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Abstract: Quaternions have an (over a century-old) extensive and quite complicated interaction with
special relativity. Since quaternions are intrinsically 4-dimensional, and do such a good job of handling
3-dimensional rotations, the hope has always been that the use of quaternions would simplify some
of the algebra of the Lorentz transformations. Herein we report a new and relatively nice result for
the relativistic combination of non-collinear 3-velocities. We work with the relativistic half-velocities
w defined by v = 2w

1+w2 , so that w = v
1+
√

1−v2 = v
2 +O(v3), and promote them to quaternions using

w = w n̂, where n̂ is a unit quaternion. We shall first show that the composition of relativistic
half-velocities is given by w1⊕2 ≡ w1 ⊕w2 ≡ (1−w1w2)

−1(w1 + w2), and then show that this is
also equivalent to w1⊕2 = (w1 + w2)(1−w2w1)

−1. Here as usual we adopt units where the speed of
light is set to unity. Note that all of the complicated angular dependence for relativistic combination of
non-collinear 3-velocities is now encoded in the quaternion multiplication of w1 with w2. This result
can furthermore be extended to obtain novel elegant and compact formulae for both the associated
Wigner angle Ω and the direction of the combined velocities: eΩ = eΩ Ω̂ = (1−w1w2)

−1(1−w2w1),
and ŵ1⊕2 = eΩ/2 w1+w2

|w1+w2|
. Finally, we use this formalism to investigate the conditions under which

the relativistic composition of 3-velocities is associative. Thus, we would argue, many key results
that are ultimately due to the non-commutativity of non-collinear boosts can be easily rephrased in
terms of the non-commutative algebra of quaternions.
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1. Introduction

Hamilton first described the quaternions in the mid-1800s, primarily with a view to finding
algebraically simple ways to handle 3-dimensional rotations. With the advent of special relativity
in 1905, and noting the manifestly 4-dimensional nature of quaternions once one adds a real part,
multiple authors have tried to interpret special relativity in an intrinsically quaternionic fashion [1–9].

Despite technical success in applying quaternions to special relativity, the use of quaternions in
this subject has never really gained all that much traction in the physics community. Perhaps one
of the reasons for this is that there are a number of sub-optimal notational choices in Silberstein’s
original work [1–3], and the fact that there is no generally accepted way of using quaternions to
represent Lorentz transformations, with many different authors employing their own quite distinct
methods [1–9]. Even in more recent, post-millennial, articles on “quaternionic special relativity” there
is considerable disagreement on notational choices [10–13].

Below we shall introduce what we feel is a particularly simple and straightforward method
for combining relativistic 3-velocities using quaternions. In particular, we shall present some new
and compact formulae for computing the Wigner angle [14]. All of the interesting features due to
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non-commutativity properties of non-collinear boosts are implicitly and rather efficiently dealt with
by the non-commutative algebra of quaternions. The method is based on an extension of an analysis
by Giust, Vigoureux, and Lages [15,16], who (because they were working with the usual complex
numbers) were essentially limited to motion in 2-space; their formalism is not really well-adapted to
general motions in 3-space. Related constructions can also be found in [10,11].

Observe that there is a representation of pure quaternions in terms of a subset of 2× 2 matrices,
specifically the anti-hermitian 2× 2 matrices, essentially

√
−1× (Pauli matrices). (The factor of

√
−1

is important.) However this does not mean that replacing quaternions by Pauli matrices in any way
simplifies our results below; it just complicates the formalism. Neither does this mean that any of our
results below are at all “well-known” in this alternate notation. We have carefully checked the relevant
literature, (roughly speaking, 2-spinor representations of the Lorentz group). There is much more than
pedagogy going on—the results reported in our article are (apart from a consistency check or two)
both novel and interesting (see also [13].)

2. Preliminaries

2.1. Lorentz Transformations

The set of all Lorentz transformations of space-time form a group called the Lorentz group.
Mathematically, the Lorentz group is isomorphic to O(1, 3), the orthogonal group of one time and
three space dimensions that preserves the space-time interval

s2 = −t2 + x2 + y2 + z2. (1)

Here and hereafter, as usual we adopt units where the speed of light is set to unity. It is clear from
this description that rotations of space-time are included in the Lorentz group, as well as the more
familiar pure Lorentz transformations (boosts). In fact, the pure Lorentz transformations do not even
form a subgroup of the Lorentz group as, in general, the composition of two boosts B1 and B2 is not
another boost but in fact a boost and a rotation B12R12 = B1B2; while B21R21 = B2B1. This rotation,
known as the Wigner rotation, was first discovered by Llewellyn Thomas in 1926 whilst trying to
describe the Zeeman effect from a relativistic view-point [17], and was more fully analyzed by Eugene
Wigner in 1939 [14]. (For more recent discussions see [18–22]).

