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Abstract

:

A gravitational field model based on two symmetric tensors, gμν and g˜μν, is studied, using a Markov Chain Monte Carlo (MCMC) analysis with the most updated catalog of SN-Ia. In this model, new matter fields are added to the original matter fields, motivated by an additional symmetry (δ˜ symmetry). We call them δ˜ matter fields. This theory predicts an accelerating Universe without the need to introduce a cosmological constant Λ by hand in the equations. We obtained a very good fit to the SN-Ia Data, and with this, we found the two free parameters of the theory called C and L2. With these values, we have fixed all the degrees of freedom in the model. The last H0 local value measurement is in tension with the CMB Data from Planck. Based on an absolute magnitude MV=−19.23 for the SN, Delta Gravity finds H0 to be 74.47±1.63 km/(s Mpc). This value is in concordance with the last measurement of the H0 local value, 73.83±1.48 km/(s Mpc).
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1. Introduction


General relativity (GR) is valid on scales larger than a millimeter to the solar-system scale [1,2]. Nevertheless, the theory is non-renormalizable, which prevents its unification with the other forces of nature. Trying to quantize GR is the main physical motivation of string theories [3,4]. Moreover, recent discoveries in cosmology [5,6,7,8] have revealed that most part of matter is in the form of unknown matter, dark matter (DM), and that the dynamics of the expansion of the Universe is governed by a mysterious component that accelerates the expansion, Dark Energy (DE). Although GR can accommodate both DM and DE, the interpretation of the dark sector in terms of fundamental theories of elementary particles is problematic.



Although some candidates exist that could play the role of DM, none have been detected yet. Also, an alternative explanation based on the modification of the dynamics for small accelerations cannot be ruled out [9,10]. On the other side, DE can be explained if a small cosmological constant (Λ) is present. In early times after the Big Bang, this constant is irrelevant, but at the later stages of the evolution of the Universe Λ will dominate the expansion, explaining the acceleration. Such small Λ is very difficult to generate in Quantum Field Theory (QFT) models, because Λ is the vacuum energy, which is usually very large [11].



One of the most important mysteries in cosmology and cosmic structure formation is to understand the nature of Dark Energy in the context of a fundamental physical theory [12,13]. In recent years there has been various proposals to explain the observed acceleration of the Universe. They involve the inclusion of some additional fields in approaches such as quintessence, chameleon, vector DE, or massive gravity; The addition of higher order terms in the Einstein-Hilbert action, such as f(R) theories and Gauss-Bonnet terms and finally the introduction of extra dimensions for a modification of gravity on large scales (See [14]).



Other interesting possibilities are the search for non-trivial ultraviolet fixed points in gravity (asymptotic safety [15]) and the notion of induced gravity [16,17,18,19]. The first possibility uses exact renormalization-group techniques [20,21] together with lattice and numerical techniques such as Lorentzian triangulation analysis [22]. Induced gravity proposes that gravitation is a residual force produced by other interactions.



Recently, in [23,24] a field theory model explores the emergence of geometry by the spontaneous symmetry breaking of a larger symmetry where the metric is absent. Previous work in this direction can be found in [25,26].



In a previous work [27], we studied a model of gravitation that is very similar to classical GR, but could make sense at the quantum level. In the construction, we consider two different points. The first is that GR is finite on shell at one loop [28], so renormalization is not necessary at this level. The second is a type of gauge theories, δ˜ Gauge Theories (Delta Gauge Theories), presented in [29,30], which main properties are: (a) New kind of fields are created, ϕ˜I, from the originals ϕI. (b) The classical equations of motion of ϕI are satisfied in the full quantum theory. (c) The model lives at one loop. (d) The action is obtained through the extension of the original gauge symmetry of the model, introducing an extra symmetry that we call δ˜ symmetry, since it is formally obtained as the variation of the original symmetry. When we apply this prescription to GR we obtain Delta Gravity. Quantization of Delta Gravity is discussed in [31].



Here, we study the classical effects of Delta Gravity at the cosmological level. For this, we assume that the Universe is composed by non-relativistic matter (DM, baryonic matter) and radiation (photons, massless particles), which satisfy a fluid-like equation p=ωρ. Matter dynamics is not considered, except by demanding that the energy-momentum tensor of the matter fluid is covariantly conserved. This is required to respect the symmetries of the model. In contrast to [32], where an approximation is discussed, in this work we find the exact solution of the equations corresponding to the above suppositions. This solution is used to fit the SN-Ia Data and we obtain an accelerated expansion of the Universe in the model without DE.



It was noticed in [30] that the Hamiltonian of delta models is not bounded from below. Phantoms cosmological models [33,34] also have this property. Although it is not clear whether this problem will subsist or not in a diffeomorphism-invariant model as Delta Gravity. Phantom fields are used to explain the expansion of the Universe. Then, even if it could be said that our model works on similar grounds, the accelerated expansion of the Universe is really produced by a constant L2≠0 (it is a integration constant that comes from the Delta Field Equations), not by a phantom field.



It should be remarked that Delta Gravity is not a metric model of gravity because massive particles do not move on geodesics. Only massless particles move on null geodesics of a linear combination of both tensor fields.




