Parton Distribution Functions and Tensorgluons
Abstract
:1. Introduction
2. Splitting Functions
3. Regularisation of Generalised DGLAP Equations
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bjorken, J.D.; Paschos, E.A. Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon. Phys. Rev. 1969, 185, 1975. [Google Scholar] [CrossRef]
- Gross, D.J.; Wilczek, F. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 1973, 30, 1343. [Google Scholar] [CrossRef] [Green Version]
- Politzer, H.D. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 1973, 30, 1346. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Parisi, G. Asymptotic freedom in parton language. Nucl. Phys. B 1977, 126, 298–318. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L. Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Zh. Eksp. Teor. Fiz 1977, 73, 1216. [Google Scholar]
- Gribov, V.N.; Lipatov, L.N. Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 1972, 15, 438. [Google Scholar]
- Gribov, V.N.; Lipatov, L.N. e+ e- pair annihilation and deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 1972, 15, 675. [Google Scholar]
- Lipatov, L.N. The parton model and perturbation theory. Sov. J. Nucl. Phys. 1975, 20, 94. [Google Scholar]
- Savvidy, G. Proton structure and tensor gluons. J. Phys. A 2014, 47, 355401. [Google Scholar] [CrossRef] [Green Version]
- Fadin, V.S.; Kuraev, E.A.; Lipatov, L.N. On the Pomeranchuk singularity in asymptotically free theories. Phys. Lett. B 1975, 60, 50–52. [Google Scholar] [CrossRef]
- Kuraev, E.A.; Lipatov, L.N.; Fadin, V.S. The Pomeranchuk Singularity in Nonabelian Gauge Theories. Sov. Phys. JETP 1977, 45, 199. [Google Scholar]
- Balitsky, Y.Y.; Lipatov, L.N. The Pomeranchuk Singularity in Quantum Chromodynamics. Sov. J. Nucl. Phys. 1978, 28, 822. [Google Scholar]
- Cabibbo, N.; Petronzio, R. Two Stage Model Of Hadron Structure: Parton Distributions In addition, Their Q2 Dependence. Nucl. Phys. B 1978, 137, 395. [Google Scholar] [CrossRef] [Green Version]
- Gribov, L.V.; Levin, E.M.; Ryskin, M.G. Singlet Structure Function at Small x: Unitarization of Gluon Ladders. Nucl. Phys. B 1981, 188, 55. [Google Scholar] [CrossRef]
- Gross, D.J.; Wilczek, F. Asymptotically Free Gauge Theories. 1. Phys. Rev. D 1973, 8, 3633. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Wilczek, F. Asymptotically Free Gauge Theories. 2. Phys. Rev. D 1974, 9, 980. [Google Scholar] [CrossRef]
- Savvidy, G. Asymptotic freedom of non-Abelian tensor gauge fields. Phys. Lett. B 2014, 732, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Savvidy, G. Non-Abelian tensor gauge fields: Generalization of Yang–Mills theory. Phys. Lett. B 2005, 625, 341. [Google Scholar] [CrossRef] [Green Version]
- Savvidy, G. Non-abelian tensor gauge fields. I. Int. J. Mod. Phys. A 2006, 21, 4931. [Google Scholar] [CrossRef] [Green Version]
- Savvidy, G. Non-abelian tensor gauge fields. II. Int. J. Mod. Phys. A 2006, 21, 4959. [Google Scholar] [CrossRef]
- Savvidy, G. Extension of the Poincaré Group and Non-Abelian Tensor Gauge Fields. Int. J. Mod. Phys. A 2010, 25, 5765. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, G.; Savvidy, G. Production of non-Abelian tensor gauge bosons. Tree amplitudes and BCFW recursion relation. Int. J. Mod. Phys. A 2011, 26, 2537. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Savvidy, G. Conformal invariance of tensor boson tree amplitudes. Mod. Phys. Lett. A 2012, 27, 1250103. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, R.; Savvidy, G. Yangian and SUSY symmetry of high spin parton splitting amplitudes in generalised Yang–Mills theory. Mod. Phys. Lett. A 2017, 32, 1750121. [Google Scholar] [CrossRef]
- Berends, F.A.; Kleiss, R.; De Causmaecker, P.; Gastmans, R.; Wu, T.T. Single Bremsstrahlung Processes In Gauge Theories. Phys. Lett. B 1981, 103, 124. [Google Scholar] [CrossRef]
- Kleiss, R.; Stirling, W.J. Spinor Techniques For Calculating P Anti-P →W+-/Z0 + Jets. Nucl. Phys. B 1985, 262, 235. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, D.H.; Chang, L. Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories. Nucl. Phys. B 1987, 291, 392. [Google Scholar] [CrossRef]
