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Abstract: We discuss the properties of the previously constructed model of a Schwarzschild black
hole interior where the singularity is replaced by a regular bounce, ultimately leading to a white hole.
We assume that the black hole is young enough so that the Hawking radiation may be neglected.
The model is semiclassical in nature and uses as a source of gravity the effective stress-energy tensor
(SET) corresponding to vacuum polarization of quantum fields, and the minimum spherical radius
is a few orders of magnitude larger than the Planck length, so that the effects of quantum gravity
should still be negligible. We estimate the other quantum contributions to the effective SET, caused by
a nontrivial topology of spatial sections and particle production from vacuum due to a nonstationary
gravitational field and show that these contributions are negligibly small as compared to the SET due
to vacuum polarization. The same is shown for such classical phenomena as accretion of different
kinds of matter to the black hole and its further motion to the would-be singularity. Thus, in a clear
sense, our model of a semiclassical bounce instead of a Schwarzschild singularity is stable under both
quantum and classical perturbations.

Keywords: general relativity; semiclassical gravity; quantum corrections; bounce solution;
Schwarzschild black hole; particle creation

1. Introduction

The existence of singularities in various solutions of general relativity (GR) as well as many
alternative classical theories of gravity, describing black holes or the early Universe, is an undesirable
but apparently inevitable feature. On the other hand, one can hardly believe that the curvature
invariants or the densities and temperatures of matter that appear in such singularities can really reach
infinite values. There is therefore a more or less common hope that a future theory of gravity valid at
very large curvatures, high energies, small length and time scales will be free of singularities, and that
such a theory should take into account quantum phenomena.

The existing numerous attempts to avoid singularities can be basically classified as follows (see
also references therein for each item):

(a) In GR, “exotic” sources of gravity are invoked, violating the standard energy conditions,
for example, phantom scalar fields; in classical extensions of GR, using quantities of geometric
origin (torsion, nonmetricity, extra dimensions) whose effective stress-energy tensors (SETs) can
have similar “exotic” properties [1–11]; it has also been argued that the effects of rotation in GR
can also play the role of exotic matter (see [12–14]).
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(b) In semiclassical gravity, where the geometry is treated classically and obeys the equations of GR
or an alternative classical theory, using averages of quantum fields of matter as sources of gravity
with possible “exotic” properties [15–19].

(c) Diverse models of quantum gravity are also often translated into the language of classical
geometry and lead to nonsingular spacetimes describing both regular black hole interiors and
early stages of the cosmological evolution [20–23].

One can notice that the singularity problems in black hole physics and Big Bang cosmology are
quite similar. For example, the Schwarzschild singularity is located in a nonstationary “T-region”,
where the metric can be written as that of a homogeneous anisotropic cosmology, a special case of
Kantowski–Sachs models. It is therefore natural that the same tools are used in attempts to attack
these problems.

Classical nonsingular models in cosmology, black hole and wormhole physics are quite popular,
but the “exotic” components that are necessarily present in those models require certain conjectures so
far not confirmed by observations or experiments, and their consideration is often justified as a kind of
phenomenological description of underlying quantum effects.

Many models of quantum gravity, in their representations in the language of classical geometry,
lead to nonsingular cosmologies and black hole models, but most frequently such models reach
the values of curvatures and densities close to the Planck scale. However, more surprising is
the considerable diversity of their predictions, depending on various leading ideas employed in
such models.

Thus, several scenarios in the framework of Loop Quantum Gravity (LQG) predict a bounce
close to the Planck scale and a transition from a black hole to a white hole [21,22,24,25]. In particular,
in [24,25], the authors considered quantum corrections to the Oppenheimer-Snyder collapse scenario.
Much earlier, a similar scenario with singularity avoidance was considered by [26] on the basis of a
quasiclassical approximation of the Wheeler-DeWitt equation.

Unlike that, application of the so-called polymerization concept to the interior of a Schwarzschild
black hole [27,28], also removing the singularity, leads to a model with a single horizon and
a Kantowski–Sachs cosmology with an asymptotically constant spherical radius at late times.
(This geometry is partly similar to the classical black universes with a phantom scalar [8–10], but in
the latter the late-time Kantowski–Sachs cosmology tends to de Sitter isotropic expansion.)

Some of the scenarios (see [29]) even lead to a quantum-corrected effective metric with an
unconventional asymptotic behavior, although it is claimed that the quantum correction to the
black hole temperature is quite negligible for sufficiently large black holes, and that the metric is
asymptotically flat in a precise sense.

A consideration of homogeneous gravitational collapse of dust and radiation with LQG effects
leads in [30] to the avoidance of both a final singularity and an event horizon, so that the outcome is a
dense compact object instead of a black hole.

Let us also mention a study of black hole evaporation process by Ashtekar [31] using as guidelines:
(i) LQG; (ii) simplified models with concrete results; and (iii) semiclassical effects. The author discussed
various issues concerning the information loss problem and the final fate of evaporating black holes;
one of his conclusions is that LQG effects do not appreciably change the semiclassical picture outside
macroscopic black holes.

A comprehensive review of quantum gravity effects in gravitational collapse and black holes was
provided by Malafarina [20] in 2017, and we here only mention a few results of interest and some
papers that appeared later than this review. However, even this short list shows how diverse the
results and conclusions can be depending on the particular approach. All that may be a manifestation
of a so far uncertain status of quantum gravity.

Since matter can manifest its quantum properties at the atomic or macroscopic scales (as
exemplified by lasers or the Casimir effect), one may hope that singularities in cosmology or black
holes may be prevented at length scales much larger than the Planck one. This would look more
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attractive both from the observational viewpoint and also theoretically since the corresponding results,
at least today, look more confident than those obtained with quantum gravity.