2. Definition of Delta Gravity


In this section, we define the action as well as the symmetries of the model and derive the equations of motion.



These modified theories consist in the application of a variation represented by δ˜. As a variation, it will have all the properties of a usual variation such as:


δ˜(AB)=δ˜(A)B+Aδ˜(B)δ˜δA=δδ˜Aδ˜(Φ,μ)=(δ˜Φ),μ



(1)




where δ is another variation. The particular point with this variation is that, when we apply it on a field (function, tensor, etc.), it will give new elements that we define as δ˜ fields, which is an entirely new independent object from the original, Φ˜=δ˜(Φ). We use the convention that a tilde tensor is equal to the δ˜ transformation of the original tensor when all its indexes are covariant.



First, we need to apply the δ˜ prescription to a general action. The extension of the new symmetry is given by:


S0=∫dnxL0(ϕ,∂iϕ)→S=∫dnxL0(ϕ,∂iϕ)+δ˜L0(ϕ,∂iϕ)



(2)




where S0 is the original action, and S is the extended action in Delta Gauge Theories.



GR is based on Einstein-Hilbert action, then,


S0=∫d4xL0(ϕ)=∫d4x−gR2κ+LM



(3)




where LM=LM(ϕI,∂μϕI) is the Lagrangian of the matter fields ϕI, κ=8πGc2. Then, the Delta Gravity action is given by,


S=S0+δ˜S0=∫d4x−gR2κ+LM−12κGαβ−κTαβg˜αβ+L˜M



(4)




where we have used the definition of the new symmetry: ϕ˜=δ˜ϕ and the metric convention of [5]1.



Here:


g˜μν=δ˜gμν,Tμν=2−gδ−gLMδgμν



(5)






L˜M=ϕ˜IδLMδϕI+(∂μϕ˜I)δLMδ(∂μϕI)



(6)




and ϕ˜I=δ˜ϕI are the δ˜ matter fields. Then, the equations of motion are:


Gμν=κTμν



(7)






F(μν)(αβ)ρλDρDλg˜αβ+12gμνRαβg˜αβ−12g˜μνR=κT˜μν



(8)




with:


F(μν)(αβ)ρλ=P((ρμ)(αβ))gνλ+P((ρν)(αβ))gμλ−P((μν)(αβ))gρλ−P((ρλ)(αβ))gμνP((αβ)(μν))=14gαμgβν+gανgβμ−gαβgμνT˜μν=δ˜Tμν








where (μν) denotes that μ and ν are in a totally symmetric combination. An important fact to notice is that our equations are of second order in derivatives which is needed to preserve causality. We can show that (8)μν=δ˜(7)μν. The action (4) is invariant under (9) and (10) (extended general coordinate transformations), given by:


δ¯gμν=ξ0μ;ν+ξ0ν;μ



(9)






δ¯g˜μν(x)=ξ1μ;ν+ξ1ν;μ+g˜μρξ0,νρ+g˜νρξ0,μρ+g˜μν,ρξ0ρ



(10)







This means that two conservation rules are satisfied. They are:


DνTμν=0



(11)






DνT˜μν=12TαβDμg˜αβ−12TμβDβg˜αα+Dβ(g˜αβTαμ)



(12)







It is easy to see that (12) is δ˜DνTμν=0.




3. Particle Motion in the Gravitational Field


We are aware of the presence of the gravitational field through its effects on test particles. For this reason, here we discuss the coupling of a test particle to a background gravitational field, such that the action of the particle is invariant under (9) and (10).



In Delta Gravity we postulate the following action for a test particle:


Sp=m∫dt−gαβx˙αx˙βgμν+12g˜μνx˙μx˙ν



(13)







Notice that Sp is invariant under (9) and t-parametrizations.



Since far from the sources, we must have free particles in Minkowski space, i.e., gμν∼ημν,g˜μν∼0, it follows that we are describing the motion of a particle of mass m. Moreover, all massive particles fall with the same acceleration.



To include massless particles, we prefer to use the action [36]:


L=12∫dtvm2−v−1gμν+g˜μνx˙μx˙ν+m2+v−2gμν+g˜μνx˙μx˙ν2v−3gαβx˙αx˙βm2+v−2gλρx˙λx˙ρ



(14)







This action is invariant under reparametrizations:


x′(t′)=x(t);dt′v′(t′)=dtv(t);t′=t−ε(t)



(15)







The equation of motion for v is:


v=−−gμνx˙μx˙νm



(16)







Replacing (16) into (14), we get back (13).



Let us consider first the massive case. Using (15) we can fix the gauge v=1. Introducing mdt=dτ, we get the action:


L1=12m∫dτ1−gμν+g˜μνx˙μx˙ν+1+gμν+g˜μνx˙μx˙ν2gαβx˙αx˙β1+gλρx˙λx˙ρ



(17)




plus the constraint obtained from the equation of motion for v:


gμνx˙μx˙ν=−1



(18)







From L1 the equation of motion for massive particles is derived. We define: g¯μν=gμν+12g˜μν.


d(x˙μx˙νg¯μνx˙βgαβ+2x˙βg¯αβ)dτ−12x˙μx˙νg¯μνx˙βx˙γgβγ,α−x˙μx˙νg¯μν,α=0



(19)







The motion of massive particles is discussed in [37].



