A Chi-Squared Analysis of the Measurements of Two Cosmological Parameters over Time
Abstract
:1. Introduction
1.1. The Standard Cosmological Model
1.2. Amplitude of Mass Fluctuations ()
1.3. Hubble’s Constant ()
1.4. Values and Errors
2. Statistical Analysis
2.1. Chi-Squared Test
2.2. Reduced Chi-Squared
2.3. Statistical Significance, Q
2.3.1. Amplitude of Mass Fluctuations
2.3.2. Hubble’s Constant
3. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Tables of Data
Date | ± | Reference | |
---|---|---|---|
1993 | 0.57 | 0.05 | White et al. [11] |
1993 | 1.415 | 0.165 | White et al. [11] |
1996 | 0.7 | 0.05 | Taylor and Hamilton [12] |
1997 | 0.75 | 0.1 | Carlberg et al. [13] |
1997 | 0.95 | 0.1 | Carlberg et al. [13] |
1997 | 0.8 | 0.15 | Shimasaku [14] |
1997 | 0.66 | Henry [15] | |
1997 | 0.66 | Henry [15] | |
1997 | 0.83 | 0.15 | Fan et al. [2] |
1998 | 1.2 | Bahcall and Fan [16] | |
1998 | 0.49 | Robinson et al. [17] | |
1999 | 0.68 | 0.09 | Einasto et al. [18] |
1999 | 0.74 | 0.05 | Bridle et al. [19] |
2000 | 0.72 | 0.1 | Henry [20] |
2000 | 0.77 | 0.15 | Henry [20] |
2000 | 0.79 | 0.08 | Matsubara et al. [21] |
2000 | 0.68 | 0.04 | McDonald et al. [22] |
2001 | 1.17 | 0.1 | Bridle et al. [23] |
2001 | 0.66 | Borgani et al. [24] | |
2002 | 0.94 | 0.17 | Refregier et al. [25] |
2002 | 1.04 | 0.104 | Evrard et al. [26] |
2002 | 1.04 | 0.078 | Komatsu and Seljak [27] |
2002 | 0.9 | Bahcall et al. [28] | |
2003 | 0.76 | 0.09 | Melchiorri et al. [29] |
2003 | 0.98 | 0.1 | Bahcall and Bode [30] |
2003 | 0.73 | Brown et al. [31] | |
2003 | 1.17 | Slosar et al. [32] | |
2003 | 0.77 | Pierpaoli et al. [33] | |
2003 | 0.695 | 0.042 | Allen et al. [34] |
2003 | 0.84 | 0.04 | Spergel et al. [35] |
2003 | 0.97 | 0.13 | Bacon et al. [36] |
2003 | 0.97 | 0.35 | Hamana et al. [37] |
2004 | 0.966 | 0.048 | Pope et al. [38] |
2004 | 0.71 | 0.11 | Heymans et al. [39] |
2004 | 0.72 | 0.04 | Voevodkin and Vikhlinin [40] |
2004 | 0.85 | okas et al. [41] | |
2004 | 0.94 | 0.08 | okas et al. [41] |
2004 | 1.0 | 0.2 | Chang et al. [42] |
2005 | 0.90 | 0.03 | Seljak et al. [43] |
2005 | 0.88 | 0.06 | Seljak et al. [44] |
2005 | 0.68 | 0.13 | Heymans et al. [45] |
2005 | 0.85 | 0.05 | Pike and Hudson [46] |
2005 | 0.88 | Gaztanaga et al. [47] | |
2006 | 0.89 | 0.2 | Eke et al. [48] |
2006 | 0.77 | 0.05 | Sanchez et al. [49] |
2006 | 0.91 | 0.07 | Viel and Haehnelt [50] |
2006 | 0.67 | Dahle [51] | |
2007 | 0.761 | Spergel et al. [52] | |
2007 | 0.84 | 0.05 | Benjamin et al. [53] |
2007 | 0.97 | 0.06 | Harker et al. [54] |
2008 | 0.79 | 0.05 | Ross et al. [55] |
2009 | 0.85 | Henry et al. [56] | |
2009 | 0.812 | 0.026 | Komatsu et al. [57] |
2010 | 0.79 | 0.03 | Mantz et al. [58] |
2010 | 0.811 | 0.089 | Hilbert and White [59] |
2014 | 0.83 | 0.04 | Mantz et al. [60] |
2015 | 0.710 | 0.086 | Gil-Marín et al. [61] |
2018 | 0.811 | 0.006 | Aghanim et al. [62] |
2018 | 0.76 | 0.03 | Salvati et al. [63] |