- Gunion, J.F.; Kunszt, Z. Improved Analytic Techniques For Tree Graph Calculations In addition, The G G Q Anti-Q Lepton Anti-Lepton Subprocess. Phys. Lett. B 1985, 161, 333. [Google Scholar] [CrossRef]
- Dixon, L.J. Calculating scattering amplitudes efficiently. arXiv 1996, arXiv:hep-ph/9601359. [Google Scholar]
- Parke, S.J.; Taylor, T.R. An Amplitude for n Gluon Scattering. Phys. Rev. Lett. 1986, 56, 2459. [Google Scholar] [CrossRef]
- Berends, F.A.; Giele, W.T. Recursive Calculations for Processes with n Gluons. Nucl. Phys. B 1988, 306, 759. [Google Scholar] [CrossRef]
- Witten, E. Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 2004, 252, 189. [Google Scholar] [CrossRef] [Green Version]
- Cachazo, F.; Svrcek, P.; Witten, E. Gauge theory amplitudes in twistor space and holomorphic anomaly. JHEP 2004, 2004, 77. [Google Scholar] [CrossRef]
- Cachazo, F. Holomorphic anomaly of unitarity cuts and one-loop gauge theory amplitudes. arXiv 2004, arXiv:hep-th/0410077. [Google Scholar]
- Britto, R.; Cachazo, F.; Feng, B. New recursion relations for tree amplitudes of gluons. Nucl. Phys. B 2005, 715, 499. [Google Scholar] [CrossRef] [Green Version]
- Britto, R.; Cachazo, F.; Feng, B.; Witten, E. Direct proof of tree-level recursion relation in Yang–Mills theory. Phys. Rev. Lett. 2005, 94, 181602. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, P.; Cachazo, F. Consistency conditions on the S-matrix of massless particles. arXiv 2007, arXiv:0705.4305. [Google Scholar]
- Cachazo, F.; Svrcek, P.; Witten, E. MHV vertices and tree amplitudes in gauge theory. JHEP 2004, 2004, 6. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, G.; Glover, E.W.N.; Khoze, V.V. Non-MHV Tree Amplitudes in Gauge Theory. JHEP 2004, 2004, 48. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Kaplan, J. On Tree Amplitudes in Gauge Theory and Gravity. J. High Energy Phys. 2008, 2008, 76. [Google Scholar] [CrossRef]
- Berends, F.A.; Giele, W.T. Multiple Soft Gluon Radiation in Parton Processes. Nucl. Phys. B 1989, 313, 595. [Google Scholar] [CrossRef]
- Mangano, M.L.; Parke, S.J. Quark-Gluon Amplitudes in the Dual Expansion. Nucl. Phys. B 1988, 299, 673. [Google Scholar] [CrossRef]
- Konitopoulos, S.; Savvidy, G. Proton structure, its spin and tensor gluons. In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 125, p. 4016. [Google Scholar] [CrossRef] [Green Version]
- Fayet, P. Supersymmetry and Weak, Electromagnetic and Strong Interactions. Phys. Lett. B 1976, 64, 159. [Google Scholar] [CrossRef]
- Fayet, P. Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions. Phys. Lett. B 1977, 69, 489. [Google Scholar] [CrossRef]
- Farrar, G.R.; Fayet, P. Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry. Phys. Lett. B 1978, 76, 575. [Google Scholar] [CrossRef]
- Fayet, P. Massive Gluinos. Phys. Lett. B 1978, 78, 417. [Google Scholar] [CrossRef]
- Farrar, G.R.; Fayet, P. Bounds on R-Hadron Production from Calorimetry Experiments. Phys. Lett. B 1978, 79, 442. [Google Scholar] [CrossRef]
- Antoniadis, I.; Kounnas, C.; Lacaze, R. Light Gluinos in Deep Inelastic Scattering. Nucl. Phys. B 1983, 211, 216. [Google Scholar] [CrossRef]
- Botje, M. QCDNUM: Fast QCD Evolution and Convolution. Comput. Phys. Commun. 2011, 192, 490–532. [Google Scholar] [CrossRef] [Green Version]
- Bertone, V.; Botje, M. A C++ interface to QCDNUM. arXiv 2017, arXiv:1712.08162. [Google Scholar]
- Miyama, M.; Kumano, S. Numerical solution of Q2 evolution equations in a brute force method. Comput. Phys. Commun. 1996, 94, 185–215. [Google Scholar] [CrossRef] [Green Version]
- Vogt, A. Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS. Comput. Phys. Commun. 2005, 170, 65–92. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirschner, R.; Savvidy, G. Parton Distribution Functions and Tensorgluons. Universe 2020, 6, 88. https://doi.org/10.3390/universe6070088
Kirschner R, Savvidy G. Parton Distribution Functions and Tensorgluons. Universe. 2020; 6(7):88. https://doi.org/10.3390/universe6070088
Chicago/Turabian StyleKirschner, Roland, and George Savvidy. 2020. "Parton Distribution Functions and Tensorgluons" Universe 6, no. 7: 88. https://doi.org/10.3390/universe6070088
APA StyleKirschner, R., & Savvidy, G. (2020). Parton Distribution Functions and Tensorgluons. Universe, 6(7), 88. https://doi.org/10.3390/universe6070088