It is well–known that the composition of Lorentz transformations is non-commutative. That is,
applying two successive boosts B1 and B2 in different orders results in the same final boost, B12 = B21,
but different rotations, R12 6= R21. In the context of the combination of two velocities ~v1 and ~v2, this
means that the final speed is the same no matter the order we combine the velocities, ||~v1 ⊕~v2|| =
||~v2 ⊕~v1||, but the final directions they point in are different v̂1⊕2 6= v̂2⊕1. Although not immediately
obvious, the angle between ~v1⊕2 = ~v1 ⊕ ~v2 and ~v2⊕1 = ~v2 ⊕ ~v1 is in fact the Wigner angle Ω,
see Reference [22]. The Lorentz group has very many different representations, one of which is
formulated by using the quaternions [1,2,4].

One could instead try to deal with the non-commutativity of the Lorentz transformations by
adapting the general formalism of the Baker–Campbell–Hausdorff theorem [23–27]. Unfortunately the
general BCH formalism applied to this problem very quickly becomes intractable, and we have found
that the specifics of the quaternion formalism yield much more useful and tractable results.

Since the full symmetry group of the Maxwell equations is the conformal extension of the
Poincare group, it is sometimes useful, (when looking at pure electromagnetic effects), to work with
this conformal extension. However physical observers, (physical clocks and physical rulers), break the
conformal invariance, and to even meaningfully define 3-velocities one needs to restrict attention to
the Poincare group. We shall go even further and take translation invariance (spatial and temporal
homogeneity) for granted, and focus more specifically on the Lorentz group.
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2.2. Quaternions

The quaternions are numbers that can be written in the form a + b i + c j + d k, where a, b, c, and d
are real numbers, and i, j, and k are the quaternion units which satisfy the famous relation

i2 = j2 = k2 = ijk = −1. (2)

They form a four–dimensional number system that is generally treated as an extension of the
complex numbers. We shall define the quaternion conjugate of the quaternion q = a + b i + c j + d k
to be q? = a− b i− c j− d k, and define the norm of q to be qq? = |q|2 = a2 + b2 + c2 + d2 ∈ R+.
This allows us to evaluate the quaternion inverse as q−1 = q?/|q|2.

Trying to define a “norm” as q2 = a2 − b2 − c2 − d2, while superficially more “relativistic”,
violates the usual mathematical definition of “norm”, and furthermore is not useful when it comes to
evaluating the quaternion inverse q−1.

For current purposes we focus our attention on pure quaternions. That is, we consider quaternions
of the form a i + b j + c k. Many quaternion operations become much simpler when we are dealing
with pure quaternions. For example, the product of two pure quaternions p and q is given by
pq = −~p ·~q + (~p×~q) · (i, j, k), where, in general, we shall set v = ~v · (i, j, k). From this, we obtain the
useful relations

[p, q] = 2(~p×~q) · (i, j, k), and {p, q} = −2~p ·~q. (3)

A notable consequence of (3) is q2 = −~q ·~q = −q2 = −|q|2. There is a natural isomorphism
between the space of pure quaternions and R3 given by

i 7→ x̂, j 7→ ŷ, k 7→ ẑ; (4)

where x̂, ŷ, and ẑ are the standard unit vectors in R3.
One of the most common uses for quaternions today (2020) is in the computer graphics

community, where they are used to compactly and efficiently generate rotations in 3-space. Indeed,
if q = cos(θ/2) + û sin(θ/2) is an arbitrary unit quaternion and v is the image of a vector in R3 under
the isomorphism (4), then the mapping v 7→ qvq−1 rotates v through an angle θ about the axis defined
by û. The mapping v 7→ qvq−1 is called quaternion conjugation by q.

3. Combining Two 3-Velocities

In the paper by Giust, Vigoureux, and Lages [15], see also Reference [16], (and the somewhat
related discussion in Reference [10]), a method is developed to compactly combine relativistic velocities
in two space dimensions, and by extension, coplanar relativistic velocities in 3 space dimensions. In the
following subsection, we first provide a short summary of their approach, and then in the next
subsection extend their method to general non-coplanar 3-velocities.

