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Abstract: We investigate the cosmological evolution of the power law k-essence dark energy (DE)
model with interaction in FRWL spacetime with the Lagrangian that contains a kinetic function
F(X) = −

√
X + X. Concretely, the cosmological evolution in this model are discussed by the

autonomous dynamical system and its critical points, together with the corresponding cosmological
quantities, such as Ωφ, wφ, c2

s , and q, are calculated at each critical point. The evolutionary trajectories
are drawn in order to show the dynamical process on the phases plan around the critical points.
The result that we obtained indicates that there are four dynamical attractors, and all of them
correspond to an accelerating expansion of universe for certain potential parameter and coupling
parameter. Besides that, the geometrical diagnostic by the statefinder hierarchy S(1)

3 and S(1)
4 of

this scalar field model are numerically obtained by the phase components, as an extended null
diagnostic for the cosmological constant. This diagnostic shows that both the potential parameter λ

and interaction parameter α play important roles in the evolution of the statefinder hierarchy.

Keywords: k-essence dark energy; dynamical stability; statefinder hierarchy

1. Introduction

There are two important stages in cosmology, the early inflation and the late time accelerated
expansion. The inflation that we postulate is to explain some issues, such as the flat problem
and the horizon problem, etc. While, the accelerating expansion is based on the observations on
the luminosity-redshift relation of distant Ia supernovas [1,2], Cosmic Microwave Background [3],
and Baryon Acoustic Oscillations [4], which indicate that the current energy density in the universe
is composed by 68.3% dark energy (DE), 26.8% dark matter (DM), and 4.9% baryons [5] in order to
drive the late time acceleration approximately. More details and cosmic constrain by observation are
in [6–9]. Since its first observation in 1998, over the last twenty years, there have been many models to
make explanation for the physical mechanism of this phenomenon. Among them, the simplest one
is the ΛCDM model with a constant equation of state (EoS) wΛ = −1, which provides the negative
pressure for the expansion. ΛCDM model is in good accordance with the observation, but it has some
crucial problems, such as the cosmological constant problem, the age problem [10–14], and the tensions
on the parameters H0 and σ8 in the ΛCDM model in recent years [15–20]. Instead of the ΛCDM
model, there is a class of phenomenological models with a scalar field to reconcile the problems above;
for example, quintessence, phantom, quintom, tachyon, k-essence, and DBI models, etc. Among them,
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the quintessence model is one of the most popular one [21]. Its Lagrangian density L = X − V(φ),
being the pressure, in the action is described by a single scalar field φ, and a canonical kinetic energy
X ≡ − 1

2 ∂µφ∂µφ. To some extent, the quintessence model can describe a range of EoS necessary for an
accelerated expansion, but the single-field quintessence with a canonical kinetic term limits the EoS
w to be less than −1. To this point, the quintom model with multiple fields [22] and some k-essence
models with non-canonical kinetic terms are developed in order to realize the crossing of the phantom
divide. Additionally, the combination of data sets Plank+R16+JLA support this point, such as in [15],
for w = −1.079+0.072

−0.057.
It is known that the k-essence model is a better substitution for the quintessence model.

Although it firstly originated from k-inflation coming from the string theory to explain the early
inflation of the universe [23]; fortunately, it could also explain the late time accelerated expansion as
DE [24], even in the form as a decent generalization of many scalar field dark energy models. Unlike the
canonical kinetics that are defined by the quintessence model, the k-essence model provides a variety
of non-canonical terms, i.e., L = F(X, φ) [25], which contains higher order terms of X. As a result,
the k-essence model with non-canonical kinetic term in Largragian can also reconcile the H0 tension
problem by making the EoS smaller than−1 . The form of F(X, φ) was first discussed as a purely kinetic
function F(X), with a constant potential, V(φ) = const [26]. Further more, two common forms along
with potential are F(X, φ) = F(X)−V(φ) and F(X, φ) = F(X)V(φ), which were widely investigated
in [27,28]. Some of the modified kinetic terms were discussed, such as F(X) = KX + LX2 [29],
F(X) = 1

2α−1 ((AX)α − 2αα0
√

AX) [30], and F(X) = A
√

X − BXα [31] etc., which belongs to the
class of power law k-essence dark energy model with the power law function F(X) = ∑ aiXbi .
The approximation of the potential in scalar field dark energy models are discussed in [32], with both
canonical and noncanonical kinetic terms.