The black hole studies in the framework of semiclassical gravity ([17–19,32], and many others)
mostly focus on the consequences of the Hawking black hole evaporation and the related information
paradox. Their conclusions seem promising from the viewpoint of singularity avoidance. Thus, in [32],
it is concluded that the black hole evaporation ultimately leads to emergence of an inner macroscopic
region that hides the lost information and is separated from the external world. According to [19],
the evaporation process even prevents the emergence of an event horizon. Thus, after formation of
a large spherically symmetric black hole by gravitational collapse, the classical r = 0 singularity
is replaced by an initially small regular core, whose radius grows with time due to increasing
entanglement between Hawking radiation quanta outside and inside the black hole, and by the
Page time (when half the black hole mass has evaporated), all quantum information stored in the
interior is free to escape to the outer space.

However, there remains a question of what is happening inside a large black hole when it has just
formed, and the evaporation process is too slow to immediately launch the above processes. Indeed,
an approximate expression for the full evaporation time is tevap ∝ M3, where M is the initial black hole
mass; it then follows that the Page time is 7

8 tevap, and if M is the solar mass, we have tevap ≈ 2.1× 1067

years. In other words, any astrophysical black hole (except for very light primordial ones) is at this
initial stage of its evaporation. Moreover, under realistic conditions, its mass much faster grows due to
accretion than decreases by evaporation.

In our study, we try to answer the following question: What is the internal geometry of such a
large and “young” black hole if its Hawking evaporation can be neglected, but the impact of quantum
fields that are present in a vacuum form is taken into account? In other words: If a body (a particle,
a planet or a spacecraft) falls into such a black hole, what is the geometry it meets there?

More specifically, we are considering the neighborhood of a would-be Schwarzschild singularity
(r = 0) in the framework of semiclassical gravity and explore a possible emergence of a bounce instead
of the singularity. We can recall that in any spacetime region there always exist quantum oscillations of
all physical fields. We do not assume any particular composition of these fields, considering only their
vacuum polarization effects. In such a simplified statement of the problem, we showed [33] that there
is a wide choice of the free parameters of the model that provide a possible implementation of such a
scenario. The SET used to describe the vacuum polarization of quantum fields is taken in the form of
of a linear combination of the tensors (1)Hν

µ and (2)Hν
µ obtained by variation of the curvature-quadratic

invariants R2 and RµνRµν in the effective action in agreement with the renormalization methodology
of quantum field theory in curved spacetimes [34,35]. In this scenario, in the internal Kantowski–Sachs
metric, the spherical radius r evolves to a regular minimum instead of zero, while its longitudinal
scale has a regular maximum instead of infinity. The free parameters of the model can be chosen so
that the curvature scale does not reach the Planck scale but remains a few orders smaller (for example,
on the GUT scale), sufficiently far from the necessity to include quantum gravity effects. The whole
scenario is assumed to be time-symmetric with respect to the bouncing instant, therefore, as in many
other papers, we are describing a smooth transition from black to white hole.

The nonlocal part of the effective SET of quantum fields in the Schwarzschild interior, depending
on the whole history and mainly represented by particle production from vacuum, was estimated
in [36], and it was shown that its contribution in the vicinity of a bounce is many orders of magnitude
smaller than that of (1)Hν

µ and (2)Hν
µ.

In the present paper, after a brief representation of the results of [33,36], we try to find out whether
or not there are classical phenomena that could potentially destroy the bounce, namely, accretion of
different kinds of matter which is always present near astrophysical black holes and whose density
increases as it further moves inside the horizon towards the would-be singularity. It turns out that this
accretion is also unable to affect the bounce due to its negligibly small contribution to the total SET.
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The paper is structured as follows. Section 2 summarizes the problem statement and the
assumptions made. In Section 3, we describe the bouncing solution to the field equations. In Section 4,
we estimate the nonlocal contribution to the effective SET. Section 5 is devoted to calculations of the
spherically symmetric accretion of the CMB radiation and massive matter to a Schwarzschild black
hole. Section 6 is a brief discussion.

2. Field Equations and Assumptions

2.1. Near-Bounce Geometry

Considering a generic static, spherically symmetric black hole in its interior region (beyond the
horizon), also called a T-region, we can write its metric in the general Kantowski–Sachs form

ds2 = dτ2 − e2γ(τ)dx2 − e2β(τ)dΩ2, (1)

where τ is the natural time coordinate in the corresponding reference frame and x is a spatial coordinate
that “inherits” the time coordinate of the static region after crossing the horizon; dΩ2 is, as usual,
the metric on a unit sphere S2. It is a homogeneous anisotropic cosmological model with the topology
R× S2 of its spatial sections.

Assuming that quantum effects can appreciably change the spacetime geometry only if the latter
is very strongly curved, at smaller curvatures, even in a T-region (r < 2m), we can use with sufficient
accuracy the Schwarzschild solution, which then takes the form

ds2 =
(2m

T
− 1
)−1

dT2 −
(2m

T
− 1
)

dx2 − T2dΩ2, (2)

where m = GM, G being Newton’s constant of gravity and M the black hole mass. We use the
units h̄ = c = 1. Compared to the conventional expression, we have changed the notation, r → T,
to emphasize that in the T-region the coordinate r is temporal. Furthermore, at T � 2m, passing on to
the Kantowski–Sachs cosmological time by putting

√
T/(2m)dT = dτ, we obtain an asymptotic form

of the metric in the notations of (1):

ds2 = dτ2 −
(4

3
m
)2/3

τ−2/3dx2 −
(9

2
m
)2/3

τ4/3dΩ2, (3)

which is valid at τ/m � 1. It is the Schwarzschild metric at approach to the singularity τ → 0,
at which the scale along the x axis is infinitely stretched while the spheres x = const are shrinking
to zero.