2018 | 0.80 | 0.31 | Corasaniti et al. [64] |
2019 | 0.786 | 0.02 | Kreisch et al. [65] |
Date | (km sMpc) | ± | Reference |
1976 | 78 | 8 | Jaakkola and Le Denmat [66] |
1976 | 50.3 | 4.3 | Sandage and Tammann [67] |
1979 | 59 | 8 | Visvanathan and Griersmith [68] |
1980 | 75 | 15 | Stenning and Hartwick [69] |
1983 | 80 | 25 | Rubin and Thonnard [70] |
1984 | 45 | 7 | Joeveer [71] |
1986 | 67 | 8 | Gondhalekar et al. [72] |
1988 | 89 | 10 | Melnick et al. [73] |
1990 | 90 | 10 | Croft and Dailey [1] |
1990 | 75 | 25 | Croft and Dailey [1] |
1990 | 52 | 2 | Croft and Dailey [1] |
1991 | 90 | 17 | Croft and Dailey [1] |
1991 | 87.5 | 12.5 | Croft and Dailey [1] |
1991 | 40 | 12 | Croft and Dailey [1] |
1992 | 86 | 12 | Croft and Dailey [1] |
Date | ± | Reference | |
1992 | 60 | 10 | Croft and Dailey [1] |
1993 | 51 | 12 | Croft and Dailey [1] |
1993 | 47 | 5 | Croft and Dailey [1] |
1993 | 45 | 12 | Croft and Dailey [1] |
1994 | 85 | 5 | Croft and Dailey [1] |
1994 | 52 | 9 | Croft and Dailey [1] |
1995 | 93 | 1 | Croft and Dailey [1] |
1995 | 90 | 17 | Croft and Dailey [1] |
1995 | 78 | 11 | Croft and Dailey [1] |
1995 | 75 | 12.5 | Croft and Dailey [1] |
1995 | 71 | 27.5 | Croft and Dailey [1] |
1996 | 84 | 4 | Croft and Dailey [1] |
1996 | 76 | 34 | Croft and Dailey [1] |
1996 | 74 | 11 | Croft and Dailey [1] |
1996 | 72 | 12 | Croft and Dailey [1] |
1996 | 67 | 4.5 | Croft and Dailey [1] |
1996 | 64 | 6 | Croft and Dailey [1] |
1996 | 62 | 9 | Croft and Dailey [1] |
1996 | 57 | 4 | Croft and Dailey [1] |
1996 | 56 | 4 | Croft and Dailey [1] |
1996 | 56 | 9 | Croft and Dailey [1] |
1997 | 78 | 50 | Croft and Dailey [1] |
1997 | 69 | 5 | Croft and Dailey [1] |
1997 | 69 | 8 | Croft and Dailey [1] |
1997 | 66 | 10 | Croft and Dailey [1] |
1997 | 64 | 13 | Croft and Dailey [1] |
1997 | 62 | 7 | Croft and Dailey [1] |
1997 | 58 | 7.5 | Croft and Dailey [1] |
1997 | 54 | 14 | Croft and Dailey [1] |
1997 | 51 | 13.5 | Croft and Dailey [1] |
1998 | 65 | 1 | Croft and Dailey [1] |
1998 | 62 | 6 | Croft and Dailey [1] |
1998 | 62 | 6 | Croft and Dailey [1] |
1998 | 55 | 8 | Croft and Dailey [1] |
1998 | 53 | 9.5 | Croft and Dailey [1] |
1998 | 51.5 | 12.5 | Croft and Dailey [1] |
1998 | 47 | 19 | Croft and Dailey [1] |
1998 | 47 | 14 | Croft and Dailey [1] |
1998 | 44 | 4 | Croft and Dailey [1] |
1999 | 87 | 11 | Croft and Dailey [1] |
1999 | 76 | 14 | Croft and Dailey [1] |
1999 | 74 | 8 | Croft and Dailey [1] |
1999 | 72 | 9 | Croft and Dailey [1] |
1999 | 69 | 15 | Croft and Dailey [1] |
1999 | 64 | 3.75 | Croft and Dailey [1] |
1999 | 62 | 5 | Croft and Dailey [1] |
1999 | 61 | 7 | Croft and Dailey [1] |
1999 | 60 | 2 | Croft and Dailey [1] |
1999 | 59 | 17 | Croft and Dailey [1] |
1999 | 55 | 3 | Croft and Dailey [1] |
1999 | 54 | 5 | Croft and Dailey [1] |
1999 | 53 | 33 | Croft and Dailey [1] |
1999 | 42 | 9 | Croft and Dailey [1] |
2000 | 77 | 8 | Croft and Dailey [1] |
2000 | 77 | 4 | Croft and Dailey [1] |