In another aspect, from the matter clustering properties, dark matter (DM) and dark energy are not
the same substance; however, there are researches regarding the interactions between them, even some
nonlinear interaction forms [33–37], which can provide a mechanism for generating acceleration.
By the recent observation, the interaction between DM and DE is too little to alleviate the coincidence
problem, while, in our work, the k-essence model with the interaction between DM and DE can be a
candidate, which helps to explain the H0 tension and σ8 tension between CMB and structure formation
measurements [15–17].

The aim of this paper, which is based on the researches above, is to consider a model with
F(X, φ) = F(X)V(φ)− f (φ), where F(X) = −

√
X+X, V(φ) ∝ 1/φ2, and f (φ) = 0 [38], together with

a certain kind of interaction Q. We investigate the possible cosmological behavior of this model in
Friedmann–Robertson–Walker–Lemaître (FRWL) spacetime by performing a phase-space and stability
analysis. The theory are based on [39,40] judging the stability of the critical points by the eigenvalues;
whereas, in this model for the convenience of calculation, it prefers the method by the determinant
and trace of the Jacobian matrix of the autonomous differential equations [41]. Some cosmological
quantities will be calculated for each critical point, such as the dark energy density parameter Ωφ,
the equation of state (EoS) parameter wφ of dark energy, the sound speed c2

s , and the deceleration
parameter q.

Finally, in order to distinguish this k-essence model from ΛCDM model, there are two main
kinds of “null measure”: the Om diagnostic and the statefinder diagnostic. Om is constructed from
the Hubble parameter H, and it provides a null test of the ΛCDM model [42,43] . In recent years,
in order to distinguish those models from the best fitting model, the ΛCDM model, the statefinder
hierarchy is used, which originate from statefinder diagnostic [44,45]. The statefinder pair {r, s},
is composed by the scale factor a(t) with its second and third derivatives; however, the statefinder
hierarchy is based on the even higher derivatives [46]. In this paper, statefinder hierarchy S(1)

3 and

S(1)
4 are analyzed to the scalar dark energy model by the phase components (the auxiliary variables)

in the autonomous equations, unlike the method that was mentioned before, which depends on the
cosmological quantities. It shows that the hierarchies are varied from two parameters λ and α by the
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trajectories. This novel method is based on [47–49], which is used for the quintessence model and
IωCDMmodel, and it could be generated to a range of scalar DE models in the future.

This paper is organized, as follows: in the following section, we review k-essence dark energy
models and its stability analysis. In the third section, we consider the dynamics of the k-essence scalar
field with the interaction Q = αHρm (the coupling parameter α is a real arbitrary constant). In the
fourth section, the statefinder diagnostic and statefinder hierarchy are analyzed in order to distinguish
from ΛCDM model. Finally, we close with a few concluding remarks in the fifth section.

2. The Power Law K-Essence Dark Energy Model and Its Stability Analysis

We consider k-essence dark energy models with Lagrangian

L = pφ = G(X)U(φ), (1)

where the kinetic term G(X) and potential term U(φ) are analytic functions of X and φ, respectively.
Throughout this paper, we will work with a flat, homogeneous, and isotropic FRWL spacetime
having signature (−,+,+,+) and in units c = 8πG = 1. We are interested in the power law
k-essence with a general form of kinetic term G(X) = −K(φ)

√
X + L(φ)X, which has been studied

in [29,38,50]. Hence, the scalar field φ is redefined as the one in [29]. Consequently, Equation (1) is
rewritten as pφ = F(X)V(φ), where the new kenetic term F(X) = −