3.1. Velocities in the (x,y)-Plane

The success of this Giust, Vigoureux, and Lages approach relies on the angle addition formula for
the hyperbolic tangent function,

tanh(ξ1 + ξ2) =
tanh ξ1 + tanh ξ2

1 + tanh ξ1 tanh ξ2
. (5)

The tanh function is a natural choice for combining relativistic velocities since it is limited to
the interval [−1, 1]. Indeed, using the rapidity ξ defined by v = tanh(ξ), we can easily combine
collinear relativistic speeds using Equation (5). In order to use this for the combination of non-collinear
relativistic 2-velocities, we replace each 2-velocity ~v by the complex number

V = tanh(ξ/2) eiϕ. (6)
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Here ξ is the rapidity of the velocity~v, and ϕ gives the orientation of~v according to some observer
in the plane defined by ~v1 and ~v2. Giust, Vigoureux, and Lages then define the composition law ⊕ for
coplanar velocities ~v1 and ~v2 by

W = tanh
ξ

2
eiϕ1⊕2 = V1 ⊕V2 =

V1 + V2

1 + V2 V1
=

tanh ξ1
2 eiϕ1 + tanh ξ2

2 eiϕ2

1 + tanh ξ2
2 e−iϕ2 tanh ξ1

2 eiϕ1
, (7)

where V is the standard complex conjugate of V. By using ξ/2 instead of ξ in Equations (6) and (7),
we are actually dealing with the “relativistic half–velocities”, tanh(ξ/2), (sometimes called the
“symmetric velocities”), where

w = tanh(ξ/2); v = tanh(ξ) =
2w

1 + w2 . (8)

That is:

w = tanh
(

1
2

tanh−1(v)
)
=

v
1 +
√

1− v2
. (9)

Using Equations (5) and (7) we can easily retrieve the real velocity from the half-velocity by using
the ⊕ operator: v = tanh ξ = tanh ξ/2⊕ tanh ξ/2 = w⊕ w. In terms of the half velocities

w1⊕2 eiϕ1⊕2 =
w1 eiϕ1 + w2 eiϕ2

1 + w1w2 ei(ϕ1−ϕ2)
. (10)

The ⊕ addition law is non-commutative, which is most easily seen by first setting θ = ϕ2 − ϕ1,
then Ω = ϕ1⊕2 − ϕ2⊕1, and finally observing that the ratio

eiΩ/2 =
1 + tanh ξ1

2 tanh ξ2
2 eiθ

1 + tanh ξ1
2 tanh ξ2

2 e−iθ
=

1 + w1w2eiθ

1 + w1w2e−iθ (11)

is not equal to unity for non–zero θ, meaning that Ω = ϕ1⊕2 − ϕ2⊕1 is non-zero.
The angle Ω = ϕ1⊕2 − ϕ2⊕1 is in fact the Wigner angle Ω, so an expression for this angle can be

obtained by taking the real and imaginary parts of Equation (11):

tan
Ω
2

=
tanh ξ1

2 tanh ξ2
2 sin θ

1 + tanh ξ1
2 tanh ξ2

2 cos θ
=

w1w2 sin θ

1 + w1w2 cos θ
. (12)

This expression does not explicitly appear in Reference [15] though something functionally
equivalent, in the form Ω = 2 arg(1 + w1w2eiθ), appears in Reference [16].

The ⊕ law can be applied to any number of coplanar velocities by iteration:

W = (((V1 ⊕V2)⊕ · · · ⊕Vn−1)⊕Vn). (13)

Thus it would be desirable to cleanly extend this formalism to general three-dimensional velocities.
Note that the order of composition is important, as we shall see in more detail below, the ⊕ operation
is in general not associative.

3.2. General 3-Velocities

We now extend the result of Giust, Vigoureux, and Lages to arbitrary 3-velocities in
three dimensions.
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3.2.1. Algorithm

Suppose we have a velocity ~vi in the (x, y)-plane, represented by the pure quaternion
wi = tanh(ξi/2)n̂i = tanh(ξi/2) (i cos θi + j sin θi). Using the rules for quaternion multiplication,
we can write this as wi = tanh(ξi/2) (cos θi + k sin θi)i. The term inside the brackets now looks
very similar to what would be a natural extension of the exponential function to the quaternions,
ekθ = cos θ + k sin θ. To formalise this, we define the exponential of a quaternion q by the power series

eq =
∞

∑
k=0

qk

k!
. (14)

To calculate an explicit formula for Equation (14), we first consider the case of a pure quaternion u.
We know from Section 2.2 that for a pure quaternion we have u2 = −|u|2, and so we find
u3 = −|u|2u, u4 = |u|4, and so on. Thus, we can compute

eu ≡
∞

∑
k=0

uk

k!
=

(
1− 1

2!
|u|2 + 1

4!
|u|4 − . . .