In this study, our basic assumption will be that quantum field effects do not allow the space time
to approach too close to the singularity r ≡ eβ = 0 (or τ = 0 in (3)) but, instead, stop the contraction
of r at τ = 0 at some regular minimum value r = r0 > 0, while the scale factor eγ along the x axis
simultaneously turns to a regular maximum. Then, at small τ, in agreement with (2) and (3), the metric
takes the form

ds2
∣∣∣
bounce

' dτ2 − 2m
r0

(1− c̄2τ2)dx2 − r2
0(1 + b̄2τ2)dΩ2 (4)

where r0, b̄, c̄ are positive constants with appropriate dimensions. To obtain (4) directly from (2),
we replace T � 2m with r0, then we accordingly replace 2m/T− 1 ≈ 2m/T with 2m/r0 and transform
the temporal part of the metric to dτ2. The terms ∝ τ2 are added according to our minimum and
maximum assumptions. Equivalently, the metric (4) can be obtained from (3) by putting the radius
squared (the factor before dΩ2) equal to r2

0, then the factor before dx2 becomes equal to 2m/r0, and it
again remains to add the terms ∝ τ2 to designate the assumed minimum and maximum.
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In addition to these assumptions, let us also suppose that the time evolution of the metric is
symmetric with respect to the bouncing instant τ = 0. Then, in the notations of (1), we can present the
functions β(τ) and γ(τ) as Taylor expansions with only even powers of τ,

β(τ) = β0 +
1
2

β2τ2 +
1

24
β4τ4 +

1
720

β6τ6 + . . . ,

γ(τ) = γ0 +
1
2

γ2τ2 +
1

24
γ4τ4 +

1
720

γ6τ6 + . . . , (5)

where βi, γi (i = 0, 2, 4, 6, ...) are constants. Then, according to (4),

r0 = eβ0 , 2m/r0 = e2γ0 , 2b̄2 = β2/β0, 2c̄2 = −γ2/γ0. (6)

To explain the behavior (4) of the metric, we invoke the semiclassical approach, writing the
Einstein equations as

Gν
µ = −κ〈 Tν

µ 〉, κ = 8πG, (7)

where the right-hand side (r.h.s.) represents a renormalized stress–energy tensor (SET) 〈 Tν
µ 〉 of

quantum fields, containing, in general, both local and nonlocal contributions.
In the general metric (1), the Einstein tensor Gν

µ has the following nonzero components:

G0
0 = −β̇(β̇ + 2γ̇)− e−2β,

G1
1 = −2β̈− 3β̇2 − e−2β,

G2
2 = G3

3 = −γ̈− β̈− γ̇2 − β̇2 − β̇γ̇. (8)

Substituting the Taylor expansions (5), we can explicitly present these components up to O(τ2)

as follows:

− G0
0 =

1
r2

0

(
1− β2

2β0
τ2
)
+ β2(β2 + 2γ2)τ

2,

− G1
1 =

1
r2

0

(
1− β2

2β0
τ2
)
+ 2β2 + β4τ2 + 3β2

2τ2,

− G2
2 = β2 + γ2 +

1
2
(β4 + γ4)τ

2 + (β2
2 + γ2

2 + β2γ2)τ
2. (9)

2.2. The Stress-Energy Tensor

In agreement with the vast literature on quantum field theory in curved spacetimes, including the
books by [34] (Section 6.2) and [35] (Section 12.2), the renormalized vacuum SET Tµ

ν of quantum fields
may be presented as a linear combination of two tensors of geometric origin (i)Hµν (i = 1, 2) (which can
be obtained by variation of actions containing R2 and RµνRµν, i.e., the Ricci scalar and tensor squared),
with some phenomenological constants N1, N2, and two other contributions, (c)Hµ

ν and Pµ
ν :

〈 Tµ
ν 〉 = N1

(1)Hµ
ν + N2

(2)Hµ
ν + (c)Hµ

ν + Pµ
ν , (10)

where

(1)Hµ
ν ≡ 2RRµ

ν −
1
2

δ
µ
ν R2 + 2δ

µ
ν�R− 2∇ν∇µR,

(2)Hµ
ν ≡ −2∇α∇νRαµ +�Rµ

ν +
1
2

δ
µ
ν�R + 2RµαRαν −

1
2

δ
µ
ν RαβRαβ, (11)

and � = gµν∇µ∇ν. The tensor (c)Hµ
ν is of local nature and depends on the spacetime topology and/or

the boundary conditions (e.g., the Casimir effect [37,38]), while Pµ
ν is nonlocal, it depends on the
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particular quantum states of the constituent fields and, in particular, describes particle production in
a nonstationary metric. Its nonlocal nature means that it is not a function of a spacetime point but
depends, in general, on the whole history. Its calculation is rather a complex task and requires
additional assumptions on quantum states of different fields. We temporarily assume that the
contribution of Pµ

ν is small as compared to the other terms in (10) (at least under a suitable choice of
quantum states) and try to justify this assumption in Section 4.

The components of the tensors (i)Hµ
ν (which turn out to be diagonal) can be easily calculated from

the ansatz (1) with the Taylor expansions (5). At the very instant τ = 0 (at bounce), they are

(1)H0
0 = − 2

r4
0
+ 8β2

2 + 8β2γ2 + 2γ2
2,

(1)H1
1 = − 2

r4
0
− 32β2

2 − 16β2γ2 − 6γ2
2− 8β4 − 4γ4,

(1)H2
2 =

2
r4

0
+

12β2

r2
0
− 24β2

2 − 20β2γ2 − 10γ2
2 − 8β4 − 4γ4,

(2)H0
0 = − 1

r4
0
+ 3β2

2 + 2β2γ2 + γ2
2,

(2)H1
1 = − 1

r4
0
− 9β2

2 − 6β2γ2 − 3γ2
2 − 2β4 − 2γ4,

(2)H2
2 =

1
r4

0
+

4β2

r2
0
− 9β2

2 − 6β2γ2 − 3γ2
2 − 3β4 − γ4. (12)

As is made clear below, their higher orders in τ are unnecessary in our calculations.
What is known about the numerical coefficients N1 and N2 in (10)? According to the authors

of [34,35], their values should be found from experiments or observations. The orders of magnitude of
these coefficients may be roughly estimated by recalling that they appear in higher-derivative theories
of gravity where the action has the form

S ∼
∫

d4x
√
−g(R/(2κ) + N1R2 + N2R2

µν + ...), (13)

the tensors (1,2)Hµν resulting from variation of the corresponding terms. The upper bounds on these
parameters are N1,2 . 1060 (see [39]), as follows from observations performed at very small curvatures,
at which any possible effects of terms quadratic in the curvature are extremely weak. However,
the factors N1,2 may be estimated in another way if such theories of gravity are used to describe the
early (inflationary) Universe with much larger curvatures, for example, N1 ∼ 1010 [40–42]. For our
purposes, we keep in mind this order of magnitude.