2000 | 71 | 6 | Croft and Dailey [1] |
2000 | 68 | 5.4 | Croft and Dailey [1] |
Date | (km sMpc) | ± | Reference |
2000 | 65 | 1 | Croft and Dailey [1] |
2000 | 63 | 10.5 | Croft and Dailey [1] |
2000 | 63 | 12 | Croft and Dailey [1] |
2000 | 59 | 33 | Croft and Dailey [1] |
2000 | 58.5 | 6.3 | Croft and Dailey [1] |
2000 | 52.2 | 11.65 | Croft and Dailey [1] |
2000 | 52 | 5.5 | Croft and Dailey [1] |
2001 | 75 | 15 | Croft and Dailey [1] |
2001 | 74 | 5 | Croft and Dailey [1] |
2001 | 66 | 12.5 | Croft and Dailey [1] |
2001 | 65 | 6 | Croft and Dailey [1] |
2002 | 84 | 19 | Croft and Dailey [1] |
2002 | 78 | 7 | Croft and Dailey [1] |
2002 | 71 | 4 | Croft and Dailey [1] |
2002 | 66.5 | 4.7 | Croft and Dailey [1] |
2002 | 63 | 15 | Croft and Dailey [1] |
2002 | 60 | 15.5 | Croft and Dailey [1] |
2002 | 44 | 9 | Croft and Dailey [1] |
2003 | 85 | 18.5 | Croft and Dailey [1] |
2003 | 84 | 26 | Croft and Dailey [1] |
2003 | 75 | 6.5 | Croft and Dailey [1] |
2003 | 72 | 14 | Croft and Dailey [1] |
2003 | 72 | 8 | Croft and Dailey [1] |
2003 | 71 | 3.5 | Croft and Dailey [1] |
2003 | 70 | 3 | Croft and Dailey [1] |
2003 | 69 | 12 | Croft and Dailey [1] |
2003 | 69 | 4 | Croft and Dailey [1] |
2003 | 68.4 | 1.7 | Croft and Dailey [1] |
2003 | 66 | 5.5 | Croft and Dailey [1] |
2003 | 65 | 31 | Croft and Dailey [1] |
2003 | 59 | 11 | Croft and Dailey [1] |
2004 | 78 | 3 | Croft and Dailey [1] |
2004 | 73 | 4.025 | Croft and Dailey [1] |
2004 | 71 | 8 | Croft and Dailey [1] |
2004 | 71 | 7.1 | Croft and Dailey [1] |
2004 | 69 | 8 | Croft and Dailey [1] |
2004 | 67 | 24 | Croft and Dailey [1] |
2004 | 56 | 23 | Croft and Dailey [1] |
2005 | 73 | 6.4 | Croft and Dailey [1] |
2005 | 70 | 5 | Croft and Dailey [1] |
2005 | 66 | 12.5 | Croft and Dailey [1] |
2006 | 76.9 | 3.65 | Croft and Dailey [1] |
2006 | 74.92 | 2.28 | Croft and Dailey [1] |
2006 | 74 | 2 | Croft and Dailey [1] |
2006 | 74 | 6.3 | Croft and Dailey [1] |
2006 | 62.3 | 5.2 | Croft and Dailey [1] |
2007 | 76 | 8 | Croft and Dailey [1] |
2007 | 74 | 3.75 | Croft and Dailey [1] |
2007 | 68 | 10 | Croft and Dailey [1] |
2008 | 61.7 | 1.15 | Croft and Dailey [1] |
2009 | 74.2 | 3.6 | Croft and Dailey [1] |
2009 | 71 | 4 | Croft and Dailey [1] |
2009 | 70.5 | 1.3 | Croft and Dailey [1] |
Date | ± | Reference | |
2010 | 79.3 | 7.6 | Croft and Dailey [1] |
2010 | 69 | 11 | Croft and Dailey [1] |
2010 | 68.2 | 2.2 | Croft and Dailey [1] |
2010 | 66 | 5 | Croft and Dailey [1] |
2011 | 73.8 | 2.4 | Riess et al. [74] |
2011 | 74.8 | 3.1 | Riess et al. [74] |
2011 | 74.4 | 6.25 | Riess et al. [74] |
2011 | 68 | 5.5 | Chen and Ratra [75] |
2012 | 74.3 | 2.9 | Chávez et al. [76] |
2012 | 67 | 3.2 | Beutler et al. [77] |
2012 | 74.3 | 2.1 | Freedman et al. [78] |
2013 | 68 | 4.8 | Braatz et al. [79] |
2013 | 68.9 | 7.1 | Reid et al. [80] |
2013 | 76 | 1.9 | Fiorentino et al. [81] |
2014 | 69.6 | 0.7 | Bennett et al. [82] |
2015 | 70.6 | 2.6 | Rigault et al. [83] |