The action for massless particles is:


L0=14∫dt−v−1gμν+g˜μνx˙μx˙ν



(20)







In the gauge v=1, we get:


L0=−14∫dtgμν+g˜μνx˙μx˙ν



(21)




plus the equation of motion for v evaluated at v=1: gμν+g˜μνx˙μx˙ν=0. Therefore, the massless particle moves in a null geodesic of gμν=gμν+g˜μν.




4. Distances and Time Intervals


In this section, we define the measurement of time and distances in the model.



In GR the geodesic equation preserves the proper time of the particle along the trajectory. Equation (19) satisfies the same property: Along the trajectory x˙μx˙νgμν is constant. Therefore we define proper time using the original metric gμν,


dτ=−gμνdxμdxν=−g00dx0,(dxi=0)



(22)







Following [38], we consider the motion of light rays along infinitesimally near trajectories and (22) to get the three dimensional metric:


dl2=γijdxidxjγij=g00g00gij−g0ig0jg00



(23)







That is, we measure proper time using the metric gμν but the space geometry is determined by both metrics. In this model massive particles do not move on geodesics of a four-dimensional metric. Only massless particles move on a null geodesic of gμν. Therefore, Delta Gravity is not a metric theory.




5. Tμν and T˜μν for a Perfect Fluid


The Energy-Stress Tensors for a Perfect Fluid in Delta Gravity are [27] (assuming c is the speed of light equal to 1):


Tμν=p(ρ)gμν+ρ+p(ρ)UμUν



(24)






T˜μν=p(ρ)g˜μν+∂p∂ρ(ρ)ρ˜gμν+ρ˜+∂p∂ρ(ρ)ρ˜UμUν+ρ+p(ρ)12(UνUαg˜μα+UμUαg˜να)+UμTUν+UμUνT



(25)




where UαUαT=0. p is the pressure, ρ is the density and Uμ is the four-velocity. For more details you can see [27].




6. Friedman-Lemaître-Robertson-Walker (FLRW) Metric


In this section, we discuss the equations of motion for the Universe described by the FLRW metric. We use spatial curvature equal to zero to agree with cosmological observations.



In the harmonic coordinate system, it is [27]:


gμνdxμdxν=−c2dt2+R2(t)dx2+dy2+dz2



(26)






g˜μνdxμdxν=−3Fa(t)c2dt2+Fa(t)R2(t)dx2+dy2+dz2



(27)






gμν=gμν+g˜μν=−c2(1+3Fa(t))dt2+(1+Fa(t))R2(t)dx2+dy2+dz2



(28)







Please note that Fa(t) is an arbitrary function that remains after imposing homogeneity and isotropy of the space as well as the extended harmonic gauge gαβ12gμλDβg˜λα+Dαg˜βλ−Dλg˜αβ−g˜αβΓαβμ=0. It is determined by solving the differential equations in (8).



These expressions represent an isotropic and homogeneous Universe. From (23) we already know that the proper time is measured only using the metric gμν, but the space geometry in FLRW coordinates is determined by the modified null geodesic, given by (28), where both tensor fields, gμν and g˜μν, are needed.




7. Delta Gravity Friedmann Equations


The equations of state for matter and radiation are:


pm(R)=0










pr(R)=13ρr(R)











Then, from Equation (7) we obtain:


ρ(R)=ρm(R)+ρr(R)



(29)






pr(R)=13ρr(R)



(30)






t(Y)=2C3H0Ωr0Y+C(Y−2C)+2C3/2



(31)






Y(t)=R(t)R0



(32)






R0≡R(t=t0)≡1



(33)






Ωr≡ρrρc



(34)






Ωm≡ρmρc



(35)






ρc≡3H28πG



(36)






Ωr0+Ωm0≡1



(37)






Ωr0=11+1C



(38)




where t0 is the age of the Universe (at the current time). It is important to highlight that t is the cosmic time, R0 is the standard scale factor at the current time, C≡Ωr0Ωm0, where Ωr0 and Ωm0 are the density energies normalized by the critical density at the current time, defined as the same as the Standard Cosmology. Furthermore, we have imposed that Universe must be flat (k=0), so we require that Ωr+Ωm≡1.



Using the Second Continuity Equation (12),where T˜μν is a new Energy-Momentum Tensor, two new densities called ρ˜M (Delta Matter Density) and ρ˜R (Delta Radiation Density) associated with this new tensor are defined. When we solve this equation, we find


ρ˜M(Y)=−3ρm02Fa(Y)Y3



(39)






ρ˜R(Y)=−2ρr0Fa(Y)Y4



(40)







Using the Second Field Equation (8) with the solutions (39) and (40) we found (and redefining with respect to Y):


Fa(Y)=−L23YY+C



(41)







Then, writing Equations (39) and (40) in terms of L2 we have


ρ˜m(Y)=L22ρm0Y+CY2



(42)






ρ˜r(Y)=2L23ρr0Y+CY3



(43)







Thus, if we know the C and L2 values, it is possible to know the Delta Densities ρ˜m and ρ˜r.



