
Figure 2)

a(t) =
1

H0
cosh (H0t) . (26)

We give more mathematical details corresponding to this solution in the following section.
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Figure 2. Left: A typical time contour over the complex time, where X = π/2H0. Right: Euclidean
and Lorentzian manifold along the given time contour.

3. Geometry of the Hartle-Hawking Instantons

We give a more detailed derivation of the schematics described for the minisuperspace model in
the previous section. The Friedmann equation (or the Hamiltonian constraint) for the k = 1 FLRW
universe, in Euclidean time, is given by

1
N2

(
da
dη

)2
=

8π

3
a2

N2

(
dφ

dη

)2
− 1 +

(
Λ
3
+ V(φ)

)
a2 , (27)

where we use the metric ds2 = N2(η)dη2 + a2(η)dΩ2
3 and set G = 1 throughout4. η denotes the

Euclidean time parameter while reserving t for Lorentzian time, as before. We rewrite the other
relevant equation which is the scalar field equation (also, in Euclidean time)

1
N2

(
d2φ

dη2

)
+

3
aN

(
da
dη

)(
dφ

dη

)
−V′(φ) = 0 . (28)

First of all, let us make a gauge choice and fix the lapse function N = 1. As pointed out in [34], this
can be rigorously achieved by introducing the complex variable τ(η) =

∫ η
0 dη′ N(η′). Given any lapse

function, the variable τ defines a complex contour on the τ-plane. Once we rewrite the above equations
in terms of the variable τ, the task of finding the no-boundary instantons is to solve these equations for
the pair of complex analytic functions a(τ) and φ(τ), given the appropriate boundary conditions.

The set of equations, in terms of this new variable, can be expressed as

ȧ2 = 1−
(

Λ
3
+ V(φ) +

8π

3
φ̇2
)

a2 =: V(a) , (29)

φ̈ + 3Hφ̇−V′(φ) = 0 , (30)

where a dot refers to a derivative with respect to τ and the Hubble parameter H := ȧ/a. The fact that
we can write the RHS of (29) as a function of the scale factor alone is only possible for the simplest
case of a massless scalar or a cosmological constant. There is always the Raychaudhuri equation
involving the second derivative of a but only two of these three equations are linearly-independent.
For our purposes of examining the on-shell Euclidean instantons, required for estimating the path
integral by its saddle-points, considering these two equations is sufficient. The usual procedure is to
solve the above equations for the ‘no-boundary’ boundary conditions [35]: a(0) = 0 and φ̇(0) = 0.
The first condition is a requirement that the geometry must close in a regular fashion while the second
is a necessary condition for keeping the solution for φ regular as a → 0 [7,8]. It is often customary

4 Note the new normalization chosen here to facilitate comparison with LQC later on.
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to quote another condition ȧ(0) = 1; however, this is the consequence of the Friedmann equation.
In general, requiring that the scale factor and the scalar field take some fixed value on the final
surface, (a(τf ) = b, φ(τf ) = χ), and some fixed value initially, (a(0) = 0, φ̇(0) = 0), exhausts all
the conditions necessary to give a unique solution. The value of the derivative of the scalar field
must be fixed from the scalar field Equation (30) to be zero while the value of the scalar field at
the ‘South Pole’—φ(0) = φ0—gives the one-parameter family of instantonic solutions which satisfy
the no-boundary proposal [34,35]. Additional tunings are necessary to ensure the classicality of our
universe at late-times, the details of which are unimportant for our purposes (see [34,36–38]).

If we take the pure gravity model, in the absence of any scalar field, one can analytically
solve for the Euclidean instanton to find that there is a O(5)−symmetric solution given by a(τ) =√

3/Λ sin
(√

Λ/3 τ
)

(this is Equation (23) above written in the new normalization). In the presence
of a scalar field, one requires that the potential is sufficiently flat, i.e., of the inflationary type, for the
solution to be regular. In the case of a slowly varying potential, the solution for a(τ) is a deformed
version of the sine function. However, for the massless scalar field (i.e., in the absence of any potential
term at all), there are no compact instantons which would give rise to a nontrivial universe. This is
obvious from the fact that in this case, the scalar field is in the “no roll” condition and the energy
density of the universe is trivial. However, this scenario, which is beyond the scope of this paper, leads
to new solutions for the no-boundary proposal in the presence of LQC corrections [1,39].