Concerning the Casimir contribution, there are arguments indicating that it must be much smaller
than the contribution of (i)Hν

µ. If we consider, for instance, the static counterpart of the metric (1) with
eβ = r = r0, something treatable as a description of an infinitely long wormhole throat, we can use the
result obtained in [43] for a conformally coupled massless scalar field, which reads for this geometry

(c)Hµ
ν =

1
2880π2r4

0

[
2 diag(−1,−1, 1, 1) ln(r0/a0) + diag(0, 0,−1,−1)

]
, (14)

where a0 is some fixed length to be determined by experiment. Note that the quantity (14) is obtained
for a single massless scalar, and the total Casimir contribution must take into account all existing fields
with different spins and masses, hence this contribution may be two or three orders of magnitude
larger than (14).

On the other hand, for the same spacetime geometry,
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(1)Hν
µ = 2 (2)Hν

µ =
2
r4

0
diag(−1,−1, 1, 1). (15)

In what follows we assume that the bounce occurs on the scales of at least a few orders of
magnitude larger than the Planck length lPl to provide the validity of the semiclassical approximation.
As mentioned above, it is reasonable to assume a regular minimum at r0 ∼ 105lPl. On the other
hand, comparing (14) and (15), we see that for (c)Hµν to be of the same order as (i)Hµν, it would be
necessary that | ln(r0/a0)| ' 104, i.e., a0 ' r0 e±104 ' r0 · 10±4342. Taking into account the order of
r0, we conclude that the length scale parameter a0 must then be either many orders smaller than
the Planck scale or many orders larger than the radius of the Universe, and both cases seem to be
physically incredible.

Therefore, if N1 and/or N2 are of the order of unity or larger (as is assumed), the tensors (i)Hµν

contribute much stronger to 〈 Tν
µ 〉 in the Einstein equations (7) than (c)Hµν, unless the uncertain length

a0 in (14) is unreasonably small or high, or the total number of fields is so large as to overcome the
denominator which is ∼ 104.

In our further consideration, we assume that (c)Hµ
ν can be neglected in our geometry (4) and take

into account only the contributions (i)Hν
µ.

3. The Semiclassical Bounce

In this section, we consider the Einstein equations (7) with the SET (10), taking into account only
the first two terms. Our task is to find out whether or not there are solutions consistent with the
bouncing metric (4), and if it is the case, what are the requirements to the free parameters of the model
that would justify the semiclassical nature of the equations. In the subsequent sections, we analyze
the influence of other effects that could in principle destroy the model thus constructed: the nonlocal
contribution to the SET (10) and the possible influence of matter surrounding the black hole and falling
to its interior region.

For our purpose, we express Gµ
ν and (i)Hµ

ν in terms of the Taylor series coefficients in (5) and
equate the coefficients at equal powers of τ on different sides of the resulting equations. Let us
introduce, for convenience, the following dimensionless parameters:

A = κr−2
0 , B2 = κβ2, C2 = κγ2, B4 = κ2β4, C4 = κ2γ4, etc. (16)

Since κ ≈ l2
Pl (the Planck length squared), it is evident that our system remains on the

semiclassical scale only if all parameters (16) are much smaller than unity. Hence, in particular,
the minimum spherical radius r = r0, reached at bounce should be much larger than the Planck length.
Other parameters that should be small are values of the derivatives β̈, γ̈, etc. close to the bounce.

An inspection shows that, in the approximation used, it is sufficient to consider the order O(1) in
the (0

0) component of Equation (7) (or explicitly (9)), from which we find

A = N1[−2A2 + 2(2B2 + C2)
2] + N2[−A2 + (B2 + C2)

2 + 2B2
2 ]. (17)

The role of all other equations reduces to expressing the constants B4, C4, etc. in terms of A, B2, C2.
Thus, we have a single equation for the three parameters A, B2, C2 of the bouncing geometry, along with
the coefficients N1, N2. Therefore, we have a broad space of possible solutions.

As stated above, we must assume that r0 is much larger than the Planck length lPl ∼
√
κ,

from which it follows that A � 1, or A = O(ε), ε being a small parameter. We can also make the
natural assumptions B2 = O(ε) and C2 = O(ε), which means that β̈ and γ̈ are of the same order of
magnitude as 1/r2

0. Then, since the r.h.s. of Equation (17) is O(ε2) while the left-hand side (l.h.s.) is
O(ε), to provide the equality, we must require that N1 and/or N2 should be large, of the order O(1/ε).
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The remaining Einstein equations (1
1) and (2

2) at τ = 0 then show that B4 and C4 are of the order
O(ε2) (see (11)), therefore, the fourth-order derivatives of β and γ are of a correct order of smallness
with respect to the Planck scale (see (16)). Similar estimates are obtained for B6, C6, etc. if we analyze
equations in the order O(τ2), and so on. It can also be verified that the curvature invariants R, RµνRµν

and K ≡ RµνρσRµνρσ are small at bounce (τ = 0) as compared to the Planck scale:

R =
2
r2

0
+ 4β2 + 2γ2 = O

( ε

κ

)
,

RµνRµν =
2
r4

0
+

4β2

r2
0

+ 6β2
2 + 4β2γ2 + 2γ2

2 = O
( ε2

κ2

)
,

K =
4
r4

0
+ 8β2

2 + 4γ2
2 = O

( ε2

κ2

)
. (18)

Consider a numerical example for illustration. Assuming N1 = 0, N2 = 1010, and A = 10−10,
a minimum radius r0 is of 105 Planck lengths. Since, by construction (see (6) and (16)), B2 > 0 and
C2 < 0, we can assume for convenience B2 + C2 = 0. As a result, from Equation (17) we find

B2 = −C2 = 10−10.