Relation between the Effective Scale Factor YDG and the Scale Factor Y


The Effective Metric for the Universe is given by (28). From this expression, it is possible to define the Effective Scale Factor as follows:


RDG(t)=R(t)1+Fa(t)1+3Fa(t)



(44)







Defining that R(t0)≡1, we have that R(t)=Y(t). Furthermore, we define the Effective Scale Factor (normalized):


YDG≡RDG(t)RDG(t0)=YRDG(t0)1−L2Y3Y+C1−L2YY+C



(45)







Please note that the denominator in Equation (45) is equal to zero when 1=L2YY+C. Also remember that C=Ωr0/Ωm0<<1. Furthermore, we have imposed that ρ˜m>0 and ρ˜r>0, then L2 must be greater than 0 [27]. Then the valid range for L2 is approximately 0≤L2≤1.



C must be positive, and (hopefully) is a very small value because the radiation is clearly not dominant in comparison with matter. Then, we can analyze cases close to the standard accepted value: Ωr0/Ωm0∼10−4.





8. Useful Equations for Cosmology


Here we present the equations that are useful to fit the SN Data and obtain cosmological parameters that are presented in the Results Section.



8.1. Redshift Dependence


The relation between the cosmological redshift and the scale factor is preserved in Delta Gravity:


YDG=11+z



(46)







It is important to take into account that the current time is given by t0→Y(t0)→YDG(Y=1)=1, where YDG is normalized.




8.2. Luminosity Distance


The proof is the same as GR, because the main idea is based on the light traveling through a null geodesic described by the Effective Metric given by (28) in Delta Gravity [32]. Taking into account that idea, we can obtain the following expression:


dL(z,L2,C)=c(1+z)C100h2Ωr0∫Y(t1)1YY+CdYYDG(t)



(47)







Notice that Y=1 today. To solve Y(t1) at a given redshift z, we need to solve (45) and (46) numerically. Furthermore, the integrand contains YDG(t) that can be expressed in function of Y in (45). Do not confuse c (speed of light) with C, a free parameter to be fitted by SN Data.



The parameter h2Ωr0 can be obtained from the CMB. The CMB Spectrum can be described by a Black Body Spectrum, where the energy density of photons is given by


ργ0=aT4











From statistical mechanics, we know the neutrinos are related by [39]:


ρν0=3784114/3ργ0











Then,


Ωr0h2=Ωγh2+Ωνh2



(48)







Equation (48) is a value that only depends on the temperature of the Black Body Spectrum of the CMB. So we can add this value as a known Cosmological Parameter.



Thus, we only need to know the values C and L2. Take into account that it is impossible to know the value of Ωr0 without any other information.




8.3. Distance Modulus


The distance modulus is the difference between the apparent magnitude m and the absolute magnitude M of an astronomical object. Knowing this we can estimate the distance d to the object, provided that we know the value of the absolute magnitude M.


μ=m−M=5log10d10pc



(49)








8.4. Effective Scale Factor


The “size” of the Universe in Delta Gravity is given by YDG(t), while in GR this is given by a(t). Every cosmological parameter that in the GR theory was built up from the standard scale factor a(t), in Delta Gravity will be built from YDG(t). This value is equal to 1 at the current time, because it is the RDG normalized by RDG(Y=1).




8.5. Hubble Parameter


In Delta Gravity we will define the Hubble Parameter as follows:


HDG(t)≡R˙DG(t)RDG(t)



(50)







Therefore, the Hubble Parameter is given by:


HDG(t)=dRDGdYdtdY−1RDG



(51)







Notice that all the Delta Gravity parameters are written as function of Y.




8.6. Deceleration Parameter


In Delta Gravity we will define the deceleration parameter as follows:


qDG(t)=−R¨DGRDGR˙DG2



(52)







Then,


qDG(t)=−ddYdRDGdYdtdY−1dtdY−1RDGdRDGdYdtdY−12



(53)









9. Fitting the SN Data


We are interested in the viability of Delta Gravity as a real Alternative Cosmology Theory that could explain the accelerating Universe without Λ, then it is natural to check if this model fits the SN Data.



9.1. SN Data


To analyze this, we used the most updated Type Ia Supernovae Catalog. We obtained the Data from Scolnic [40]. We only needed the distance modulus μ and the redshift z to the SN-Ia to fit the model using the Luminosity Distance dL predicted from the theory.



The SN-Ia are very useful in cosmology [6] because they can be used as standard candles and allow to fit the ΛCDM model finding out free parameters such as ΩΛ. We are interested in doing this in Delta Gravity. The main characteristic of the SN-Ia that makes them so useful is that they have a very standardized absolute magnitude close to −19 [41,42,43,44,45].



From the observations we only know the apparent magnitude and the redshift for each SN-Ia. Thus, we have the option to use a standardized absolute magnitude obtained by an independent method that does not involve ΛCDM model, or any other assumptions.