√
X + X and new potential term

V(φ) = (K2/L)U(φ). Subsequently, the corresponding energy density ρφ, the EoS parameter wφ and
the effective sound speed c2

s are, respectively, given by

ρφ = V(φ)[2XFX − F] = XV, (2)

wφ =
F

2XFX − F
=

X−
√

X
X

, (3)

c2
s =

∂p/∂X
∂ρ/∂X

=
FX

FX + 2XFXX
= 1− 1

2
√

X
, (4)

where FX ≡ dF/dX and FXX ≡ d2F/dX2. The sound speed comes from the equation describing the
evolution of linear adiabatic perturbations in a k-essence dominated universe [29,51] (a non-adiabatic
perturbation of k-essence has been discussed in [52,53], here we only consider the case of adiabatic
perturbation). From Equations (3) and (4), it has c2

s =
1+wφ

2 . Meanwhile, by considering the stability
of solutions with respect to inhomogeneous perturbations as 1 ≥ c2

s ≥ 0, it constrains the range
1 ≥ wφ ≥ −1. It follows that the k-essence model in this paper does not permit phantom behaviour.

In the following discussion, we neglect baryonic matter ρb and the radiation ρr in the matter
component. Subsequently, the Friedmann equations take the form

H2 =
1
3
(ρm + ρφ), (5)

Ḣ = −1
2
(ρm + ρφ + pφ), (6)

where H = ȧ/a is the Hubble parameter, ρφ and ρm are the DE and DM density, respectively.
The equation of motion for the k-essence field is given by

(FX + 2XFXX)φ̈ + 3HFX φ̇ + (2XFX − F)
Vφ

V
= 0, (7)

where Vφ ≡ dV/dφ. Equations (5) and (6) are usually transformed into an autonomous dynamical
system when performing the phase-space and stability analysis. Being derived from the Friedmann eqs.,
we obtain ä

a = − 1
6 (3p + ρ), which implies a continuous eq. ρ̇ + 3H(p + ρ) = 0. Because, in this model,

the density is composed by two parts, the dark energy density and the matter density, i.e., ρ = ρm + ρφ,
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with the interaction Q between DM and DE, ρφ and ρm do not separately satisfy conservation laws.
Subsequently, the following two equations are conceived as:

ρ̇φ + 3H(ρφ + pφ) = Q, (8)

ρ̇m + 3H(ρm + pm) = −Q. (9)

Here, pm = 0. For Q < 0, there is a transfer of energy from dark energy to dark matter.
The case of Q = 0, as in no interaction, was discussed in the former paper [38]. While, in this paper,
the interaction is chosen by Q = αHρm, which means that the transformation between dark energy
and dark matter happen, to some degree, in that circumstance. By Equations (8) and (9), to keep the
physical dimensionality, we have to set α as a dimensionless parameter [33].

By setting the phase components, the auxiliary variables are defined as

x = φ̇, y =

√
V(φ)√
3H

, (10)

in order to transform the cosmological Equations (5) and (6) into an autonomous dynamical system
{x′, y′}, by considering (8) and (9), where the prime is the derivative with respect to N = lna.
Subsequently, after solving the eqs. {x′c = 0, y′c = 0}, the critical points Xc={xc, yc} are obtained.
To discuss the stability of each critical point, we expand X={x, y} around the critical points
Xc={xc, yc} by setting {x, y}T = {xc, yc}T + U with the perturbational variables U (see, for example,
Refs. [41,54–58]). Up to the first order we acquire U′ = M ·U with the 2× 2 matrix M determined by

M =

[
∂x′
∂x

∂x′
∂y

∂y′
∂x

∂y′
∂y

]
. (11)

The matrix M contains the coefficients of the perturbation equations, and thus its eigenvalues
determine the stability of the critical points. In this 2-dim system, which has two eigenvalues of
M, for hyperbolic critical points, all of the eigenvalues have real parts that are different from zero:
sink for the negative real parts is stable, saddle for real parts of different sign is unstable, and source for
positive real parts is unstable. However, for the convenience of calculation in this model, an alternative
way to judge the stability of the critical points in a 2-dim system is given by the trace tr M < 0 and
determinant det M > 0.