If we substituting this into the (1
1) and (2

2) components of the Einstein equations at τ = 0, with the
expressions (8) and (12), we can obtain the values of B4 and C4:

B4 = 3.5× 10−20, C4 = −8.5× 10−20.

From the equations of order O(τ2) one can then determine B6, C6, and so on.
One can recall that in spherically symmetric spacetimes, if the spherical radius eβ = r has a

regular minimum (it is a wormhole throat if the minimum is in an R-region and a bounce if it is in
a T-region), then the SET must satisfy the condition T0

0 − T1
1 < 0 which means violation of the Null

Energy Condition (see [2,44]). In our model, supposing a bounce at τ = 0, we automatically obtain the
inequality T0

0 − T1
1 < 0.

4. Nonlocal Contribution to the Vacuum SET

To estimate the contribution of the nonlocal term Pν
µ in the SET (10), we rewrite the general

metric (1) of a Kantowski–Sachs cosmology as

ds2 = e2αdη2 − e2γdx2 − µ2 e2βdΩ2, (19)

where the time coordinate η is called “conformal time” and is defined by the condition 3α(η) =

2β(η) + γ(η), it is convenient when dealing with quantum fields. The black hole under consideration
is assumed to have a stellar or larger mass mSch, and µ = 2GmSch & 105 cm = 1 km is the corresponding
gravitational radius. Meanwhile, at bounce (say, at the time η = 0), in agreement with the previous
section, we assume that the minimum radius r0 = µ eβ(0) is ∼ 105lPl ∼ 10−28 cm. We accordingly
introduce the small parameter ε = r0/µ . 10−33 (quite different from the parameter ε from the
previous section). Then, at times not too far from the bounce time we can write

e2α = ε(1 + aη2), e2β = ε2(1 + bη2), e2γ = ε−1(1 + cη2). (20)

where 3a = 2b + c according to the definition of η; we have b > 0 since eβ has a minimum and c < 0
since eγ is at maximum at η = 0. The powers of ε in e2β and e2γ characterize the magnitudes of these
metric coefficients when approaching to a would-be Schwarzschild singularity, or, which is the same,
to the powers of r0 in (4), while the factor in e2α then follows from the definition of conformal time. In
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other words, the metrics (4) and (1) with (20) coincide at η = 0⇐⇒ τ = 0, while the coefficients a, b, c
simply correspond to a maximum of gxx and a minimum of r = eβ.

Consider a quantum scalar field satisfying the equation (�+ M2 + ξR)Φ = 0 and its standard
Fourier expansion:

Φ = N e−α
∫

dk ∑
lm

e−ikxYlm(θ, ϕ)gklm(η)c+klm + h.c., (21)

whereN is a normalization factor, ξ is a coupling constant, c+klm is a creation operator, Ylm are spherical
functions, and each time-dependent mode function gklm(η) ≡ g obeys the equation obtained from the
original Klein–Gordon-type scalar field equation by separation of variables:

g̈ + Ω2g = 0, (22)

where the dots denote d/dη and Ω is the effective frequency:

Ω2 = k2 e2(α−γ) +
l(l + 1) + 2ξ

µ2 e2(α−β) + M2 e2α +
2ξ(β̇− γ̇)2

3
+ (6ξ − 1)(α̈ + α̇2). (23)

At the bounce time η = 0, we have, due to standard normalization, |g| ∼ Ω−1/2 and

Ω2(0) = k2ε2 +
l(l + 1) + 2ξ

µ2ε
+ M2ε + (6ξ − 1)a. (24)

Further on, to make our estimates, we adhere to a natural assumption, justified by much
experience [34] (Section 3.5), that the most intensive particle production takes place at energies not
too far from the curvature scale ∼ r−1

0 . This energy is roughly of the same order of magnitude as the
frequency Ω̄(τ) calculated in terms of proper cosmic time τ, which is related to our conformal time by
dτ = eαdη. Therefore, our assumption means Ω̄ ∼ 1/r0. Since eα ∼

√
ε, one has τ ∼

√
εη, and, from

the relation Ωη = Ω̄τ, we immediately obtain Ω̄ = Ω/
√

ε, so that

Ω̄2(0) = k2ε +
l(l + 1) + 2ξ

µ2ε2 + M2 +
(6ξ − 1)a

ε
. (25)

It is now of interest, at which values do the parameters of the model appreciably contribute to Ω̄2

having the order ∼ r−2
0 = (µε)−2. These are:

k ∼ 1
µε3/2 ∼ 1045 cm−1 ∼ 1012 mPl; l, ξ ∼ 1; M ∼ 1

r0
; a = α̈(0) ∼ ε

r2
0

. (26)

Apparently, momenta k strongly exceeding the Planckian value look quite meaningless, and
we can conclude that, at reasonable (that is, sub-Planckian) values of k, their contributions to Ω̄ are
negligibly small.

Note that the result a ∼ ε/r2
0 can be obtained in another way using the relations

e2α = ε−1(1 + τ2/r2
0) = ε−1(1 + aη2), τ ∼

√
εη.

A similar analysis leads to b, c ∼ ε/r2
0. Furthermore, at small values of η, we can assume

Ω ≈ B + Cη2, where B = Ω(0) ∼
√

ε/r0, C/B ∼ (a, b, c) ∼ ε/r2
0. (27)

The energy density of created particles may be estimated using the standard technique of
Bogoliubov coefficients. For of bounce-type metrics similar to ours, the most important Bogoliubov
coefficient βkl can be accurately enough computed by using the formulas [45]
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βkl =

√
I−

I+
sinh
√

I− I+, I± ≡
∫ η

η1

g±(η̄)dη̄, g± ≡ Ω̇
2Ω

exp
(
±2i

∫ η

η1

Ω(η̄)dη̄

)
, (28)

where η1 is the initial time instant at which, by assumption, βkl = 0 (that is, assuming that the field
is in a vacuum state, without particles). Using Equation (27) and making the assumption Bη . O(1)
(which means that η is not very far both from zero value and from η1), we obtain∫ η