To fit the SN-Ia Data, we will use MV=−19.23±0.05 [45]. The value was calculated using 210 SN-Ia Data from [45]. This value is independent from the model since it was calculated by building the distance ladder starting from local Cepheids measured by parallax and using them to calibrate the distance to Cepheids hosted in near galaxies (by Period-Luminosity relations) that are also SN-Ia host. Riess et al. calculated the MV and the H0 local value, and they did not use any particular cosmological model. Keep in mind that the value of MV found by Riess et al. is an intrinsic property of SN-Ia and that is the reason they are used as standard candles.



We used 1048 SN-Ia Data in [40]2. All the SN-Ia are spectroscopically confirmed. In this paper, we have used the full set of SN-Ia presented in [40]. They present a set of spectroscopically confirmed PS1 SN-Ia and combine this sample with spectroscopically confirmed SN-Ia from CfA1-4, CSP, PS1, SDSS, SNLS and HST SN surveys.



At [40] they used the SN Data to try to obtain a better estimation of the DE state equation. They define the distance modulus as follows:


μ≡mB−M+αx1−βc+ΔM+ΔB



(54)




where μ is the distance modulus, ΔM is a distance correction based on the host-galaxy mass of the SN and ΔB is a distance correction based on predicted biases from simulations. Furthermore, α is the coefficient of the relation between luminosity and stretch, β is the coefficient of the relation between luminosity and color and MV is the absolute B-band magnitude of a fiducial SN-Ia with x1=0 and c=0 [40].



In this work we are not interested in the specific corrections to observational magnitudes of SN-Ia. We only take the values extracted from [40] to analyze the Delta Gravity model. The SN Data are the redshift zi and (μ+M)i with the respective errors.




9.2. Delta Gravity Equations


We need to establish a relation between redshift and the apparent magnitude for the SN-Ia:


[μ+M]−M=5log10dL(z,C,L2)10pc



(55)




where dL(z,L2,C) is given by (47) and [μ+M] are the SN-Ia Data given at [40].



In this expression we have as free parameters: C and L2 to be found by fitting the model to the points (zi,[μ+M]i).




9.3. GR Equations


For GR we use the following expression


[μ+M]−M=5log10dL(z,H0,Ωm0)10pc



(56)




where dL(z,H0,Ωm0) is given by:


dL(z,H0,Ωm0)=c(1+z)H0∫11+z1du(1−Ωm0)u4+Ωm0u



(57)




and [μ+M] are the SN Data given at [40]. Remember that we are always working on a flat Universe, and in GR standard model the Ωr0 is negligible. We have the same degrees of freedom as Delta Gravity.



Please note that we are including DE as ΩΛ0≡ΩΛ≡1−Ωm0 in GR.




9.4. MCMC Method


To fit the SN-Ia Data to GR and Delta Gravity models, we used Markov Chain Monte Carlo (MCMC). This routine was implemented in Python 3.6 using PyMC2.3



Basically, MCMC consists on fitting a model, characterizing its posterior distribution. It is based on Bayesian Statistics. We used the Metropolis-Hastings algorithm.



We used a Bayesian approach because it allows us to know the posterior probability distribution for every parameter of the model [46,47]. Furthermore, it is possible to identify dependencies between the fitted parameters using MCMC, which it is not possible using another method such as the least-square used in [27].



Initially we propose initial distributions for the parameters that we want to fix, and then PyMC2 will give us the posterior probability distribution for these parameters.



We want to find the best fitted parameters for Delta Gravity and GR models. These parameters will be C,L2 for Delta Gravity and H0,ΩM for GR.





10. Results and Analysis


We present the results for Delta Gravity and GR fitted Data, and with these values we obtain different cosmological parameters. We divide the results into two fits: Delta Gravity Fit and GR Fit.



10.1. Fitted Curves


As we see in Figure 1 and Figure 2, both models describe very well the mB vs. z SN-Ia Data. It is important to note that, while in GR frame Λ≠0 is needed to find this well-behaved curve, in Delta Gravity Λ is not needed to fit the SN-Ia Data. Essentially, Delta Gravity predicts the same behavior, but the accelerating Universe appears explained without the need to include Λ, or anything like “Dark Energy”.



In Table 1, we present the coefficients of determination (r2) and residual sum of squares (RSS) for both fitted models:



Both coefficients of determination are very good, and the RSS are similar for both cases.



The fitted parameters for GR and Delta Gravity models are shown in Table 2 and Table 3 respectively.



Furthermore, we present the posterior probability density maps for GR and Delta Gravity in Figure 3.



Please note that for both plots in Figure 3 the distributions are well defined, and for each parameter we obtain a Gaussian-like distribution. For both models, the combination of parameters constrained a region in the 2D-density plot. The fitted values for both models converged very well.




10.2. Convergence Tests


We applied two convergence tests for MCMC analysis. The first is known as Geweke [48]. This is a time-series approach that compares the mean and variance of segments from the beginning and end of a single chain. This method calculates values named z-scores (theoretically distributed as standard normal variates). If the chain has converged, the majority of points should fall within 2 standard deviations of zero4. The plots are shown in Figure 4.