Before going on to the LQC instantons, let us revisit the geometry of these Hartle-Hawking
instantons in Einstein gravity. (This is schematically shown in the right panel of Figure 1). Restricting
to the case of pure gravity is already sufficient to illustrate its salient features. For Lorentzian
signatures, one has the usual dS solution of Einstein’s equations with a positive cosmological constant
as ds2

L = −dt2 + a2
L(t)dΩ2, with aL(t) =

√
3/Λ cosh

(√
Λ/3 t

)
(equivalent to (26) above in the new

normalization). To get the O(5) invariant Euclidean instanton from this result, one analytically
continues t such that τ = τf + it, where τf is the point where a(τ) reaches its maximum value.
In other words, one gets a Lorentzian dS spacetime from a Euclidean hemisphere (right of Figure 2),
by matching the two hypersurfaces across the zero-extrinsic curvature (ȧ = 0) ‘bounce’ surface.
The effective potential, V(a), goes to zero on this surface. Such a sharp transition between a real
Euclidean half-sphere and a real Lorentzian part is only possible for the simplest example of a pure
cosmological constant considered in this paper. In general, in the presence of an inflationary-type
potential, the transition would be in terms of ‘fuzzy’ Euclidean instantons [34,35], whereby the
solutions would be complex in some parts [40–42]. These details, however, are not important for us
while focusing near the ‘South Pole’ to exhibit the general ‘shuttle-cock’ type shape of the no-boundary
instanton in Euclidean gravity.

For the pure dS model, the Friedmann equation, in Euclidean time, takes the form ȧ2 = 1−Λa2/3
which clearly shows that as a→ 0, one gets ȧ→ 1. The geometric interpretation of this result goes as
follows. The Euclidean 4-metric, possessing the O(5) symmetry, ds2 = dτ2 + a2 dΩ2

3 has to smoothly
close-off in a regular manner into flat space (written in spherical coordinates) ds2 = dr2 + r2 dΩ2

3.
For this to happen, one has to identify a(τ) ∼ τ as a → 0. This suggests that ȧ → 1 in this limit,
as is required from the Hamiltonian constraint. However, as mentioned before, this requirement
for the derivative of the scale factor automatically follows from the constraint and is not part of the
no-boundary condition.

Let us make one last comment before presenting our new results for the LQC instantons.
The no-boundary initial condition is simply that the geometry closes off smoothly, as denoted by
a(0) = 0. This shall be important later on for the LQC instantons. If we try to solve the Friedmann
equation, we get the (famous) unique solution (23) only on imposing the no-boundary condition. Of course,
choosing the ‘initial’ point at τ = 0 is only for convenience. A priori, there is no need for such a
condition to be satisfied by the modified field equations in LQC. However, as we shall show in the
LQC case, the initial condition that compact (Euclidean) instantons in LQC go off to a→ 0 is favored
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naturally even in the presence of quantum-geometry corrections, at least in the pure gravity case. This is
the main result of our work which we shall elaborate on in the following sections.

4. No-Boundary Instantons in LQC

In [1], it was shown how the effective LQC action modifies the instantons in the theory even
for a simple cosmological constant. Moreover, this leads to slight enhancement of the probability of
nucleation of the dS universe from nothing due to the LQC corrections. The general shape of the
instanton is reproduced in Figure 2. However, we shall only be interested in the small-a behaviour
of this LQC instanton. In particular, what emerges to be intriguing is the infinite tail of the instanton.
Although this infinite tail is in Euclidean time, and therefore not physically relevant directly, it does
have certain distinguishing features which we shall demonstrate below.