)
+

u
|u|

(
|u| − 1

3!
|u|3 + 1

5!
|u|5 − . . .

)
= cos |u|+ û sin |u|. (15)

Following the same procedure above, we find the exponential of a pure unit quaternion û and
real number φ to be

eûφ = cos φ + û sin φ. (16)

This nice result reflects the expression for the exponential of a complex number.
We can now extend this result to any arbitrary quaternion q = a + u by noting that the real

number a commutes with all the terms in u, thereby allowing us to write eq = eaeu, where eu has the
same form as Equation (15). Explicitly,

eq = ea(cos |u|+ û sin |u|). (17)

The exponential of a quaternion possesses many of the same properties as the exponential of a
complex number. Two particularly useful ones we use below are(

eûφ
)?

= e−ûφ = cos φ− û sin φ, and |eûφ| = 1. (18)

Using these results, we are now justified in writing

wi = tanh(ξi/2) ekθi i = wi ekθi i (19)

for our velocity in the (x, y)-plane.
Building on this result, we now find it appropriate to define the⊕ operator for general 3-velocities,

w1 = w1n̂1 and w2 = w2n̂2, by the novel formula:

w1⊕2 = w1 ⊕w2 = (1−w1w2)
−1(w1 + w2). (20)

The usefulness of this novel definition is best understood by looking at a few examples.

3.2.2. Example: Parallel Velocities

We consider two parallel velocities ~v1 and ~v2 represented by the quaternions

w1 = tanh
ξ1

2
n̂ and w2 = tanh

ξ2

2
n̂, (21)
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respectively. Our composition law (20) then gives

w1⊕2 =
(

1 + tanh ξ1
2 tanh ξ2

2

)−1 (
tanh ξ1

2 n̂+ tanh ξ2
2 n̂
)

=
tanh ξ1

2 +tanh ξ2
2

1+tanh ξ1
2 tanh ξ2

2

n̂

= tanh
(

ξ1+ξ2
2

)
n̂,

(22)

which is equivalent to

w1⊕2 =
w1 + w2

1 + w1w2
n̂, (23)

and hence, also equivalent to the well–known result for the relativistic composition of two
parallel velocities,

~v1 ⊕~v2 =
v1 + v2

1 + v1v2
n̂. (24)

3.2.3. Example: Perpendicular Velocities in the x–y Plane

We now consider two perpendicular velocities in the x–y plane. By rotating around the z axis,
without loss of generality they can be taken to be given by

w1 = w1i, w2 = w2 j, (25)

where we have written tanh(ξ1/2) = w1 and tanh(ξ2/2) = w2 for brevity.
Our composition law then gives a combined velocity of

w1⊕2 = (1− w1w2ij)−1(w1i + w2j) =
w1(1− w2

2)i + w2(1 + w2
1)j

1 + w2
1w2

2
, (26)

which is definitely not commutative. In contrast the norm is symmetric:

|w1⊕2|2 =
w2

1(1− w2
2)

2 + w2
2(1 + w2

1)
2

(1 + w2
1w2

2)
2

=
w2

1 + w2
2 + w2

1w4
2 + w2

2w4
1

(1 + w2
1w2

2)
2

=
w2

1 + w2
2

1 + w2
1w2

2
. (27)

Here the wi are the “relativistic half–velocities” wi = tanh(ξi/2), so the full velocities are

|vi|2 = |wi ⊕wi|2 =
4w2

i
(1 + w2

i )
2

, (28)

and so give a final speed of

|v1⊕2|2 =
4
(
w2

1 + w2
2
)

(
1 + w2

1w2
2
) [

1 + w2
1+w2

2
1+w2

1w2
2

]2 =
4
(
w2

1 + w2
2
)(

1 + w2
1w2

2
)[(

1 + w2
1
)(

1 + w2
2
)]2 . (29)

The non-quaternionic result for the composition of two perpendicular velocities is [22]

||~v1⊕2||2 = v2
1 + v2

2 − v2
1v2

2. (30)

Thus, we find

||~v1⊕2||2 =
4w2

1
(1 + w2

1)
2
+

4w2
2

(1 + w2
2)

2
−

16w2
1w2

2
(1 + w2

1)
2(1 + w2

2)
2
=

4(w2
1 + w2

2)(1 + w2
1w2

2)[
(1 + w2

1)(1 + w2
2)
]2 . (31)
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And so our composition law ⊕ gives the standard result for the composition of two perpendicular
velocities in the x–y plane.