η1

Ω(η̄)dη̄ ≈ Bη̄ +
1
3

Cη̄3
∣∣∣η
η1
≈ B(η − η1), (29)

g±(η) ≈ Cη

B
e±2iB(η−η1) ∼ εη

r2
0

e±2iB(η−η1). (30)

Now, we are ready to estimate the integrals I± defined in (28) at times close to the bounce time
η = 0:

I±(η)
∣∣∣
η→0
∼ ε

r2
0

∫ 0

η1

ηdη e±2iB(η−η1) =
ε

r2
0

e∓2iBη1

[
e±2iBη

4B2 (1∓ 2iBη)

]0

η1

=
1
4

[
e∓2iBη1 − 1± 2iBη1

]
≈ −1

2
B2η2

1 . (31)

Then, assuming Bη1 . O(1), we arrive at

βkl ∼ I− ∼ −1
2

B2η2
1 , |β2

kl | ∼
1
4

B4η4
1 . O(1). (32)

Thus, the energy density of produced particles is

ρnonloc = 〈T0
0 〉 ∼

1
8π

∫
dk ∑

l
(2l + 1)

e−4α

µ2 Ω|βkl |2 ∼
105√ε

r4
0
∼ 10−11

r4
0

, (33)

where, for each factor in (33), we have taken the following approximate orders of magnitude, in accord
with (26): (i)

∫
dk ∼ 2mPl = 105/r0 since we integrate from −mPl to +mPl; (ii) ∑l(2l + 1) ∼ 102,

involving a few low multipolarities according to (25), (26) (since large multipolarities would mean
too large mode energies contrary to our assumption that particle creation occurs most intensively at
energies close to the curvature scale); (iii) e−4α/µ2 ∼ 1/r2

0; (iv) Ω ∼
√

ε/r0; and (v) |βkl |2 ∼ 1 as a very
rough upper bound.

A comparison of the estimate (33) with that of the local energy density contribution from vacuum
polarization obtained in the previous section and [33], ρloc ∼ 1010r−4

0 , leads to ρnonloc/ρloc ∼ 10−21,
and this value is still smaller if we consider black holes heavier than the Sun. Even if one relaxes
some of the requirements in (33) within a few orders of magnitude (for instance, including larger
multipolarities), the smallness of the factor 10−21 would safely preserve our qualitative estimate.
We conclude that the nonlocal contribution to the vacuum energy density due to particle production is
negligibly small in the regime of semiclassical bounce, and a more accurate calculation including other
physical fields of different spins can hardly change this estimate too strongly.

5. Matter Accretion into a Schwarzschild Black Hole

5.1. CMB Accretion

Black holes in the real Universe are surrounded by various kinds of matter: interstellar or
intergalactic gas, dust and stellar matter if the black hole gravity destroys approaching stars. Depending
on specific astrophysical circumstances, the ambient matter may form an accretion disk or experience
spherical or close to spherical accretion. The falling matter crosses the horizon and should ultimately
approach the black hole singularity, if the latter really exists. Conversely, if the theory predicts a



Universe 2020, 6, 178 11 of 17

bouncing region instead of a singularity, it is natural to ask: Will the gravity of the accreted matter
strongly change the geometry of the bouncing region? Can it happen that this falling matter will
destroy the bounce (whatever be its origin) and restore the singularity?

We try to answer this question for a Schwarzschild black hole with a semiclassical bounce
described in [33] and in the previous sections. Thus, we assume that the spacetime metric is
approximately Schwarzschild,

ds2 =
(

1− 2m
r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2dΩ2, (34)

everywhere except for a region close to bounce, that is, r . nr0, where, say, n . 10, and r0 is the
minimum radius at bounce.

In this section, we consider spherical accretion of the kind of matter that exists anywhere in
the Universe, the Cosmic Microwave Background (CMB). Thus, our calculation can correspond to
an isolated Schwarzschild black hole in intergalactic space, surrounded by the CMB only, and the
accretion consists in capture of CMB photons. It is thus a minimum possible environment of any black
hole. At each point of the black hole’s ambient space, there is a flow of photons to be captured: these
are photons whose path gets into the so-called photon sphere with the radius rph = 3m. Such photons
may be considered as those forming a radiation flow with the SET

Tν
µ = Φ(r, t)kµkν, kµkµ = 0, (35)

where the null vector kµ is, in a reasonable approximation, radially directed, so that

kµ = ( e−γ,− eγ, 0, 0), kµ = ( eγ, e−γ, 0, 0), (36)

where eγ =
√

1− 2m/r. Then, the conservation law ∇νTν
µ = 0 in the metric (34) gives for Φ = ρflow

(the flow energy density)

Φ(r, t) =
Φ0

r(r− 2m)
, Φ0 = const. (37)

The constant Φ0 should be determined by the CMB energy density and the black hole mass,
taking into account bending of photon paths in the black hole’s gravitational field. Fortunately, there is
no necessity to carry out such a computation anew: we can use, for example, the result obtained by
Bisnovatyi-Kogan and Tsupko [46]. They showed that, if a source of radiation is located at r = 104m
in Schwarzschild spacetime, then the black hole will capture radiation emitted inside a cone with an
angular radius α ≈ 0.0298◦ ≈ 5.203·10−4. If the source radiates isotropically, then the fraction ∆(r) of
the emitted radiation energy captured by the black hole will be equal to the part of the complete solid
angle of 4π contained in the spot of πα2, that is,

∆(r) = πα2/(4π) = α2/4 ≈ 6.768·10−8 for r = 104 m. (38)

At r = 104m or larger, the spacetime may be regarded as approximately flat; therefore, due to flux
conservation, the fraction ∆ should be proportional to r−2. On the one hand, since the area of a sphere
from which the flux is collected is ∝ m2, it should be also ∆ ∝ m2. As a result, we can write, using (38),

∆(r) ≈ ∆0m2

r2 , ∆0 = const ⇒ ∆0 =
∆(r)r2

m2 ≈ 6.678. (39)

On the other hand, at such distances from the black hole, the CMB can be safely regarded as
homogeneous and isotropic, and we can conclude that the accretion flow will have the energy density

T0
0 ≈

Φ0

r2 = ∆(r)ρCMB =
∆0m2

r2 ρCMB ⇒ Φ0 = ∆0m2ρCMB, (40)
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where the CMB density ρCMB is nowadays

ρCMB ≈ 0.4·10−12 erg cm−3 ≈ 1.41·10−128 l−4
Pl , (41)

where ρPl = l−4
Pl is the Planck density.