However, before proceeding with the calculations, let us clarify a conceptual issue regarding
the path integral formulation of LQC. In LQC, one often introduces ‘holonomy’ and ‘inverse-triad’
corrections in the equations of motion in a heuristic manner, adopting a semiclassical approximation.
Naively, it might seem that we are also following such a semiclassical ‘effective’ Hamiltonian as
the starting point for our path integral quantization. However, this is not correct. Following [5,6],
we first note that the rigorously defined path integral for LQC, in its phase space version, deviates
from the usual gravitational path integral in that the paths are weighted by a ‘polymerized’ action
instead of the Einstein-Hilbert one. This is the crucial point for us—the relevant action for the
LQC path integral is different than the one in Einstein gravity, and it remembers the effects of
quantum-geometry such as holonomy and inverse-triad corrections. So why does it look like we
start from the heuristic quantum-corrected equations in LQC? This is due to the subtlety of taking
the saddle-point approximation of the LQC path integral. As also discussed in [5,6], the saddle-point
approximation of the LQC path integral leads to the so-called ‘semiclassical’ limit, in which one
keeps the ‘area-gap’ (∝ h̄γ3) fixed while taking h̄→ 0 (whereas shrinking the area-gap to zero would
lead to the Einstein-Hilbert action starting from the LQC one). Since we shall only be working in
the saddle-point approximation in this paper, the resulting equations from the LQC path integral
shall indeed be the semiclassical ones. However, this is not an ad hoc choice of including some LQC
corrections but rather the result of working in the saddle-point approximation even when starting
from the rigorous LQC path integral. We also emphasize that this is the same approximation one
usually employs for the Einstein-Hilbert path integral, whereby ignoring the higher loop corrections.
We refer the inquisitive reader to [5,6] for details on deriving the path integral for LQC along with
more analysis of these subtleties.

In this work, our main novelty would be to impose the no-boundary condition on the LQC path
integral thereby necessarily having to consider Euclidean histories, going beyond what exists in the
literature [1]. We begin with the modified Friedmann in LQC [43] due to the quantum geometry
corrections mentioned in the Introduction.

ȧ2 = −a2
(

8π

3

)(
f 2(a)
v2(a)

)
[ρ̃− ρ1]

[
1
ρc

(ρ2 − ρ̃)

]
=: VLQC(a), (31)

where ρ̃ is the contribution from a positive cosmological constant.

ρ̃ :=
(

v(a)
f (a)

)
Λ
8π

, (32)

ρ1 := −ρc

[
sin2(

√
∆/a)− (1 + γ2)

∆
a2

]
, (33)

ρ2 := ρc

[
cos2(

√
∆/a) + (1 + γ2)

∆
a2

]
, (34)
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where

v(a) := K

(
3

4πγl2
Pl

)3/2

a3V0 , (35)

f (a) :=
(

1
2

)
v(a)||v(a)− 1| − |v(a) + 1|| , (36)

K =
2
√

2

3
√

3
√

3
, (37)

ρc =
3

8πγ2∆
, (38)

∆ = 2
√

3πγl2
Pl , (39)

with V0 = 16π2. Although we have adhered to the conventions of [43], we have generalized their
results by adding in non-perturbative expressions for the inverse-triad corrections.

On first look, the above set of equations look rather complicated due to the different terms
involved. Here, f (a) represents the inverse-triad corrections whereas holonomy modifications show
up in ρ1 and ρ2. Importantly, note that due to the presence of the inverse-triad corrections, it is always
possible to impose the no-boundary condition a → 0. However, to gain some intuition into the
modified equation, let us begin by setting the holonomy corrections to zero for simplicity. This would
be like taking the area gap ∆ to zero. In this limit, ∆→ 0, we get

ȧ2 = −a2
(

Λ
3

)(
f (a)
v(a)

)
+

(
f (a)
v(a)

)2

. (40)

This is the modified Friedmann equation only in the presence of inverse-triad corrections. It is
easy to check that in the large a� 1 limit, one gets f (a) ≈ v(a), and therefore we get back the usual
Friedmann equation for a closed universe. However, in the a � 1 limit, one cannot make such an
approximation. Instead, in this limit, we get f (a) ≈ v(a)2. Our aim in this work is not to solve for those
instantons which extremizes the Euclidean path integral but rather to examine its small-a behaviour.
Therefore, considering v(a) ∝ a3 and reinstating the holonomy modifications, we get the leading order
term for a ≈ 0 as

ȧ2 ∼ Ca2 , (41)

for some constant C > 0. To obtain this result, we notice that the leading order term comes from the
ρ̃2 term in (31) whereas the remaining terms are subdominant. This is a term which arises only in
the quantum-corrected Friedmann equation (there is no term quadratic in the energy density in the
classical Friedmann equation). The ρ̃2 term comes with an additional minus sign which leads to a
C > 0. Moreover, note that the dominant contribution in the classical case comes from the curvature
term (1/a2) whereas that term, contained in ρ1, is now sub-dominant. As already argued in the
previous section, the essential requirement of the no-boundary condition is the geometry should be
closed off in a regular manner and the condition on ȧ should follow from the Hamiltonian constraint.
In the LQC case, the modified Hamiltonian constraint implies ȧ = 0 instead of 1. Nevertheless, V(a)
remains regular even in this case.