3.2.4. Example: Perpendicular Velocities in General

For general perpendicular velocities ~v1 and ~v2 the easiest way of proceeding is to simply rotate to
point ~v1 along the x-axis and ~v2 along the y-axis, and just copy the argument above. If one wishes to
be more direct then simply define

w1 = w1 ŵ1, w2 = w2 ŵ2; ŵ3 = ŵ1 ŵ2. (32)

In view of the mutual orthogonality of the vectors ŵ1, ŵ2, and ŵ3, the unit quaternions
(ŵ1, ŵ2, ŵ3) obey exactly the same commutation relations as (i, j, k). Thence

w1⊕2 = (1− w1w2ŵ1ŵ2)
−1(w1ŵ1 + w2ŵ2) =

w1(1− w2
2)ŵ1 + w2(1 + w2

1)ŵ2

1 + w2
1w2

2
. (33)

This now leads to exactly the same results as above; there was no loss of generality inherent in
working in the x–y plane.

3.2.5. Example: Reduction to Giust–Vigoureux–Lages Result in the x–y Plane

It is important to note that our composition law ⊕ reduces to the composition law of Giust,
Vigoureux, and Lages [15] when dealing with planar velocities in the x–y plane. As above, we define
general velocities in the (i, j)-plane by w1 = tanh(ξ1/2)ekφ1 i, and w2 = tanh(ξ2/2)ekφ2 i, then,
using our composition law (20), we find

w1⊕2 =

(
1− tanh

ξ1

2
ekφ1 i tanh

ξ2

2
ekφ2 i

)−1 (
tanh

ξ1

2
ekφ1 i + tanh

ξ2

2
ekφ2 i

)
. (34)

But, noting that tanh(ξ2/2)ekφ2 i = tanh(ξ2/2)i e−kφ2 and i2 = −1, we can re-write this as

w1⊕2 =

(
1 + tanh

ξ1

2
ekφ1 tanh

ξ2

2
e−kφ2

)−1 (
tanh

ξ1

2
ekφ1 + tanh

ξ2

2
ekφ2

)
i. (35)

Now writing
w1⊕2 = tanh(ξ1⊕2/2) ekφ1⊕2 i (36)

we can cancel out the trailing i, to obtain

tanh
ξ1⊕2

2
ekφ1⊕2 =

(
1 + tanh

ξ1

2
ekφ1 tanh

ξ2

2
e−kφ2

)−1 (
tanh

ξ1

2
ekφ1 + tanh

ξ2

2
ekφ2

)
. (37)

This expression now only contains k, so everything commutes, and we can write

w1⊕2 ekφ1⊕2 =
w1 ekφ1 + w2 ekφ2

1 + w1 ekφ1 w2 e−kφ2
(38)

which is equivalent to the result of Giust, Vigoureux, and Lages [15].
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3.2.6. Example: Composition in General Directions

For general velocities ~v1 and ~v2 the easiest way of proceeding is to simply rotate to put ~v1 and ~v2

in the the x–y plane, and just copy the Giust–Vigoureux–Lages argument [15] above. If one wishes to
be more direct then simply define

w1 = w1 ŵ1, w2 = w2 ŵ2; ŵ3 =
[ŵ1, ŵ2]

| [ŵ1, ŵ2] |
. (39)

As long as ŵ1 is not parallel to ŵ2, then ŵ3 is well defined and perpendicular to both ŵ1 and ŵ2.
With these definitions one can now write

ŵ2 = exp(φ ŵ3) ŵ1. (40)

Then, following the discussion above, we see

w1⊕2 = (1 + w1 w2 e−ŵ3φ)−1(w1 ŵ1 + w2 ŵ2) = (1 + w1 w2 e−ŵ3φ)−1(w1 + w2 eŵ3φ)ŵ1. (41)

From this we can extract

w1⊕2 eŵ3φ1⊕2 = (1 + w1 w2 e−ŵ3φ)−1(w1 + w2 eŵ3φ) =
(w1 + w2 eŵ3φ)

(1 + w1 w2 e−ŵ3φ)
. (42)

Thence

w1⊕2 eŵ3φ1⊕2 =
(w1 + w2 eŵ3φ)

(1 + w1 w2 e−ŵ3φ)
. (43)

This finally is a fully explicit result for general velocities ~v1 and ~v2, which is manifestly in
agreement with the Giust–Vigoureux–Lages results [15].