In both plots it is possible to observe that the most part of the z-scores fall within 2σ, so the method is convergent for both models based on the Geweke criterion.



Another convergence test is the Gelman-Rubin statistic [49].



The Gelman-Rubin diagnostic uses an analysis of variance approach to assess convergence. This diagnostic uses multiple chains to check for lack of convergence, and is based on the notion that if multiple chains have converged, by definition they should appear very similar to one another; if not, one or more of the chains has failed to converge (see PyMC 2 documentation).



In practice, we look for values of R^ close to one because this is the indicator that shows convergence.



We ran 16 chains for Delta Gravity model. Figure 5 shows the L2 and C predicted values for every chain of the Monte Carlo simulation. Figure 6a,b shows the convergence of L2 and C. All the chains converge to a similar value assuming different priors. These final values predicted for every chain can be visualized in Figure 5. From all these chains, is clear that the Delta Gravity MCMC analysis is convergent for the two free parameters.




10.3. Cosmic Time and Redshift


By using Equation (31) we obtain the Cosmic Time in Delta Gravity, where the redshift is obtained by numerical solution from Equation (46).



Meanwhile for GR model, we obtained the cosmic time from the integration of the first Friedmann equation and solving t(Ωm0,H0). Here we have included ΩΛ=1−Ωm0 and we did Ωk (k=0) and Ωr0=0. The integral for the first Friedmann equation can be analytically solved:


t=∫0a1Ωm0x+(1−Ωm0)x2dx=231−Ωm0ln−Ωm0a3+Ωm0+a3+1−Ωm0a3/2Ωm0



(58)




where t in (58) is the cosmic time for GR.



We plot the results in Figure 7:



The behavior of cosmic time dependence with redshift for both models is very similar.




10.4. Hubble Parameter and H0


With the fitted parameters found by MCMC for GR and Delta Gravity, we can find H(t) and H0. Note the superscript for GR as GR and Delta Gravity as DG. For GR H0 is easily obtained from the h2 fitted (H0=100h). HGR(t) can be obtained using the first Friedmann equation


H2=a˙a2=8πG3ρm0a3+ρr0a4+ρΛ0



(59)







Taking into account that Ωm0+Ωr0+ΩΛ0=1, Ωr0≈0, and ρc0=3H028πG, where ΩXi0=ρXi0ρc0 for every Xi component in the Universe, we obtain


H2=H02Ωm0a3+(1−Ωm0)



(60)







With (60), we obtain HGR(t) and using (51) we obtain HDG(t), Figure 8. For the actual time we evaluate HGR at a=1 and for Delta Gravity we evaluate HDG at YDG=1 obtaining the Hubble constant H0GR and H0DG.



We present the results for both models and we compare these values with previous measurements in Table 4.




10.5. Age of the Universe


The age of the Universe in Delta Gravity is calculated using (31). t(Y) only depends on C and not on L2. In GR we calculate the age of the Universe using (58).



With these expressions, we can compare the behavior between cosmic time and the scale factor in GR (or the effective scale factor in Delta Gravity).



In Figure 9, it is possible to see the evolution for YDG(t) in time. At t=28.75 Gyr, YDG goes to infinity, and the Universe ends with a Big Rip, then, in this model the Universe has an end (in time). Also, we see the dependence between the scale factor a and cosmic time t. The Universe has no end (in time) in GR.




10.6. Deceleration Parameter q0


For Delta Gravity, we used Equation (53). For today, we evaluate a=1 for GR, and YDG=1 for Delta Gravity.



In Figure 10, we can see the evolution in time for both GR and Delta Gravity models.



We tabulate the deceleration parameter for both models in Table 5.



In both models q0<0, then the Universe is accelerating.




10.7. Relation with Delta Components


In Delta Gravity we are interested in determining the Delta composition of the Universe. Using Equations (42) and (43), we can obtain the densities for Delta Matter and Delta Radiation with the C and L2 fitted values.


ρ˜m0=0.22777ρm0=0.22773ρc0



(61)






ρ˜r0=0.68330ρr0=0.000115ρc0



(62)







In the expressions (62) and (61), we have obtained the current values for Delta Densities.



The Common Components are dominant compared with Delta components. Matter is always dominant compared with radiation (in both cases). See Figure 11.



Please note that the four components diverge (in density) at the beginning of the Universe, and the Delta Components show a “constant-like” behavior for YDG>0.4. (Specially Delta Matter that is clearly dominant compared to the Delta Radiation).



In both the Common Components and Delta Components, there is a transition between matter and radiation that is indicated in the zoom in included in Figure 11. These transitions occur at very early stage of the Universe. Both transitions are indicated in Figure 11.



It is important to remember that in Delta Gravity we do not know the ρc0, but we know the densities of each component in units of ρc0, because they are given by C and L2 fitted values from SN Data.




10.8. Importance of L2 and C


To understand the role that L2 and C are playing in the Delta Gravity model, we need to plot some cosmological parameters in function of both coefficients. We are interested in analyzing the accelerating expansion of the Universe in function of these two parameters, so we plotted H0DG in Figure 12 and q0DG in Figure 13.