2015 | 68.11 | 0.86 | Cheng and Huang [84] |
2016 | 73.24 | 1.74 | Riess et al. [85] |
2017 | 68.3 | +2.7 −2.6 | Chen et al. [86] |
2017 | 68.4 | +2.9 −3.3 | Chen et al. [86] |
2017 | 65 | +6.5 −6.6 | Chen et al. [86] |
2017 | 67.9 | 2.4 | Chen et al. [86] |
2017 | 72.5 | +2.5 −8 | Bethapudi and Desai [87] |
2017 | 69.3 | 4.2 | Braatz et al. [88] |
2018 | 66.98 | 1.18 | Addison et al. [89] |
2018 | 64 | +9 −11 | Vega-Ferrero et al. [90] |
2018 | 73.48 | 1.66 | Riess et al. [91] |
2018 | 67 | 4 | Yu et al. [92] |
2018 | 72.72 | 1.67 | Feeney et al. [93] |
2018 | 73.15 | 1.78 | Feeney et al. [93] |
2018 | 68.9 | +4.7 −4.6 | Hotokezaka et al. [94] |
2018 | 73.3 | 1.7 | Follin and Knox [95] |
2018 | 67.4 | 0.5 | Chen et al. [96] |
2018 | 73.24 | 1.74 | Chen et al. [96] |
2019 | 67 | 3 | Kozmanyan et al. [97] |
2019 | 72.5 | +2.1 −2.3 | Birrer et al. [98] |
2019 | 67.5 | +1.4 −1.5 | Domínguez et al. [99] |
2019 | 74.03 | 1.42 | Riess et al. [10] |
2019 | 67.8 | 1.3 | Macaulay et al. [100] |
References
- Croft, R.A.; Dailey, M. On the measurement of cosmological parameters. Quaterly Phys. Rev. 2015, 1, 1–14. [Google Scholar]
- Fan, X.; Bahcall, N.A.; Cen, R. Determining the amplitude of mass fluctuations in the universe. Astrophys. J. Lett. 1997, 490, L123. [Google Scholar] [CrossRef] [Green Version]
- Paturel, G.; Teerikorpi, P.; Baryshev, Y. Hubble Law: Measure and Interpretation. Found. Phys. 2017, 47, 1208–1228. [Google Scholar] [CrossRef] [Green Version]
- Kragh, H.; Smith, R.W. Who discovered the expanding universe? Hist. Sci. 2003, 41, 141–162. [Google Scholar] [CrossRef]
- Elizalde, E. Reasons in Favor of a Hubble-Lemaître-Slipher’s (HLS) Law. Symmetry 2019, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Plackett, R.L. Karl Pearson and the chi-squared test. Int. Stat. Rev. 1983, 51, 59–72. [Google Scholar] [CrossRef]
- Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 1976, 210, 642–646. [Google Scholar] [CrossRef]
- Andrae, R.; Schulze-Hartung, T.; Melchior, P. Dos and don’ts of reduced chi-squared. arXiv 2010, arXiv:1012.3754. [Google Scholar]
- Gronau, D. Why is the gamma function so as it is. Teach. Math. Comput. Sci. 2003, 1, 43–53. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond LambdaCDM. arXiv 2019, arXiv:1903.07603. [Google Scholar] [CrossRef]
- White, S.D.; Efstathiou, G.; Frenk, C. The amplitude of mass fluctuations in the universe. Mon. Not. R. Astron. Soc. 1993, 262, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.; Hamilton, A. Non-linear cosmological power spectra in real and redshift space. Mon. Not. R. Astron. Soc. 1996, 282, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Carlberg, R.; Yee, H.; Lin, H.; Shepherd, C.; Gravel, P.; Ellingson, E.; Morris, S.; Schade, D.; Hesser, J.; Hutchings, J.; et al. The CNOC Cluster Survey: Omega, sigma_8, Phi (L, z) Results, and Prospects for Lambda Measurement. In Ringberg Workshop on Large-Scale Structure; Hamilton, D., Ed.; Kluwer: Amsterdam, The Netherlands, 1998; p. 135. [Google Scholar]