3.2.7. Uniqueness of the Composition Law

Finally, we might note that the expression for the composition law (20) is not unique. For example,
by considering the power-series of (1−w1w2)

−1, we can re-write Equation (20) as

w1⊕2 = (1−w1w2)
−1(w1 + w2) =

∞

∑
n=0

(w1w2)
n(w1 + w2). (44)

But, as w1 and w2 are pure quaternions, both w2
1 and w2

2 are real numbers, and so commute with
w1 and w2. Thus,

w1⊕2 =
∞

∑
n=0

(w1w2)
nw1 +

∞

∑
n=0

(w1w2)
nw2 = w1

∞

∑
n=0

(w2w1)
n + w2

∞

∑
n=0

(w2w1)
n. (45)

Consequently we find that our composition law can also be written as

w1⊕2 = (w1 + w2)
∞

∑
n=0

(w2w1)
n = (w1 + w2)(1−w2w1)

−1. (46)

Indeed, one could use either Equation (20) or Equation (45) as the definition of the composition
law ⊕. Nonetheless, we will stick with the convention given in (20).
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3.3. Calculating the Wigner Angle

In this section we obtain an expression for the Wigner angle for general 3-velocities using our
composition law (20). Our calculations are obtained using the result that the Wigner angle is the angle
between the velocities w1⊕2 and w2⊕1. We first note

|w1⊕2| = |w2⊕1| = |1−w1w2|−1|w1 + w2| =
|w1n̂1 + w2n̂2|
|1− w1w2 n̂1n̂2|

. (47)

Thence, setting cos θ = ~n1 ·~n2 we explicitly verify

|w1⊕2| = |w2⊕1| =

√
w2

1 + w2
2 + 2w1w2 cos θ

1 + w2
1w2

2 + 2w1w2 cos θ
. (48)

Now note that because |w1⊕2| = |w2⊕1| it follows that (w1⊕2) (w2⊕1)
−1 is a unit norm quaternion.

In fact it is related to the Wigner angle by

eΩ = (w1⊕2) (w2⊕1)
−1 . (49)

Then
eΩ =

(
(1−w1w2)

−1(w1 + w2)
) (

(1−w2w1)
−1(w2 + w1)

)−1
(50)

But since for a product of quaternions (q1q2)
−1 = q−1

2 q−1
1 this reduces to

eΩ = (1−w1w2)
−1(1−w2w1). (51)

Now
w1w2 = −w1w2 cos θ + (~w1 × ~w2) · (i, j, k). (52)

Let us define

Ω̂ =
(~w1 × ~w2)

|~w1 × ~w2|
; so ŵ1 × ŵ2 = sin θ Ω̂. (53)

Then setting Ω̂ = Ω̂ · (i, j, k) so that Ω = Ω Ω̂ we have:

w1w2 = −w1w2(cos θ − sin θ Ω̂) = −w1w2 e−θΩ̂. (54)

Consequently the Wigner angle satisfies

eΩ = eΩ Ω̂ =
(

1 + w1w2 e−θΩ̂
)−1 (

1 + w1w2 eθΩ̂
)
=

1 + w1w2 eθΩ̂

1 + w1w2 e−θΩ̂
. (55)

Equivalently,

eΩΩ̂/2 =
1 + w1w2 eθΩ̂

|1 + w1w2 eθΩ̂|
. (56)

Taking the scalar and vectorial parts of Equation (55), we finally obtain

tan
Ω
2

=
w1w2 sin θ

1 + w1w2 cos θ
=
|~w1×~w2|

1 + ~w1 · ~w2
, (57)

as an explicit expression for the Wigner angle Ω.
The simplicity of Equation (56) compared to existing formulae for Ω in the literature, shows how

the composition law (20) can lead to much tidier and simpler formulae than other methods allowed
for. This can be seen as the extension of the result (12) to more general velocities.