The above findings for no-boundary instantons in LQC in quite remarkable. In order to appreciate
this properly, let us make a few comments. Firstly, note that there was no reason that the modified
Friedmann equation have to allow for the a → 0 limit to be imposed consistently. It could easily
have been that this limit is singular in LQC. To illustrate this, let us consider only the holonomy
modifications while ignoring the inverse-triad ones. Typically, for the Lorentzian effective trajectories
such an approximation is completely justified and valid even near the ‘bounce’ surface. In this case,
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the RHS of (31) has a singular term coming from ‘ρ1ρ2’ (proportional to ∆2), which is absent in the
classical case. However, luckily for us, when one considers Euclidean histories as is required for
our case, one cannot ignore the inverse-triad corrections any longer. Secondly, the structure of the
modified Friedmann equation is such that the resulting instantons remain regular for all values of
τ even on imposing the no-boundary condition. For a counterexample, imagine if the form of the
equation was such that ȧ2 ∝ an with n > 2, in that case, the limit τ → 0 would have been singular and
there would not have been consistent no-boundary instantons in the theory. Moreover, these inverse-a
modifications not only play a crucial role in ensuring that the no-boundary condition can be imposed
but also modify the geometry of these instantons to distinguish them from the Einstein gravity. It could
also have been the case that the inverse-a modifications are such that one still gets the same condition
for ȧ at the South Pole. In that case, although the explicit solutions of the instantons would have been
different, there would have been no difference in the geometry of LQC and Einstein gravity instantons.
The quantum-geometry corrections in LQC conspire to ensure that we have no-boundary instantons in
the theory with such a geometry that is tapers off to the symmetry point in a novel fashion.

Concretely, the small-a solution for a is given by a0ecτ . Obviously, this implies that the point τ = 0
is not a good point to impose the no-boundary condition. Rather both (a(τ), ȧ(τ)) goes to zero as
τ → −∞. However, this does not represent any difficulty since this infinite stretching is in Euclidean
time and is, thus, not physically relevant directly. This novel feature of LQC instantons can be seen
from Figure 3, where the tail of the compact instanton is stretched infinitely, asymptotically tapering
off to zero. The tail does contribute to the probability of nucleation of the Lorentzian dS universe,
although the path integral and consequently the probability remains finite and well-defined in spite of
this infinitely stretched geometry.

Figure 3. Euclidean and Lorentzian manifold with loop quantum cosmology (LQC) corrections.

4.1. Numerical Results

We give some sample numerical solutions for the LQC instantons, going beyond the small-a
limit, to illustrate our claims regarding their infinite tail. Figures 4 and 5 show a typical shape of the
effective potential VLQC(a) and its solution a(τ) for the HR, respectively. This solution demonstrates
that the instanton is indeed infinitely stretched (Figure 3). The approximate behavior of the nucleation
probability is of the form (Figure 6)

S = −2SE '
A
4
+ c + d logA+ . . . (42)

with a model dependent positive constant c, where A = 4πa2
max. As mentioned before, amax denotes

the max value the instanton takes in the Euclidean regime, on which surface we analytically continue
to the Lorentzian regime. The above constant c can easily be absorbed away in the normalization of
the probability measure and the only relevant correction due to LQC, over the Einstein-Hilbert value,
comes from the parameter d. This parameter d can be approximately expanded by d ' 8.7× l2

Pl/γ
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(Figure 7) in terms of the fundamental parameters—Planck length and Immirzi parameter—of the
theory, as shown via numerical reconstruction.

1 2 3 4 5
a

-50

-40

-30

-20

-10

VLQCHaL

0.01 0.02 0.03 0.04 0.05
a

-10

-8

-6

-4

-2

VLQCHaL

Figure 4. The black curve is an example of ȧ2 for Λ = 1, G = 1, and lPl = 0.1, where the red dashed
curve is the limit of the Einstein gravity with the same amax that satisfies ȧmax = 0. Right is the behavior
near the a = 0 limit.

-4 -3 -2 -1
Τ

0.5

1.0

1.5

aHΤL

-3 -2 -1
Τ

-8

-6

-4

-2

log aHΤL

Figure 5. Left: a(τ) (red dashed curve is the limit of the Einstein gravity). Right: log a for small a limit.
It has an infinitely long throat.