In Figure 12, we can see there is a big zone prohibited, because the results become complex values at certain level of the equations. The only allowed values are colored. Note that in Figure 12a almost all the allowed H0DG values are close to 0. Only the contour of the colored area shows H0DG≠0. The Figure 12b is the same as the left one, but with a big zoom in close the fitted values obtained from MCMC analysis. These range of C and L2 are reasonable to make an analysis. Note that H0DG has a strong dependence of C and L2 values.



Remember that L2 has only sense between values 0 and 1, because we only want to allow positive Delta Densities and, from Equation (45), the denominator could be equal to 0.



The Figure 13 is very interesting because it shows the dependence of the current value of acceleration of the Universe expressed by the deceleration parameter q0DG. If we examine the parameters zone close to the fitted values in the Figure 13b, we can note that the acceleration of the Universe only depends on the value of L2. This is a very important result from the Delta Gravity model. The accelerating Universe is given by the L2 parameter. This parameter appears naturally like an integration constant from the differential equations when we solved the field equations for Delta Gravity model. Then, in this model, and exploring the closest area to the Universe with a little amount of radiation compared to matter, we found that a higher L2 value, higher the acceleration of the Universe (current age): q0DG becomes more negative when L2→1 independently of C.





11. M Free


For completeness, we want to mention that we also did the MCMC analysis for M free in both GR and Delta Gravity.



From the MCMC analysis, we obtain a non-convergent result. In Delta Gravity model, the C and M parameters are dependent, but L2 is independent. This can be visualized in Figure 14.



The dependence for Delta Gravity parameters can be fitted by a second order polynomial, as shown in Figure 14:


C=8.59×10−5M2+3.15×10−3M+2.9×10−2



(63)







If we use M=−19.23±0.05 [45], we fix C which agrees with the results of the previous sections.



For GR, we did the same procedure, but in this model the dependence appears between h2 and M. The polynomial is showed in Figure 15 and is given by:


h2=0.177M2+7.335M+75.896



(64)







Again, if we evaluate Equation (64) at M=−19.23±0.05, we obtain the h2 value of previous sections.




12. Conclusions


Here we have studied the cosmological implications for a modified gravity theory, named Delta Gravity. The results from SN-Ia analysis indicate that Delta Gravity explains the accelerating expansion of the Universe without Λ or anything like “Dark Energy”. The acceleration is naturally produced by the Delta Gravity equations.



We assumed that MV=−19.23 is a suitable value calculated from [45]. We want to emphasize the very important fact that this value was obtained by local measurements and calibrations of SN-Ia, and then, it is independent from any cosmological model. Assuming this, the procedure presented does not use ΛCDM assumptions. We only assume that the calibrations from Cepheids and SN-Ia are correct; therefore, the absolute magnitude MV=−19.23 for SN-Ia is reasonably correct. In this case, the Universe is accelerating, and this result is stable under any change of the priors for the MCMC analysis. Note that the acceleration is highly determined by the L2 value.



The acceleration in Delta Gravity is given by L2≠0. L2 also determines that the Universe is made of Delta Matter and Delta Radiation. This can be associated with the new field: ϕ˜. It is not clear if this Delta composition are real particles, or not.



Also, Delta Gravity can predict a high value for H0 (assuming MV=−19.23). This aspect is very important because the current H0 value is in tension [45,51] between SN-Ia analysis and CMB Data. GR also predicts a high H0 value with the same assumptions, but it needs to include Λ to fit the SN-Ia Data. The most important point about this, is that the local measurement of H0 is independent of the model.5 Furthermore, the discrepancy about H0 value could be indicating new physics beyond the Standard Cosmology Model Assumptions, and maybe, one possibility could be the modification of GR.



Another difference between Delta Gravity and GR models, is that Delta Gravity model predicts a Big Rip (as in phantom models [33,34]) that is dominated by the L2 value. This is shown in Figure 9.



The most important difference between Delta Gravity and the Standard cosmological model is the explanation about “Dark Energy” (the relation of L2 with the accelerated expansion of the Universe).
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The following abbreviations are used in this manuscript:



	GR
	General Relativity



	DG
	Delta Gravity



	DM
	Dark Matter



	DE
	Dark Energy



	SN-Ia
	Type Ia Supernova



	CMB
	Cosmic Microwave Background Radiation



	ΛCDM
	Λ Cold Dark Matter



	MCMC
	Markov Chain Monte Carlo
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	1
	
In [35] can be found more about the formalism of the Delta Gravity action and the new symmetry δ˜.





	2
	
Scolnic’s Data are available at https://archive.stsci.edu/hlsps/ps1cosmo/scolnic/.





	3
	
https://pymc-devs.github.io/pymc/.





	4
	
https://media.readthedocs.org/pdf/pymcmc/latest/pymcmc.pdf.