Universe 2020, 6, 237 10 of 14

We can write Equation (56) in a perhaps more familiar (though possibly more tedious) form by
first noting that from Equation (27) we have

wi =
1−

√
1− v2

i

vi
=

γi − 1√
γ2

i − 1
=

√
γi − 1
γi + 1

=

√
γ2

i − 1

γi + 1
=

viγi
γi + 1

, (58)

and so
tan

Ω
2

=
v1v2γ1γ2 sin θ

(1 + γ1)(1 + γ2) + v1v2γ1γ2 cos θ
. (59)

We can check two interesting cases of Equation (56) for when θ = 0 (parallel velocities) and when
θ = π/2 (perpendicular velocities). We can see directly that, for parallel velocities, the associated
Wigner angle is given by tan(Ω/2) = 0, so that Ω = nπ for n ∈ Z; whilst for perpendicular velocities,
the associated Wigner angle is simply given by tan(Ω/2) = w1w2.

It is easiest to check our results against the literature using the somewhat messier Equation (58),
in which case parallel velocities again give tan(Ω/2) = 0, whilst perpendicular velocities give

tan(Ω/2) =
v1v2γ1γ2

(1 + γ1)(1 + γ2)
, (60)

which agrees with the results given in Reference [22].

4. Combining Three 3-Velocities

Let us now see what happens when we relativistically combine 3 half-velocities.
We shall calculate, compare, and contrast w(1⊕2)⊕3 with w1⊕(2⊕3).

4.1. Combining 3 Half-Velocities: w(1⊕2)⊕3

Start from our key result

w1⊕2 = w1 ⊕w2 = (1−w1w2)
−1(w1 + w2), (61)

and iterate it to yield

w(1⊕2)⊕3 = {1− (1−w1w2)
−1(w1 + w2)w3}−1{(1−w1w2)

−1(w1 + w2) + w3}. (62)

It is now a matter of straightforward quaternionic algebra to check that

w(1⊕2)⊕3 = {(1−w1w2)
−1(1−w1w2 − (w1 + w2)w3)}−1

×{(1−w1w2)
−1(w1 + w2) + w3}

= (1−w1w2 − (w1 + w2)w3)
−1(1−w1w2){(1−w1w2)

−1(w1 + w2) + w3}
= (1−w1w2 − (w1 + w2)w3)

−1{(w1 + w2) + (1−w1w2)w3}.

(63)

Ultimately we have the novel result

w(1⊕2)⊕3 = {1−w1w2 −w1w3 −w2w3}−1{w1 + w2 + w3 −w1w2w3}. (64)

An alternative formulation starts from

w1⊕2 = w1 ⊕w2 = (w1 + w2)(1−w2w1)
−1, (65)

which when iterated yields

w(1⊕2)⊕3 = {(w1 + w2)(1−w2w1)
−1 + w3}{1−w3(w1 + w2)(1−w2w1)

−1}−1. (66)
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Thence a little straightforward quaternionic algebra verifies that

w(1⊕2)⊕3 = {(w1 + w2) + w3(1−w2w1)}(1−w2w1)
−1

×{1−w3(w1 + w2)(1−w2w1)
−1}−1

= {(w1 + w2) + w3(1−w2w1)}{(1−w2w1)−w3(w1 + w2)}−1
(67)

Ultimately we have the novel result

w(1⊕2)⊕3 = {w1 + w2 + w3 −w3w2w1}{1−w2w1 −w3w1 −w3w2}−1. (68)

So we have found two equivalent and novel formulae for w(1⊕2)⊕3, Equations (63) and (67).

4.2. Combining 3 Half-Velocities: w1⊕(2⊕3)

In contrast, the situation for w1⊕(2⊕3) is considerably more subtle. Start from the key result that

w2⊕3 = w2 ⊕w3 = (1−w2w3)
−1(w2 + w3), (69)

and iterate it to yield

w1⊕(2⊕3) = {1−w1(1−w2w3)
−1(w2 + w3)}−1{w1 + (1−w2w3)

−1(w2 + w3)}. (70)

The relevant quaternionic algebra is now a little trickier

w1⊕(2⊕3) = {1−w1(1−w2w3)
−1(w2 + w3)}−1(1−w2w3)

−1

×{(1−w2w3)w1 + (w2 + w3)}
= {(1−w2w3)(1−w1(1−w2w3)

−1(w2 + w3)}−1

×{(1−w2w3)w1 + (w2 + w3)}
= {1−w2w3 − (1−w2w3)w1(1−w2w3)

−1(w2 + w3)}−1

×{w1 + w2 + w3 −w2w3w1}.