0.1 0.2 0.3 0.4 0.5
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GRÈ
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Leff

-40
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-10

SE

Figure 6. Left: SE/|SGR
E |, where for G = 1, and lPl = 0.1 by varying Λ (equivalently, varying

Λeff ≡ 1/a2
max), where SGR

E is the Euclidean action for the corresponding Einstein limit. Right: SE for
the same parameters.
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d

Figure 7. Left: By varying lPl , one can calculate d ∝ l2
Pl numerically. Right: By varying γ (with

lPl = 0.1), one can see a linear dependence d ∝ 1/γ. We can numerically conclude that d ' 8.7× l2
Pl/γ.

5. Robustness of the No-Boundary Condition

In Einstein gravity, when considering a positive cosmological constant as the only matter source,
the only solution which is regular at the South Pole is given by (23). The crucial point here is that one
gets this solution for the instanton in Einstein gravity from the (Euclidean) Friedmann equation on
imposing the no-boundary condition. Interestingly, as was shown in previous section, the small-a
behaviour for the LQC instantons following the modified Friedmann equation is always of the form

a(τ) ∝ eCτ , (43)

for some constant C. This shows that as τ → −∞, we get a→ 0 implying a natural implementation of
the no-boundary condition in LQC instantons, as a result of quantum-geometry regularizations,
at least for the simplest case of a cosmological constant. In this sense, this shows that the
no-boundary condition is robust and more natural when the Einstein-Hilbert action is augmented by
LQG corrections.

The Euclidean instantons, in this pure gravity scenario, are always going to be compact and there
is no risk of an Euclidean wormhole forming for some values of the parameter space. This conclusion
is true both for Einstein gravity as well as the LQC case. Therefore, one always gets compact Euclidean
instantons for the pure dS case in both cases. The overall conceptual picture of the nucleation of
the universe from nothing is also the same in both cases. One quantitative difference is due to the
modified equations in LQC: The ‘bounce’ surface (ȧ = 0), as predicted by the effective trajectories
of sharply-peaked semiclassical states, in LQC is (slightly) different from the hypersurface joining
the Euclidean and Lorentzian parts in Einstein gravity. However, the qualitative behaviour remains
the same and this difference is reflected in enhancing the probability of nucleation of the universe
manifesting as a next-to-leading-order correction in LQC. As mentioned in [1], these type of terms
can also appear in Einstein gravity from going to higher order corrections and there should be a
competition between the two terms in LQC—one appearing from radiative corrections and the other
from the inherent quantum geometry. It is thus difficult to unambiguously state that LQC enhances
the tunneling amplitude for such no-boundary universes.

6. Conclusions

It is an old expectation that mathematical consistency alone shall be sufficient to derive the
boundary conditions in quantum cosmology [44]. The form of the LQC instantons suggest that
it might indeed be possible to identify typical smooth initial conditions due to quantum-geometry
corrections. This demonstrates that one of the most fundamental proposal for the initial condition
in quantum cosmology can appear naturally in another—LQC—due to putative corrections coming
from quantum geometry. The introduction of the no-boundary proposal in LQC has also opened new
physical possibilities for the latter. Instead of replacing the big bang singularity with a deterministic
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bounce, as is predicted by semiclassical states in some restricted models of LQC, this opens up
the opportunity to allow for Euclidean trajectories leading to a bubble nucleation of our universe.
The semiclassical saddle-point approximation of the no-boundary proposal is distinct from the
semiclassical sharply-peaked states in LQC and therefore the former acts as an example of how a new
state can unveil novel features in a well-established theory. At this point, it is difficult to compare
the probability of a bounce versus that of tunneling of the universe from nothing. However, the
no-boundary proposal also provides a (set of) natural initial conditions for considering inhomogeneous
perturbations in LQC leading to effects observable from early-universe cosmology without having to
resort to ad hoc choices for the initial state.