	5
	
“The direct measurement is very model independent, but prone to systematics related to local flows and the standard candle assumption. On the other hand, the indirect method is very robust and precise, but relies completely on the underlying model to be correct. Any disagreement between the two types of measurements could in principle point to a problem with the underlying ΛCDM model.” [52].
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Figure 1. Fitted curve for Delta Gravity model assuming MV=−19.23. On the right corner, the residual plot for the fitted Data. 
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Figure 2. Fitted curve for GR standard model assuming MV=−19.23. On the right corner, the residual plot for the fitted Data. 
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Figure 3. Posterior probability density plots obtained from MCMC for GR and Delta Gravity models. (a) Posterior probability density maps with for GR. Combination for Ωm0 and h2. (b) Posterior probability density maps for Delta Gravity. Combination for L2 and C. 
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Figure 4. Convergence of values for GR and Delta Gravity. (a) Evolution of z-scores with steps in GR. (b) Evolution of z-scores with steps in Delta Gravity. 
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Figure 5. Gelman-Rubin test for Delta Gravity model assuming MV=−19.23. The Gelman-Rubin test was run with 16 different chains, all with different L2 and C priors. The R^ coefficient (Gelman-Rubin coefficient) was calculated for each parameter. 
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Figure 6. Gelman-Rubin test for Delta Gravity model. There are 16 chains with different priors. (a) All the chains converge to a L2≈0.455. (b) All the chains converge to a C≈0.000169. 
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Figure 7. Cosmic time for GR and Delta Gravity. 






Figure 7. Cosmic time for GR and Delta Gravity.



[image: Universe 05 00051 g007]







[image: Universe 05 00051 g008 550]





Figure 8. Hubble Parameter for Delta Gravity and GR fitted models assuming MV=−19.23. 
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Figure 9. The size of the Universe vs. age of the Universe. In the Delta Gravity model, the size of the Universe YDG depends on cosmic time t and on C. The blue line indicates the effective scale factor in Delta Gravity. The gray zone shows the error associated with YDG. For GR, the scale factor a depends on cosmic time t and on Ωm0. The red line indicates the scale factor evolution in GR. The gray zone shows the error associated with a (these are tiny). 
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Figure 10. Deceleration parameter for both models. (a) Evolution of deceleration parameter in GR. (b) Evolution of deceleration parameter in Delta Gravity. 
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Figure 11. Temporal evolution of density components for Delta Gravity. The vertical axis is normalized by critical density at current time ρc0. On the top right corner, there is a zoom in very close to YDG=0 showing the transition between Delta Matter and Delta Radiation (Delta components), and the transition between matter and radiation (common components). In general, the Common Density is higher than the Delta Density. 






Figure 11. Temporal evolution of density components for Delta Gravity. The vertical axis is normalized by critical density at current time ρc0. On the top right corner, there is a zoom in very close to YDG=0 showing the transition between Delta Matter and Delta Radiation (Delta components), and the transition between matter and radiation (common components). In general, the Common Density is higher than the Delta Density.



[image: Universe 05 00051 g011]







[image: Universe 05 00051 g012 550]





Figure 12. H0DG for a different combination of L2 and C values. The fitted values found by MCMC analysis is indicated in the Figure. (a) C values go from 0 to 6 to explore various Universes, even a Universe wholly dominated by radiation. (b) The C values are bounded to very little values, nearly close to the C fitted value obtained by MCMC. 
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Figure 13. q0DG for different combination of L2 and C values. The fitted values found by MCMC analysis is indicated in the Figure. (a) C values go from 0 to 6 to explore various Universes, even a Universe wholly dominated by radiation. (b) The C values are bounded to very little values, nearly close to the C fitted value obtained by MCMC. 
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Figure 14. MCMC analysis assuming M as a free parameter in Delta Gravity. (a) Posterior probabilities densities. (b) Evolution of values with steps. 
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Figure 15. MCMC analysis assuming M as a free parameter in GR. (a) Posterior probabilities densities. (b) Evolution of values with steps. 
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Table 1. Statistical parameters.






Table 1. Statistical parameters.





	Model
	r2
	RSS





	Delta Gravity
	0.99709
	21.39



	GR
	0.99708
	21.44
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Table 2. Fitted parameters using MCMC for Delta Gravity.






Table 2. Fitted parameters using MCMC for Delta Gravity.





	Delta Gravity
	Value
	Error





	L2
	0.455
	0.008



	C
	0.000169
	0.000003
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Table 3. Fitted parameters using MCMC for GR.






Table 3. Fitted parameters using MCMC for GR.





	MV Fixed GR Model
	Value
	Error





	Ωm0
	0.28
	0.01



	h2
	0.549
	0.004
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Table 4. H0 values found by MCMC with SN-Ia Data, assuming MV=−19.23. Furthermore, we tabulate Planck [50] and Riess [51] H0 values.






Table 4. H0 values found by MCMC with SN-Ia Data, assuming MV=−19.23. Furthermore, we tabulate Planck [50] and Riess [51] H0 values.





	Model
	H0 (km/(s Mpc))
	Error





	Planck 2018 [50]
	67.36
	0.54



	Riess 2018 a [51]
	73.52
	1.62



	Riess 2018 b [51]
	73.83
	1.48



	GR
	74.08
	0.24



	Delta Gravity
	74.47
	1.63







a The calibration was made including the new MW parallaxes from HST and Gaia; b The calibration was made considering the external constrains on the parallax offset based on Red Giants.
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