For the more general linear interaction form Q = αHρm + βHρφ, the autonomous dynamical
equations are derived, as follows:

x′ =

√
3

2
λx2y− 3x +

3
√

2
2

+
α

xy2 −
1
2

xα +
xβ

2
, (12)

y′ =
1
4

y
(
−2
√

3λxy + 6− 3
√

2xy2 + 3x2y2
)

, (13)

for x > 0; while, for x < 0, the equations turn out to be

x′ =

√
3

2
λx2y− 3x− 3

√
2

2
+

α

xy2 −
1
2

xα +
xβ

2
, (14)

y′ =
1
4

y
(
−2
√

3λxy + 6 + 3
√

2xy2 + 3x2y2
)

, (15)

where λ ≡ −Vφ/V
3
2 = const, by assuming V(φ) = 4λ−2φ−2 in this paper. Because it is hard to obtain

an analytic solution as a critical point from the equations above with three parameters λ, α, and β,
it has to be simplified by two cases in the next step, i.e., Q1 = αHρm and Q2 = βHρφ, respectively.
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However, we only analyze Q1 in this paper due to the unsatisfactory for Q2. Besides that, the values of
α and β are constrained in certain ranges, which are imposed for the observations [18–20].

3. The Analysis of Stability for This Dark Energy Model with Interaction Q = αHρm

In this case of Q = αHρm, when x > 0, Equations (5) and (6) are simplified, as follows:

x′ =

√
3

2
λx2y− 3x +

3
√

2
2

+
α

xy2 −
1
2

xα, (16)

y′ =
1
4

y
(
−2
√

3λxy + 6− 3
√

2xy2 + 3x2y2
)

, (17)

By (16) and (17), the corresponding critical points {xc, yc} are

P1 = {xc, yc} = {
√

3
−λ +

√
6

,

√
6

3
(−λ +

√
6)}, (18)

P2 = {xc, yc} = {
√

3
λ +
√

6
,−
√

6
3

(λ +
√

6)}, (19)

P3 = {xc, yc} = {
√

2(9 + 6α + α2)

−2λ2α + 9 + α2 + 6α
,

√
6

6λ(α + 3)
(−2λ2α + 9 + α2 + 6α)}. (20)

While, when x < 0, we have

x′ =

√
3

2
λx2y− 3x− 3

√
2

2
+

α

xy2 −
1
2

xα, (21)

y′ =
1
4

y
(
−2
√

3λxy + 6 + 3
√

2xy2 + 3x2y2
)

, (22)

Additionally, there are other three solutions as the critical points, as follows:

P4 = {xc, yc} = {
−
√

3
λ +
√

6
,

√
6

3
(λ +

√
6)}, (23)

P5 = {xc, yc} = {
−
√

3
−λ +

√
6

,−
√

6
3

(−λ +
√

6)}, (24)

P6 = {xc, yc} = {
−
√

2(9 + 6α + α2)

−2λ2α + 9 + α2 + 6α
,
−
√

6
6λ(α + 3)

(−2λ2α + 9 + α2 + 6α)}. (25)

The corresponding density parameter, the EoS, the sound speed, and the deceleration parameter
are reexpressed as, respectively,

Ωφ =
1
2

x2y2, (26)

wφ = 1−
√

2 | x |−1, (27)

c2
s = 1−

√
2

2
| x |−1, (28)

q =
1
2
+

3
4

x2y2 − 3
√

2
4
| x | y2. (29)

Equations (16), (17), (21) and (22) form the self-autonomous dynamical systems, which are
valid in the whole phase-space, not only at the critical points. The critical points {xc, yc} of the
autonomous system are obtained by setting the left-hand sides of the equations to zero, namely by
solving X′ = (x′, y′)T = 0. Six critical points are obtained, as shown in Table 1, in which we also
present the necessary conditions for their existences and stabilities, as well as the corresponding
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cosmological quantities, c2
s , Ωφ, wφ, and q. With these cosmological quantities, we can investigate the

final state of the universe and discuss whether there exists acceleration expansion or not. Physically,
it requires 0 ≤ Ωφ ≤ 1, so the auxiliary variables x and y are constrained as 0 ≤ 1

2 x2y2 ≤ 1. In order
to comply with the accelerated expansion, it requires wφ < − 1

3 . When considering the sound speed,
it has to be 0 ≤ c2

s ≤ 1. For the existence, it means y > 0, and x < 0 or x > 0 for each case. The stability
means det M > 0 and trM < 0, instead of the analysis by each eigenvalue.