- Shimasaku, K. Measuring the density fluctuation from the cluster gas mass function. Astrophys. J. 1997, 489, 501. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.P. A measurement of the density parameter derived from the evolution of cluster X-ray temperatures. Astrophys. J. Lett. 1997, 489, L1. [Google Scholar] [CrossRef]
- Bahcall, N.A.; Fan, X. The most massive distant clusters: Determining Ω and σ8. Astrophys. J. 1998, 504, 1. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.; Gawiser, E.; Silk, J. A simultaneous constraint on the amplitude and gaussianity of mass fluctuations in the universe. arXiv 1998, arXiv:astro-ph/9805181. [Google Scholar]
- Einasto, J.; Einasto, M.; Tago, E.; Müller, V.; Knebe, A.; Cen, R.; Starobinsky, A.; Atrio-Barandela, F. Steps toward the power spectrum of matter. II. The biasing correction with σ8 normalization. Astrophys. J. 1999, 519, 456. [Google Scholar] [CrossRef]
- Bridle, S.; Eke, V.; Lahav, O.; Lasenby, A.; Hobson, M.; Cole, S.; Frenk, C.; Henry, J. Cosmological parameters from cluster abundances, cosmic microwave background and IRAS. Mon. Not. R. Astron. Soc. 1999, 310, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.P. Measuring cosmological parameters from the evolution of cluster X-ray temperatures. Astrophys. J. 2000, 534, 565. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, T.; Szalay, A.S.; Landy, S.D. Cosmological parameters from the eigenmode analysis of the las campanas redshift survey. Astrophys. J. Lett. 2000, 535, L1. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Miralda-Escude, J.; Rauch, M.; Sargent, W.L.; Barlow, T.A.; Cen, R.; Ostriker, J.P. The observed probability distribution function, power spectrum, and correlation function of the transmitted flux in the Lyα forest. Astrophys. J. 2000, 543, 1. [Google Scholar] [CrossRef]
- Bridle, S.L.; Zehavi, I.; Dekel, A.; Lahav, O.; Hobson, M.P.; Lasenby, A.N. Cosmological parameters from velocities, cosmic microwave background and supernovae. Mon. Not. R. Astron. Soc. 2001, 321, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Borgani, S.; Rosati, P.; Tozzi, P.; Stanford, S.; Eisenhardt, P.R.; Lidman, C.; Holden, B.; Della Ceca, R.; Norman, C.; Squires, G. Measuring Ω with the rosat deep cluster survey. Astrophys. J. 2001, 561, 13. [Google Scholar] [CrossRef] [Green Version]
- Refregier, A.; Rhodes, J.; Groth, E.J. Cosmic shear and power spectrum normalization with the hubble space telescope. Astrophys. J. Lett. 2002, 572, L131. [Google Scholar] [CrossRef]
- Evrard, A.E.; MacFarland, T.; Couchman, H.; Colberg, J.; Yoshida, N.; White, S.; Jenkins, A.; Frenk, C.; Pearce, F.; Peacock, J.; et al. Galaxy clusters in hubble volume simulations: Cosmological constraints from sky survey populations. Astrophys. J. 2002, 573, 7. [Google Scholar] [CrossRef]