Thus, we know the SET (35) with (37) and (40) in the external region of the black hole, but the
quantity (37) diverges at the horizon r = 2m. This looks natural since in our static reference frame the
radiation is infinitely blueshifted at the horizon, where this reference frame in no more valid. However,
our purpose is to find out how this radiation behaves deeply beyond the horizon. To extend the
expression (35) to r < 2m, let us transform it to the Kruskal coordinates valid at all r. To do that, it is
convenient to use at r > 2m the so-called tortoise radial coordinate

r∗ = r + 2m ln
( r

2m
− 1
)
⇒ ds2 =

(
1− r

2m

)
(dt2 − dr2

∗)− r2dΩ2 (42)

(note that r∗ → −∞ as r → 2m). This coordinate belongs to the same static reference frame, hence the
flow energy density T0

0 = Φ. However, the null vector kµ is now, instead of (36),

kµ = ( e−γ,− e−γ, 0, 0), kµ = ( eγ, eγ, 0, 0), (43)

where, as before, eγ =
√

1− 2m/r, and the nonzero covariant SET components have the form

T00 = T01 = T10 = T11 = Φ e2γ =
Φ0

r2 , (44)

convenient for the transformation.
The Kruskal coordinates R, T, in which the metric has the form

ds2 =
32m3

r
e−r/(2m)(dT2 − dR2)− r2dΩ2, (45)

are related to r∗, t by

t = 2m ln
R + T
R− T

, r∗ = 2m ln
R2 − T2

4
. (46)

Using this, we transform Tµν to the Kruskal coordinates and find the nonzero components

TTT = TTR = TRT = TRR =
16Φ0m2

r2(R + T)2 . (47)

In (45) and (47), the horizon r∗ = −∞ 7→ R2 = T2 is a regular surface, the static region r > 2m
corresponds to R2 > T2, while at r < 2m instead of the coordinates r∗, t or r, t we can introduce their
counterparts x (analog of t) and τ (analog of r∗) by putting, for T > R > 0 (the upper quadrant in
Kruskal’s diagram),

R = eτ/(4m) sinh
x

4m
, T = eτ/(4m) cosh

x
4m

, (48)

so that the metric acquires the Kantowski-Sachs form

ds2 =
(2m

r
− 1
)
(dτ2 − dx2)− r2dΩ2 =

(2m
r
− 1
)−1

dr2 −
(2m

r
− 1
)

dx2 − r2dΩ2, (49)

the two timelike coordinates r and τ being related by

τ = r + 2m ln
2m− r

2m
. (50)

The horizon corresponds to r = 2m or τ → −∞, while the singularity r = 0 occurs at τ = 0.
Using (48), we transform the tensor (47) to the Kantowski–Sachs coordinates τ, x, obtaining
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Tττ = Tτx = Txτ = Txx =
Φ0

r2 , (51)

from which it follows that the energy density is

Tτ
τ = ρflow =

Φ0

r(2m− r)
. (52)

We see that in the Kantowski–Sachs reference frame, in which the Schwarzschild metric looks
very similar to its usual appearance in the static region, the expression for ρflow also looks very similar.
It is the density in the same reference frame that was used for describing the bounce and can thus be
compared with the vacuum polarization density ρvac ∼ 1010r−4

0 ∼ 10−10ρPl at bounce.
Assuming that the internal Schwarzschild metric (49) is the true metric up to r & r0 � 2m,

using (40) and (41), we obtain for such small radii

ρflow ≈
Φ0

2mr
≈ ∆0mρCMB

2r
, (53)

and, since ∆0 is of the order of unity, we conclude that the flow density at small radii is larger than ρCMB
approximately by a factor of m/r. For a black hole of stellar mass, m ∼ 105 cm and r ∼ r0 ∼ 105lPl,
this factor is ∼ 1033, so that, with ρvac ∼ 10−10ρPl and recalling (41), we obtain ρflow/ρvac ∼ 10−85.

This ratio will certainly be larger for heavier black holes and for earlier epochs when ρCMB was
larger by a factor of (a0/a)4, where a is the cosmological scale factor and a0 its present value. Assuming
the existence of supermassive black holes with m ∼ 109 solar masses at scale factors a ∼ 10−3 a0 (that
is, at z ∼ 1000, close to the recombination time), the above ratio gains 21 orders of magnitude, resulting
in ρflow/ρvac ∼ 10−64.

We conclude that CMB accretion cannot exert any influence on the model dynamics at small radii
close to bounce or a would-be singularity inside a Schwarzschild black hole. Very probably, accretion
of ambient matter can be much more important, and our next task is to estimate its impact.

5.2. Dust Accretion

Matter falling onto a black hole has in general the form of hot gas but close to the horizon this
gas is nearly in a state of free fall [47] (Section 9.3), therefore the approximation of dust freely radially
moving to the horizon looks quite adequate, and it is reasonable to assume that the same regime well
describes its further motion in the T-region.

Thus, we consider the Schwarzschild spacetime with the metric (34) or, in terms of the tortoise
coordinate r∗, (42). In this metric, we consider matter with the SET

Tν
µ = ρuµuν, (54)

where the components of the 4-velocity vector uµ for radial motion may be written, in terms of the
radial coordinate r∗, in the form

uµ = ( e−γ
√

1 + v2,− e−γv, 0, 0), uµ = ( eγ
√

1 + v2, eγv, 0, 0), (55)

where v = e−γdr∗/ds (s is proper time along the world line), so that uµuν = 1.
We assume a steady infalling flow, so that both ρ and uµ in the R-region (r > 2m) depend on r

only. Then, the conservation law ∇νTν
µ has two nontrivial components:

(ρv
√

1 + v2)′ = −(ρv
√

1 + v2)(2β′ + 2γ′).