(71)

To proceed we note that

(1−w2w3)w1(1−w2w3)
−1 =

(
1−w2w3
|1−w2w3|

)
w1

(
1−w2w3
|1−w2w3|

)−1

= e−Ω2⊕3/2 w1 e+Ω2⊕3/2.
(72)

Thence we have the novel result

w1⊕(2⊕3) = {1−w2w3 − (e−Ω2⊕3/2w1e+Ω2⊕3/2)(w2 + w3)}−1{w1 + w2 + w3 −w2w3w1}. (73)

While structurally similar to the formulae (63) and (67) for w(1⊕2)⊕3 the present result (72) for
w1⊕(2⊕3) is certainly different—the Wigner angle Ω2⊕3 now makes an explicit appearance, also the
form of the triple-product w2w3w1 is different.

4.3. Combining 3 Half-Velocities: (Non)-Associativity

From (63) and (67) for w(1⊕2)⊕3, and (72) for w1⊕(2⊕3), it is clear that relativistic composition
of velocities is in general not associative. (See for instance the discussion in References [28,29],
commenting on Reference [29].) A sufficient condition for associativity, w(1⊕2)⊕3 = w1⊕(2⊕3),
is to enforce

e−Ω2⊕3/2w1e+Ω2⊕3/2 = w1; and w1w2w3 = w2w3w1. (74)
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That is, a sufficient condition for associativity is

[Ω2⊕3, w1] = 0; and [w1, w2w3] = 0. (75)

But note Ω2⊕3 ∝ [w2, w3] and w2w3 = 1
2{w2, w3}+ 1

2 [w2, w3]. Since {w2, w3} ∈ R, we then
have [w1, w2w3] =

1
2 [w1, [w2, w3]]. This now implies that these two sufficiency conditions are in fact

identical; so a sufficient condition for associativity is

[w1, [w2, w3]] = 0. (76)

This sufficient condition for associativity can also be written as the vanishing of the vector
triple product

~w1 × (~w2 × ~w3) = 0. (77)

Equivalently
~v1 × (~v2 ×~v3) = 0. (78)

4.4. Specific Non-Coplanar Example

As a final example of the power of the quaternion formalism, let us consider a specific
intrinsically non-coplanar example. Let w1 = w1i, w2 = w2 j, and w3 = w3k be three mutually
perpendicular half-velocities. (So this configuration does automatically satisfy the associativity
condition discussed above.) Then we have already seen that:

w1 ⊕w2 =
w1(1− w2

2)i + w2(1 + w2
1)j

1 + w2
1w2

2
; w2

1⊕2 =
w2

1 + w2
2

1 + w2
1w2

2
. (79)

Furthermore, since w1 ⊕w2 is perpendicular to w3, we have

(w1 ⊕w2)⊕w3 =
w1⊕2(1− w2

3)n̂1⊕2 + w3(1 + w2
1⊕2)k

1 + w2
1⊕2w2

3
, (80)

and

w2
(1⊕2)⊕3 =

w2
(1⊕2) + w2

3

1 + w2
(1⊕2)w

2
3
=

w2
1 + w2

2 + w2
3 + w2

1w2
2w2

3
1 + w2

1w2
2 + w2

2w2
3 + w2

3w2
1

. (81)

A little algebra now yields the manifestly non-commutative result

(w1 ⊕w2)⊕w3 =
(1− w2

2)(1− w2
3)w1 + (1 + w2

1)(1− w2
3)w2 + (1 + w2

1)(1 + w2
2)w3

1 + w2
1w2

2 + w2
2w2

3 + w2
3w2

1
. (82)

In this particular case we can also explicitly show that

(w1 ⊕w2)⊕w3 = w1 ⊕ (w2 ⊕w3), (83)

though (as discussed above) associativity fails in general.

5. Conclusions

Herein we have provided a simple, elegant, and novel algebraic method for combining special
relativistic 3-velocities using quaternions:

w1⊕2 = w1 ⊕w2 = (1−w1w2)
−1(w1 + w2) = (w1 + w2)(1−w2w1)

−1. (84)



Universe 2020, 6, 237 13 of 14

The construction also leads to a simple, elegant, and novel formula for the Wigner angle:

eΩ = eΩ Ω̂ = (1−w1w2)
−1(1−w2w1), (85)

in terms of which

ŵ1⊕2 = eΩ/2 w1 + w2

|w1 + w2|
; ŵ2⊕1 = e−Ω/2 w1 + w2

|w1 + w2|
. (86)

All of the non-commutativity associated with non-collinearity of 3-velocities is automatically and
rather efficiently dealt with by the quaternion algebra.
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