Regarding the geometry of no-boundary instantons in LQC, we have demonstrated that the
feature of having an infinite tail distinguishes these instantons from the original Hartle-Hawking ones
in Einstein gravity. We end our discussion with a few caveats. Firstly, it has been pointed out recently
that the Euclidean path integral in gravity is not a good approximation for the original Lorentzian path
integral due to several conceptual reasons [21]. However, even if one works with the Lorentzian path
integral and applies a different mathematical trick (Pecard-Lefshetz theory) to improve its convergence,
the resulting theory typically has runaway perturbations due to the old conformal factor problem in
gravity [22–24]. Interestingly, LQC can come to the rescue of the no-boundary proposal [45], written as
a Lorentzian path integral, even in this case. However, the main physical effect from LQC responsible
for this is ‘dynamical signature-change’ [46–48], something we have ignored in this work as a first
pass. The second caveat is regarding the fact that our discussions were limited to the case of a pure
cosmological constant in this paper. Indeed, the more interesting physical scenario is that of having
a scalar field in some potential. However, preliminary investigations have already revealed that the
solution space of the no-boundary wavefunction is greatly enhanced for such a system in the presence
of LQG corrections. Finally, one can ask how physical is the fact that the tail of these instantons are
stretched to infinity? As already mentioned, this is only true in Euclidean time and therefore not
directly meaningful. However, it might even be possible that for some different gauge choice (i.e.,
N 6= 1), one can even avoid such an infinite stretching altogether. Nevertheless, all the interesting
effects of having such a geometry as explained in this paper would still be valid in this case. Most
importantly, no matter what the gauge choice, the remarkable conclusion that the modified Friedmann
equation in LQC not only allows for the no-boundary condition to be imposed, but also somehow
makes it more natural, seems to be robust and points towards a new paradigm in quantum cosmology
merging these two mainstream approaches.

Author Contributions: All of the work was done equally by both the authors.

Funding: This research was supported in part by the Ministry of Science, ICT & Future Planning,
Gyeongsangbuk-do and Pohang City and the National Research Foundation of Korea Grant No.
2018R1D1A1B07049126.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brahma, S.; Yeom, D. The no-boundary wave function for loop quantum cosmology. arXiv 2018,
arXiv:1808.01744.

2. Hartle, J.B.; Hawking, S.W. Wave Function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [CrossRef]
3. Bojowald, M. Loop quantum cosmology. Living Rev. Relativ. 2005, 8, 11. [CrossRef] [PubMed]
4. Bojowald, M. Quantum cosmology: A review. Rep. Prog. Phys. 2015, 78, 023901. [CrossRef] [PubMed]
5. Ashtekar, A.; Campiglia, M.; Henderson, A. Path Integrals and the WKB approximation in Loop Quantum

Cosmology. Phys. Rev. D 2010, 82, 124043. [CrossRef]
6. Huang, H.; Ma, Y.; Qin, L. Path Integral and Effective Hamiltonian in Loop Quantum Cosmology.

Gen. Relativ. Gravit. 2013, 45, 1191–1210.
7. Chen, P.; Hu, Y.C.; Yeom, D. Fuzzy Euclidean wormholes in de Sitter space. J. Cosmol. Astropart. Phys. 2017,

2017, 001. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.12942/lrr-2005-11
http://www.ncbi.nlm.nih.gov/pubmed/28163651
http://dx.doi.org/10.1088/0034-4885/78/2/023901
http://www.ncbi.nlm.nih.gov/pubmed/25582917
http://dx.doi.org/10.1103/PhysRevD.82.124043
http://dx.doi.org/10.1088/1475-7516/2017/07/001


Universe 2019, 5, 22 16 of 17

8. Chen, P.; Yeom, D. Why concave rather than convex? arXiv 2018, arXiv:1706.07784.
9. Bojowald, M. Isotropic loop quantum cosmology. Class. Quantum Gravit. 2002, 19, 2717. [CrossRef]
10. Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourao, J.; Thiemann, T. Quantization of diffeomorphism

invariant theories of connections with local degrees of freedom. J. Math. Phys. 1995, 36, 6456–6493.
[CrossRef]

11. Ashtekar, A.; Lewandowski, J. Quantum theory of geometry. 1: Area operators. Class. Quantum Gravit. 1997,
14, A55–A81. [CrossRef]

12. Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor.
Math. Phys. 2003, 7, 233–268. [CrossRef]

13. Banerjee, K.; Calcagni, G.; Martin-Benito, M. Introduction to loop quantum cosmology. SIGMA 2012, 8, 016.
[CrossRef]

14. Thiemann, T. QSD 5: Quantum gravity as the natural regulator of matter quantum field theories.
Class. Quantum Gravit. 1998, 15, 1281–1314. [CrossRef]

15. Bojowald, M. The Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 2001, 64, 084018.
[CrossRef]

16. Bojowald, M. Quantization ambiguities in isotropic quantum geometry. Class. Quantum Gravit. 2002,
19, 5113–5230. [CrossRef]

17. Bojowald, M. Loop quantum cosmology: Recent progress. Pramana 2004, 63, 765–776. [CrossRef]
18. Vilenkin, A. Quantum Cosmology and the Initial State of the Universe. Phys. Rev. D 1988, 37, 888–897.