(ρv2)′ + ρv2(2β′ + 2γ′) + ργ′ = 0, (56)
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where the prime denotes d/dr, eγ =
√

1− 2m/r, eβ = r. Solving these equations to find ρ and v as
functions of r, we obtain1

ρ =
K e−2β

E
√

E2 − e2γ
=

K
r2E
√

E2 − 1 + 2m/r
, E, K = const, (57)

v2 = E2 e−2γ − 1 =
E2r

r− 2m
− 1. (58)

Recalling that dust particles move along geodesics, one can independently obtain v2 from the
geodesic equations which lead precisely to the expression (58), and the constant E has the meaning of
conserved energy in the course of geodesic motion.

Now, our task is to follow the motion of the dust flow to the T-region. To do that, we again use
the transformation (46), now for Tµν = ρuµuν, and the result in the (R, T) coordinates is

TTT =
16m2ρ(ER− T

√
E2 − e2γ)2

(R2 − T2)2 ,

TRT =
16m2ρ((R2 + T2)E

√
E2 − e2γ)− RT(2E2 − e2γ)

(R2 − T2)2 ,

TRR =
16m2ρ(ET − R

√
E2 − e2γ)2

(R2 − T2)2 . (59)

One can verify that these expressions lead to the correct expression for the SET trace, Tµ
µ = ρ. The

expressions (59) are valid in both R- and T-regions, even though in the T-region (r < 2m) we have
e2γ < 0, so this notation should be perceived as a symbolic one.

The next step is to use the transformation (48) to the metric (49), which results in

Tττ = ρ(E2 − e2γ) = ρ(E2 − 1 + 2m/r),

Tτx = −ρ
R4 + T4

(T2 − R2)2 ,

Txx = ρE2. (60)

It is again easy to verify the correctness of these expressions by confirming that Tµ
µ = ρ, now in

the metric (49) in terms of τ and x.
With (60), we find the following expression for the energy density of the dust flow in the T-region:

Tτ
τ =

r
2m− r

Tττ =
K
√

E2 − 1 + 2m/r
Er(2m− r)

. (61)

Let us estimate this quantity at r � 2m, assuming E = 1 (which corresponds to zero velocity of
dust particles at infinity):

ρE = Tτ
τ =

K√
2mr3/2

. (62)

The constant K can be found if we know the dust density at some r in the R-region. To this
end, we can recall that, according to [47] (page 324), under typical conditions the falling matter

1 Note that the expressions for ρ and v2 in terms of β and γ are valid not only in the Schwarzschild metric but in any static,
spherically symmetric metric written as ds2 = e2γ(x)(dt2 − dx2)− e2β(x)dΩ2.
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density is ρ ' (6·10−12 g/cm3)(2m/r)3/2. Thus, say, at r = 10m we obtain ρ ∼ 10−12 g/cm3 which
approximately equals 2·10−106 ρPl.2 We thus have

ρ
∣∣∣
r=10m

=
K√

2m(10m)3/2
' 2·10−106ρPl ⇒ K ' m2·10−104 ρPl. (63)

With this value of K, let us estimate the dust energy density ρE at the radius r = r0 = 105 lPl, the
supposed bounce radius. According to (62),

ρE

∣∣∣
r=105 lPl

≈ K√
2mr3/2

=
10−104
√

2

(m
r

)3/2
ρPl. (64)

For the black hole mass m ≈ m�, we have (m/r)3/2 ≈ 1050, so that

ρE

∣∣∣
r=105 lPl

≈ 10−52ρPl ≈ 10−42ρvac (65)

if we assume ρvac ≈ 10−10ρPl. We conclude that the influence of the accretion flow on the hypothetic
semiclassical bounce is quite negligible. The situation does not change if we assume, say, the initial
dust density five orders of magnitude larger and a supermassive black hole of 109m�: we thus gain
about 18 orders of magnitude in (65), and there remains a difference of 24 orders.

6. Conclusions

We have constructed a simple model [33] describing a possible geometry that can exist deeply
inside a sufficiently large black hole at its sufficiently early stage of evolution, when the Hawking
radiation is negligible due to its extremely low temperature, and one could not yet feel the influence
of quantum entanglement phenomena. The model is semiclassical in nature and is governed by
vacuum polarization leading to the emergence of quadratic curvature invariants in the effective action.
We assumed that the free constants appearing at these invariants have values of the same order as in
some well-known models of the inflationary universe, and showed that the corresponding terms in
the effective Einstein equations lead to solutions in which the Schwarzschild singularity is replaced by
a regular bounce, ultimately leading to a white hole.

Furthermore, we argued that other quantum effects such as the Casimir effect, caused by the
spherical topology of a subspace in the Kantowski–Sachs cosmology inside the black hole, and particle
production from vacuum caused by a nonstationary nature of the metric, make only negligible
contributions to the total effective SET and therefore cannot destroy the bouncing geometry. The same
was shown for possible classical phenomena that could interfere, namely accretion of different kinds
of matter and its further motion to the black hole interior. It can be said that, in a sense, our simple
bouncing model is stable under both quantum and classical perturbations.

It would be of substantial interest to study how this model would be modified if Hawking
radiation at its early stages is considered. Another subject of future studies can be concerned with
using similar assumptions for black holes with charge and spin, where the nature of singularities is
quite different and where Cauchy horizons take place. As mentioned in [31], according to the stability
analysis of Kerr and Reissner-Nordström spacetimes, their Cauchy horizons are unstable under small
perturbations, from which it follows that a generic black hole singularity must be null rather than
spacelike as in the Schwarzschild metric, and the analysis of such singularities and their possible
avoidance should be a promising field of research.

2 1 g/cm3 ≈ 2·10−94ρPl.
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