For the power law k-essence dark energy presented in this paper, the specific expression of the M,
det M, and trM are as follows:

M =

[
− α

x2y2 − 1
2 α +

√
3λxy− 3 − 2α

y3x +
√

3
2 λx2

1
4 y(−2

√
3λy− 3

√
2y2 + 6xy2) −

√
3λxy + 3

2 −
9
√

2
4 xy2 + 9

4 x2y2

]
, (30)

det M =− 9
4

λ2x2y2 +
9
√

3
2

λxy− 15
√

6
8

λx2y3 +
3
√

3
2

λx3y3 − 9
2
+

27
√

2
4

xy2

− 27
4

x2y2 +

√
3

2
xyαλ +

9
√

2
8

xy2α− 9
8

x2y2α− 3α

2x2y2 +
3
√

2α

4x
, (31)

trM =
−α

x2y2 −
α

2
− 3

2
− 9
√

2
4

xy2 +
9
4

x2y2, (32)

for the case of x > 0; and,

M =

[
− α

x2y2 − α
2 +
√

3λxy− 3 −2α
y3x +

√
3

2 λx2

1
4 y(−2

√
3λy + 3

√
2y2 + 6xy2) −

√
3λxy + 3

2 + 9
√

2
4 xy2 + 9

4 x2y2

]
, (33)

det M =− 9
4

λ2x2y2 +
9
√

3
2

λxy +
15
√

6
8

λx2y3 +
3
√

3
2

λx3y3 − 9
2
− 27

√
2

4
xy2 − 27

4
x2y2

+

√
3

2
xyαλ− 9

√
2

8
xy2α− 9

8
x2y2α− 3α

2x2y2 −
3
√

2α

4x
, (34)

trM =
−α

x2y2 −
α

2
− 3

2
+

9
√

2
4

xy2 +
9
4

x2y2, (35)

for the case of x < 0.
According to the stability conditions of critical points by the determinant and trace, together with

those cosmological quantities, we obtain the value range of λ and α in the parameter plane,
which makes the critical points stable and causes accelerated expansion, as shown in Table 1. At first,
P2 and P5 are excluded by using existence condition. Based on the range of parameters presented
in Figure 1a, we plot the stable point P1 and its evolutionary trajectory for λ = 0.5 and α = 0.01 in
Figure 1b, as well as P3, P4, and P6 (see Figures 2–4) with some certain pairs of parameters λ and α,
respectively, in order to have a visual understanding of the evolutionary behavior near critical points.
Especially, P3 and P6 are spiral attractors, which have spiral evolutionary trajectories around them.
Additionally, the evolutionary trajectories of the cosmological quantities are shown in Figures 5 and 6.
Below, we will analyze these stable points P1, P3, P4, and P6 one-by-one.

For P1, it has Ωφ = 1; the universe will be dominated by k-essence dark energy. If λ = 0, then the

k-essence would behave like a cosmological constant. The deceleration parameter q = −1 +
√

6
2 λ.

The final state of the universe depends on the potential parameter λ, i.e., the universe expansion would
speed up if λ <

√
6

3 , it would expand at constant-speed if λ =
√

6
3 , and the universe expansion would

slow down if
√

6
3 < λ.
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For P3, Ωφ = (3+α)2

6λ2 , the universe will be dominated by both k-essence dark energy and

dark matter. When α and λ satisfy 2αλ2

(3+α)2 = −1, lying on the top edge of the grey region in
Figure 2a, the k-essence will behave like a cosmological constant. The evolutionary trajectory in
the phase space shown in Figure 2b will be spiral around P3, finally converging to the attractor P3.
The deceleration parameter q = 1

2 + α
2 . The final state of the universe depends on the coupling

parameter α, i.e., the expansion of the universe will speed up if −3 < α < −1, will expand in a
constant speed if α = −1, and will slow down if −1 < α < 0, respectively.

(a) (b)

Figure 1. (a) The value ranges for parameters λ and α to make the critical point P1 exist and stable,
which is also constrained by other cosmological quantities, when x > 0. (b) The phase plane for λ = 0.5
and α = 0.01 around the attractor P1 = (0.888, 1.592) when x > 0.