[CrossRef]
19. Vilenkin, A. Quantum Creation of Universes. Phys. Rev. D 1984, 30, 509. [CrossRef]
20. Bojowald, M.; Vandersloot, K. Loop quantum cosmology, boundary proposals, and inflation. Phys. Rev. D

2003, 67, 124023. [CrossRef]
21. Feldbrugge, J.; Lehners, J.L.; Turok, N. Lorentzian Quantum Cosmology. Phys. Rev. D 2017, 95, 103508.

[CrossRef]
22. Feldbrugge, J.; Lehners, J.L.; Turok, N. No smooth beginning for spacetime. Phys. Rev. Lett. 2017, 119, 171301.

[CrossRef]
23. Feldbrugge, J.; Lehners, J.L.; Turok, N. No rescue for the no boundary proposal: Pointers to the future of

quantum cosmology. Phys. Rev. D 2018, 97, 023509. [CrossRef]
24. Feldbrugge, J.; Lehners, J.L.; Turok, N. Inconsistencies of the New No-Boundary Proposal. Universe 2018,

4, 100. [CrossRef]
25. Diaz Dorronsoro, J.; Halliwell, J.J.; Hartle, J.B.; Hertog, T.; Janssen, O. Real no-boundary wave function in

Lorentzian quantum cosmology. Phys. Rev. D 2017, 96, 043505. [CrossRef]
26. Diaz Dorronsoro, J.; Halliwell, J.J.; Hartle, J.B.; Hertog, T.; Janssen, O.; Vreys, Y. Damped perturbations in the

no-boundary state. Phys. Rev. Lett. 2018, 121, 081302. [CrossRef]
27. Vilenkin, A.; Yamada, M. Tunneling wave function of the universe. Phys. Rev. D 2018, 98, 066003. [CrossRef]
28. Gibbons, G.W.; Hawking, S.W. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev. D

1977, 15, 2752–2756. [CrossRef]
29. Le Bellac, M.; Mortessagne, F.; Batrouni, G.G. Equilibrium and Non-Equilibrium Statistical Thermodynamics;

Cambridge University Press: Cambridge, UK, 2004.
30. Hwang, D.; Lee, B.H.; Stewart, E.D.; Yeom, D.; Zoe, H. Euclidean quantum gravity and stochastic inflation.

Phys. Rev. D 2013, 87, 063502. [CrossRef]
31. Linde, A.D.; Linde, D.A.; Mezhlumian, A. From the Big Bang theory to the theory of a stationary universe.

Phys. Rev. D 1994, 49, 1783. [CrossRef]
32. Hawking, S.W.; Moss, I.G. Supercooled Phase Transitions in the Very Early Universe. Phys. Lett. B 1982,

1100, 35–38. [CrossRef]
33. Lee, B.H.; Lee, W.; Yeom, D. Oscillating instantons as homogeneous tunneling channels. Int. J. Mod. Phys. A

2013, 28, 1350082. [CrossRef]
34. Hartle, J.B.; Hawking, S.W.; Hertog, T. The Classical Universes of the No-Boundary Quantum State.

Phys. Rev. D 2008, 77, 123537. [CrossRef]
35. Hartle, J.B.; Hawking, S.W.; Hertog, T. No-Boundary Measure of the Universe. Phys. Rev. Lett. 2008,

100, 201301. [CrossRef] [PubMed]

http://dx.doi.org/10.1088/0264-9381/19/10/313
http://dx.doi.org/10.1063/1.531252
http://dx.doi.org/10.1088/0264-9381/14/1A/006
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a2
http://dx.doi.org/10.3842/SIGMA.2012.016
http://dx.doi.org/10.1088/0264-9381/15/5/012
http://dx.doi.org/10.1103/PhysRevD.64.084018
http://dx.doi.org/10.1088/0264-9381/19/20/306
http://dx.doi.org/10.1007/BF02705198
http://dx.doi.org/10.1103/PhysRevD.37.888
http://dx.doi.org/10.1103/PhysRevD.30.509
http://dx.doi.org/10.1103/PhysRevD.67.124023
http://dx.doi.org/10.1103/PhysRevD.95.103508
http://dx.doi.org/10.1103/PhysRevLett.119.171301
http://dx.doi.org/10.1103/PhysRevD.97.023509
http://dx.doi.org/10.3390/universe4100100
http://dx.doi.org/10.1103/PhysRevD.96.043505
http://dx.doi.org/10.1103/PhysRevLett.121.081302
http://dx.doi.org/10.1103/PhysRevD.98.066003
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1103/PhysRevD.87.063502
http://dx.doi.org/10.1103/PhysRevD.49.1783
http://dx.doi.org/10.1016/0370-2693(82)90946-7
http://dx.doi.org/10.1142/S0217751X13500826
http://dx.doi.org/10.1103/PhysRevD.77.123537
http://dx.doi.org/10.1103/PhysRevLett.100.201301
http://www.ncbi.nlm.nih.gov/pubmed/18518521