- Komatsu, E.; Seljak, U. The Sunyaev–Zel’dovich angular power spectrum as a probe of cosmological parameters. Mon. Not. R. Astron. Soc. 2002, 336, 1256–1270. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, N.; Dong, F.; Bode, P.; Kim, R.; Annis, J.; McKay, T.A.; Hansen, S.; Gunn, J.; Ostriker, J.P.; Postman, M.; et al. The cluster mass function and cosmological implications. Bull. Am. Astron. Soc. 2002, 34, 1142. [Google Scholar]
- Melchiorri, A.; Bode, P.; Bahcall, N.A.; Silk, J. Cosmological constraints from a combined analysis of the cluster mass function and microwave background anisotropies. Astrophys. J. Lett. 2003, 586, L1. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, N.A.; Bode, P. The Amplitude of mass fluctuations. Astrophys. J. Lett. 2003, 588, L1. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.L.; Taylor, A.N.; Bacon, D.J.; Gray, M.E.; Dye, S.; Meisenheimer, K.; Wolf, C. The shear power spectrum from the COMBO-17 survey. Mon. Not. R. Astron. Soc. 2003, 341, 100–118. [Google Scholar] [CrossRef] [Green Version]
- Slosar, A.; Carreira, P.; Cleary, K.; Davies, R.D.; Davis, R.J.; Dickinson, C.; Genova-Santos, R.; Grainge, K.; Gutierrez, C.M.; Hafez, Y.A.; et al. Cosmological parameter estimation and Bayesian model comparison using Very Small Array data. Mon. Not. R. Astron. Soc. 2003, 341, L29–L34. [Google Scholar] [CrossRef] [Green Version]
- Pierpaoli, E.; Borgani, S.; Scott, D.; White, M. On determining the cluster abundance normalization. Mon. Not. R. Astron. Soc. 2003, 342, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.; Schmidt, R.; Fabian, A.; Ebeling, H. Cosmological constraints from the local X-ray luminosity function of the most X-ray-luminous galaxy clusters. Mon. Not. R. Astron. Soc. 2003, 342, 287–298. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.; Bennett, C.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP)* observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175. [Google Scholar] [CrossRef] [Green Version]
- Bacon, D.J.; Massey, R.J.; Refregier, A.R.; Ellis, R.S. Joint cosmic shear measurements with the keck and william herschel telescopes. Mon. Not. R. Astron. Soc. 2003, 344, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Hamana, T.; Miyazaki, S.; Shimasaku, K.; Furusawa, H.; Doi, M.; Hamabe, M.; Imi, K.; Kimura, M.; Komiyama, Y.; Nakata, F.; et al. Cosmic Shear Statistics in the Suprime-Cam 2.1 Square Degree Field: Constraints on Ωm and σ8. Astrophys. J. 2003, 597, 98–110. [Google Scholar] [CrossRef]
- Pope, A.C.; Matsubara, T.; Szalay, A.S.; Blanton, M.R.; Eisenstein, D.J.; Gray, J.; Jain, B.; Bahcall, N.A.; Brinkmann, J.; Budavari, T.; et al. Cosmological parameters from eigenmode analysis of sloan digital sky survey galaxy redshifts. Astrophys. J. 2004, 607, 655. [Google Scholar] [CrossRef]