(a) (b)

Figure 2. (a) The value range for parameters λ and α to make the critical point P3 exist and stable,
also constrained by other cosmological quantities, when x > 0. (b) The phase plane for λ = 11 and
α = −0.02 around the attractor P3 = (0.915, 0.171) when x > 0.
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For x < 0, the results are quite like the three critical points that are investigated above. Among the
three critical points, P4 and P6 are attractors for some λ and α, as displayed in Figures 3 and 4.
Those two points are also physically meaningful; while, P5 does not.

For P4, it has Ωφ = 1, the universe will be dominated by k-essence dark energy. If λ = 0,

the k-essence will behave like a cosmological constant. The deceleration parameter q = −1−
√

6
2 λ,

which indicates that the final state of the universe depends on the potential, i.e., the universe expansion
will speed up if λ > −

√
6

3 , will expand with constant-speed if λ = −
√

6
3 , and it will slow down

if −
√

6
3 > λ.

(a) (b)

Figure 3. (a) The value range for parameters λ and α to make the critical point P4 exist and stable, also
being constrained by other cosmological quantities, when x < 0. (b) The phase plane for λ = −0.5 and
α = 0.01 around the attractor P4 = (−0.888, 1.592) when x < 0.

(a) (b)

Figure 4. (a) The value range for parameters λ and α to make the critical point P6 exist and stable,
also constrained by other cosmological quantities, when x < 0. (b) The phase plane for λ = −11 and
α = −0.02 around the attractor P6 = (−0.915, 0.171) when x < 0.
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For P6, Ωφ = (3+α)2

6λ2 , the universe will be dominated by both k-essence and dark matter. When α

and λ satisfy 2αλ2

(3+α)2 = −1, the k-essence will behave like a cosmological constant. In the phase space,
the evolutionary trajectory will be spiral around P6, and then finally converge to the attractor point.
The deceleration parameter q = 1

2 + α
2 , which indicates that the final state of the universe depends on

the dark matter: the universe will speed up if α < −1, will expand with constant-speed if α = −1,
and it will slow down if α > −1.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
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−0.5

0

0.5
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q
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wφ

(a)
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1
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q

Ω
φ

w
φ

(b)

Figure 5. (a) The evolutions of Ωφ, wφ and the deceleration parameter q by the initial condition
(x0, y0) = (0.85, 1.5) around P1 corresponding to (λ, α) = (0.5, 0.01) . (b) The evolutions of Ωφ, wφ and
the deceleration parameter q by the initial condition (x0, y0) = (0.9, 1.0) around P3 corresponding to
(λ, α) = (1.2,−0.8) .
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Figure 6. (a) The evolutions of Ωφ, wφ and the deceleration parameter q by the initial condition
(x0, y0) = (−0.9, 1.55) around P4 corresponding to (λ, α) = (−0.5, 0.01). (b) The evolutions of
Ωφ, wφ and the deceleration parameter q by the initial condition (x0, y0) = (−0.75, 1.25) around
P6 corresponding to (λ, α) = (−1,−0.9).

From Figures 5 and 6, it is not difficult to see that the density parameter of DE Ωφ continuously
varies, which indicates that there is the exchange of energy between dark energy and dark matter
by the interaction Q, and, at present, the universe is composed by both DE and DM. Meanwhile,
the deceleration parameter q evolves from positive to negative values, which shows that the universe
experiences a decelerating expansion in the past, and then transforms to an accelerating expansion
at present, and keeps on speeding up into the future. Especially, in Figures 5b and 6b, the wφ > 0
happens in the early time, which means that, in early time, the dark energy performs in a relativistic
matter, which provides positive pressure, and acts as the attraction force to enhance the structure
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formation. All four evolutional figures show the wφ < −1/3 in the late time universe, which indicates
that this k-essence DE model could explain the accelerating expansion of the universe.

Table 1. The existence and stability conditions for six critical points, and the cosmological quantities in
form of the parameters λ and α in each critical point.