Universe 2019, 5, 22 17 of 17

36. Hwang, D.; Kim, S.A.; Lee, B.H.; Sahlmann, H.; Yeom, D. No-boundary measure and preference for large
e-foldings in multi-field inflation. Class. Quantum Gravit. 2013, 30, 165016. [CrossRef]

37. Hwang, D.; Kim, S.A.; Yeom, D. No-boundary wave function for two-field inflation. Class. Quantum Gravit.
2015, 32, 115006. [CrossRef]

38. Chen, P.; Qiu, T.; Yeom, D. Phantom of the Hartle–Hawking instanton: Connecting inflation with dark
energy. Eur. Phys. J. C 2016, 76, 91. [CrossRef]

39. Brahma, S.; Yeom, D. New solutions for the no-boundary solution in loop quantum cosmology. Unpublished
work, 2019.

40. Hwang, D.; Sahlmann, H.; Yeom, D. The No-boundary measure in scalar-tensor gravity. Class. Quantum Gravit.
2012, 29, 095005. [CrossRef]

41. Hwang, D.; Lee, B.H.; Sahlmann, H.; Yeom, D. The no-boundary measure in string theory: Applications to
moduli stabilization, flux compactification, and cosmic landscape. Class. Quantum Gravit. 2012, 29, 175001.
[CrossRef]

42. Hwang, D.; Yeom, D. Toward inflation models compatible with the no-boundary proposal. J. Cosmol.
Astropart. Phys. 2014, 2014, 007. [CrossRef]

43. Ashtekar, A.; Pawlowski, T.; Singh, P.; Vandersloot, K. Loop quantum cosmology of k = 1 FRW models.
Phys. Rev. D 2007, 75, 024035. [CrossRef]

44. Bojowald, M. Dynamical initial conditions in quantum cosmology. Phys. Rev. Lett. 2001, 87, 121301.
[CrossRef]

45. Bojowald, M.; Brahma, S. Loops rescue the no-boundary proposal. arXiv 2018, arXiv:1810.09871.
46. Bojowald, M.; Brahma, S.; Yeom, D.H. Effective line elements and black-hole models in canonical loop

quantum gravity. Phys. Rev. D 2018, 98, 046015. [CrossRef]
47. Bojowald, M.; Mielczarek, J. Some implications of signature-change in cosmological models of loop quantum

gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 052. [CrossRef]
48. Brahma, S. Spherically symmetric canonical quantum gravity. Phys. Rev. D 2015, 91, 124003. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0264-9381/30/16/165016
http://dx.doi.org/10.1088/0264-9381/32/11/115006
http://dx.doi.org/10.1140/epjc/s10052-016-3932-0
http://dx.doi.org/10.1088/0264-9381/29/9/095005
http://dx.doi.org/10.1088/0264-9381/29/17/175001
http://dx.doi.org/10.1088/1475-7516/2014/06/007
http://dx.doi.org/10.1103/PhysRevD.75.024035
http://dx.doi.org/10.1103/PhysRevLett.87.121301
http://dx.doi.org/10.1103/PhysRevD.98.046015
http://dx.doi.org/10.1088/1475-7516/2015/08/052
http://dx.doi.org/10.1103/PhysRevD.91.124003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Hartle-Hawking Proposal Revisited
	The Wheeler-de Witt Equation and Boundary Conditions
	Euclidean Path Integral
	Semiclassical Approximation: Instanton Solutions

	Geometry of the Hartle-Hawking Instantons
	No-Boundary Instantons in LQC
	Numerical Results

	Robustness of the No-Boundary Condition
	Conclusions
	References