Name Existence Stability 0 ≤ c2
s ≤ 1 0 ≤ Ωφ ≤ 1 ωφ < − 1

3 q

P1 λ <
√

6
√

6λ− 3− α < 0 and
3
√

6λ− 2α− 12 < 0
λ√
6

1
√

6λ−3
3

√
6

2 λ− 1

P2 none
√

6λ + 3 + α < 0 and
3
√

6λ + 2α + 12 > 0
− λ√

6
1

√
6λ+3
−3 −1−

√
6

2 λ

P3
(3 + α)2 > 2λ2α

and λ(α + 3) > 0
λ((3 + α)2 − 6λ2) < 0 and
−6λ2α + 9α2 + 2α3 < 27

αλ2

(3+α)2 +
1
2

(3+α)2

6λ2
2αλ2

(3+α)2
1
2 + α

2

P4 λ > −
√

6
√

6λ + 3 + α > 0 and
3
√

6λ + 2α + 12 > 0
− λ√

6
1

√
6λ+3
−3 −1−

√
6

2 λ

P5 none
(λ− 3√

6
− α√

6
)(
√

6−λ√
6

) < 0

and 3
√

6λ− 2α− 12 < 0

√
6

6 λ 1
√

6λ−3
3

√
6

2 λ− 1

P6
(3 + α)2 > 2λ2α

and λ(α + 3) < 0
λ((3 + α)2 − 6λ2) > 0 and
−6λ2α + 9α2 + 2α3 < 27

αλ2

(3+α)2 +
1
2

(3+α)2

6λ2
2αλ2

(3+α)2
1
2 + α

2

4. The Geometric Diagnostic of Statefinder Hierarchy

Because the ΛCDM model is the best fitting for observations until now, the statefinder pair
is a way for distinguishing a certain model from the ΛCDM model, by showing the “distance” of
trajectories in the s − r plane from the spatially flat ΛCDM model scenario which is a fixed point
{s, r}|ΛCDM = {0, 1}. Beyond the Hubble parameter H = ȧ

a and the deceleration parameter q = − aä
ȧ2 ,

the third order derivative r =
...a

aH3 , together with a combination of r and q, which is s = r−1
3(q− 1

2 )
,

become the cosmological diagnostic pair {r, s}. In terms of Ωφ and w, the statefinder pair has the
following form:

r = 1 +
9
2

Ωφw(1 + w)− 3
2

Ωφ
ẇ
H

, (36)

s = 1 + w− 1
3

ẇ
wH

. (37)

Further, the statefinder hierarchy is an extension of the statefinder pair, which comes from the
view point of higher derivatives of the expansion factor dna/dtn, in Taylor expanded: (1 + z)−1 =
a(t)
a0

= 1 + ∑ An(t0)
n! [H0(t− t0)]

n, where An = a(t)(n)

a(t)Hn , n ∈ N, and a(t)(n) = dna(t)/dtn. By using An,

the series Sn and S(1)
n are constructed, as follows. In a spatially flat universe with pressureless matter

and a cosmological constant, such as ΛCDM model, An could be expressed by parameter q or Ωm,
where Ωm = 2

3 (1 + q), as follows:

A2 = 1− 3
2

Ωm, (38)

A3 = 1, (39)

A4 = 1− 32

2
Ωm, (40)

A5 = 1 + 3Ωm +
33

2
Ω2

m. (41)
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Then the statefinder hierarchy Sn is defined as

S2 = A2 +
3
2

Ωm, (42)

S3 = A3, (43)

S4 = A4 +
32

2
Ωm, (44)

S5 = A5 − 3Ωm −
33

2
Ω2

m. (45)

Finally, it derived the null diagnostic for the ΛCDM model, the S(1)
n , as follows:

S(1)
3 = S3, (46)

S(1)
4 = A4 + 3(1 + q), (47)

S(1)
5 = A5 − 2(4 + 3q)(1 + q). (48)

For the ΛCDM model, it always has Sn|ΛCDM = 1 and S(1)
n |ΛCDM = 1. In this paper, we focus

on how parameters λ and α effect the statefinder hierarchy S(1)
3 and S(1)

4 for the k-essence model with
coupling Q = αHρm. We can obtain the following expressions with interaction Q:

S(1)
3 = 1 +

9
2

Ωφwφ(1 + wφ)−
3
2

Ωφw′φ −
3wφQ
2Hρ

, (49)

S(1)
4 = 1− 9

4
wφΩ2

φ[3wφ(1 + wφ)− w′φ]−
3
4

Ωφ[wφ(21 + 39wφ + 18w2
φ)− (13 + 18wφ)w′φ

+2w′′φ] +
3wφQ
2Hρ

(2 + 3wφ)−
3wφQ′

2Hρ
−

3w′φQ

Hρ
. (50)

The former methods for analyzing the statefinder pair {r, s} or the statefinder hierarchy are mainly
around purely kinetic k-essence dark energy models, by finding the relations among FX , wφ and a(t).
For the potential, in this paper, it is not as a constant as in PKK and the analytic relation cannot be
derived directly; instead, the statefinder hierarchy should be represented by phase components {x, y}.
Along with the numerical method presented in [49], after substituting (16) and (17) into (49) and (50)
for x > 0, and (21) and (22) into (49) and (50) for x < 0, respectively, the statefinder hierarchy S(1)

3 and

S(1)
4 could be expressed by variables x, y with parameters λ, α. We choose the initial points {x0, y0}

around the attractors separately, and then adjust λ with a constant α, whereas adjust α with a constant
λ, in order to see the effect on statefinder hierarchy for each by the figures.

For P1, from Figure 7, by changing the value of potential parameter λ with a fixed coupling
parameter α = 0.01, the difference of both S(1)

3 and S(1)
4 evolutionary curves are obvious. However,

in Figure 8, there is nearly no difference in both S(1)
3 and S(1)

4 cases, with the same value of λ = 0.5,

but different values of α. It means that the statefinder hierarchy S(1)
3 and S(1)

4 are more sensible to the
potential parameter λ than α around P1.

Oppositely, for P3, there is no difference by changing the potential parameter λ under the same
value α = −0.02 for both S(1)

3 and S(1)
4 in Figure 9, while the statefinder hierarchy shows the sensibility

to the coupling parameter α under the same value of λ = 11 in Figure 10. That is to say, curves with
same value of α perform alike, while λ makes little effect around P3.

For the case of x < 0, i.e., P4 and P6, the evolutionary curves of the statefinder hierarchy S(1)
3

and S(1)
4 are analogous to the P1 and P3, respectively. For all of cases above, the statefinder hierarchy

S(1)
3 and S(1)

4 of the k-essence DE model in this paper can tell the difference from the ΛCDM model,
which is a straight line in the figures.
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Figure 7. (a) Graph of S(1)
3 for P1 with different parameters λ and fixed α = 0.01. (b) Graph of S(1)

4 for
P1 with different parameters λ and fixed α = 0.01. The initial point is x0 = 1, y0 = 1.2.
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Figure 8. (a) Graph of S(1)
3 for P1 with different parameters α and fixed λ = 0.5. (b) Graph of S(1)

3 for
P1 with different parameters α and fixed λ = 0.5. The initial point is x0 = 1, y0 = 1.2.
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Figure 9. (a) Graph of S(1)
3 for P3 with different parameters λ and fixed α = −0.02. (b) Graph of S(1)

4
for P3 with different parameters λ and fixed α = −0.02. The initial point is x0 = 1, y0 = 0.3.
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Figure 10. (a) Graph of S(1)
3 for P3 with different parameters α and fixed λ = 11. (b) Graph of S(1)

4 for
P3 with different parameters α and fixed λ = 11. The initial point is x0 = 1, y0 = 0.3.

5. Conclusions

In summary, we have deeply investigated the cosmological evolution, the dynamical stability,
as well as the geometrical diagnostic of the power law k-essence dark energy model with the
Lagrangian containing a kinetic function F(X) = −

√
X + X and interaction Q = αHρm in FRWL

space time. Concretely, we have not only discussed the influences of the coupling parameter α

and potential parameter λ on the evolution of several cosmological quantities (such as the density
parameter Ωφ, EoS of dark energy wφ, the effective sound speed c2

s , and deceleration parameter q),
but also numerically analyzed the dynamical stability and showed that there are the four dynamical
attractors in the phase space. In addition, the statefinder hierarchy S(1)

3 and S(1)
4 of this dark energy

model have been numerically obtained, which shows that the potential parameter λ has more influence
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on the evolutions of S(1)
3 and S(1)

4 than one of the coupling parameter α around P1 and P4; while, for P3

and P6, parameter α plays a more important role in S(1)
3 and S(1)

4 .
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