- Heymans, C.; Brown, M.; Heavens, A.; Meisenheimer, K.; Taylor, A.; Wolf, C. Weak lensing with COMBO-17: Estimation and removal of intrinsic alignments. Mon. Not. R. Astron. Soc. 2004, 347, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Voevodkin, A.; Vikhlinin, A. Constraining amplitude and slope of the mass fluctuation spectrum using a cluster baryon mass function. Astrophys. J. 2004, 601, 610. [Google Scholar] [CrossRef] [Green Version]
- Łokas, E.L.; Bode, P.; Hoffman, Y. Cluster mass functions in the quintessential universe. Mon. Not. R. Astron. Soc. 2004, 349, 595–602. [Google Scholar]
- Chang, T.C.; Refregier, A.; Helfand, D.J. Weak lensing by large-scale structure with the FIRST radio survey. Astrophys. J. 2004, 617, 794. [Google Scholar] [CrossRef] [Green Version]
- Seljak, U.; Makarov, A.; McDonald, P.; Anderson, S.F.; Bahcall, N.A.; Brinkmann, J.; Burles, S.; Cen, R.; Doi, M.; Gunn, J.E.; et al. Cosmological parameter analysis including SDSS Ly α forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 2005, 71, 103515. [Google Scholar] [CrossRef] [Green Version]
- Seljak, U.; Makarov, A.; Mandelbaum, R.; Hirata, C.M.; Padmanabhan, N.; McDonald, P.; Blanton, M.R.; Tegmark, M.; Bahcall, N.A.; Brinkmann, J. SDSS galaxy bias from halo mass-bias relation and its cosmological implications. Phys. Rev. D 2005, 71, 043511. [Google Scholar] [CrossRef] [Green Version]
- Heymans, C.; Brown, M.L.; Barden, M.; Caldwell, J.A.; Jahnke, K.; Peng, C.Y.; Rix, H.W.; Taylor, A.; Beckwith, S.V.; Bell, E.F.; et al. Cosmological weak lensing with the HST GEMS survey. Mon. Not. R. Astron. Soc. 2005, 361, 160–176. [Google Scholar] [CrossRef] [Green Version]
- Pike, R.; Hudson, M.J. Cosmological parameters from the comparison of the 2MASS gravity field with peculiar velocity surveys. Astrophys. J. 2005, 635, 11. [Google Scholar] [CrossRef]
- Gaztanaga, E.; Norberg, P.; Baugh, C.; Croton, D. Statistical analysis of galaxy surveys—II. The three-point galaxy correlation function measured from the 2dFGRS. Mon. Not. R. Astron. Soc. 2005, 364, 620–634. [Google Scholar] [CrossRef] [Green Version]
- Eke, V.R.; Baugh, C.M.; Cole, S.; Frenk, C.S.; Navarro, J.F. Galaxy groups in the 2dF Galaxy Redshift Survey: The number density of groups. Mon. Not. R. Astron. Soc. 2006, 370, 1147–1158. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.G.; Baugh, C.; Percival, W.; Peacock, J.; Padilla, N.; Cole, S.; Frenk, C.; Norberg, P. Cosmological parameters from CMB measurements and the final 2dFGRS power spectrum. Mon. Not. Roy. Astron. Soc. 2006, 366, 189. [Google Scholar] [CrossRef] [Green Version]
- Viel, M.; Haehnelt, M.G. Cosmological and astrophysical parameters from the Sloan Digital Sky Survey flux power spectrum and hydrodynamical simulations of the Lyman α forest. Mon. Not. R. Astron. Soc. 2006, 365, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Dahle, H. The cluster mass function from weak gravitational lensing. Astrophys. J. 2006, 653, 954. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.; Bennett, C.; Dunkley, J.; Hinshaw, G.; Jarosik, N.E.; Komatsu, E.; Page, L.; et al. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology. Astrophys. J. Suppl. Ser. 2007, 170, 377. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, J.; Heymans, C.; Semboloni, E.; Van Waerbeke, L.; Hoekstra, H.; Erben, T.; Gladders, M.D.; Hetterscheidt, M.; Mellier, Y.; Yee, H. Cosmological constraints from the 100-deg2 weak-lensing survey. Mon. Not. R. Astron. Soc. 2007, 381, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Harker, G.; Cole, S.; Jenkins, A. Constraints on σ8 from galaxy clustering in N-body simulations and semi-analytic models. Mon. Not. R. Astron. Soc. 2007, 382, 1503–1515. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.J.; Brunner, R.J.; Myers, A.D. Normalization of the matter power spectrum via higher order angular correlations of luminous red galaxies. Astrophys. J. 2008, 682, 737. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.P.; Evrard, A.E.; Hoekstra, H.; Babul, A.; Mahdavi, A. The X-ray cluster normalization of the matter power spectrum. Astrophys. J. 2009, 691, 1307. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, E.; Dunkley, J.; Nolta, M.; Bennett, C.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.; et al. Five-year wilkinson microwave anisotropy probe* observations: Cosmological interpretation. Astrophys. J. Suppl. Ser. 2009, 180, 330. [Google Scholar] [CrossRef] [Green Version]
- Mantz, A.; Allen, S.W.; Rapetti, D.; Ebeling, H. The observed growth of massive galaxy clusters–I. Statistical methods and cosmological constraints. Mon. Not. R. Astron. Soc. 2010, 406, 1759–1772. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, S.; White, S.D. Abundances, masses and weak-lensing mass profiles of galaxy clusters as a function of richness and luminosity in ΛCDM cosmologies. Mon. Not. R. Astron. Soc. 2010, 404, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Mantz, A.B.; Von der Linden, A.; Allen, S.W.; Applegate, D.E.; Kelly, P.L.; Morris, R.G.; Rapetti, D.A.; Schmidt, R.W.; Adhikari, S.; Allen, M.T.; et al. Weighing the giants–IV. Cosmology and neutrino mass. Mon. Not. R. Astron. Soc. 2014, 446, 2205–2225. [Google Scholar] [CrossRef] [Green Version]
- Gil-Marín, H.; Verde, L.; Norena, J.; Cuesta, A.J.; Samushia, L.; Percival, W.J.; Wagner, C.; Manera, M.; Schneider, D.P. The power spectrum and bispectrum of SDSS DR11 BOSS galaxies–II. Cosmological interpretation. Mon. Not. R. Astron. Soc. 2015, 452, 1914–1921. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. arXiv 2018, arXiv:1807.06209. [Google Scholar]
- Salvati, L.; Douspis, M.; Aghanim, N. Constraints from thermal Sunyaev-Zel’dovich cluster counts and power spectrum combined with CMB. Astron. Astrophys. 2018, 614, A13. [Google Scholar] [CrossRef] [Green Version]
- Corasaniti, P.; Ettori, S.; Rasera, Y.; Sereno, M.; Amodeo, S.; Breton, M.A.; Ghirardini, V.; Eckert, D. Probing Cosmology with Dark Matter Halo Sparsity Using X-ray Cluster Mass Measurements. Astrophys. J. 2018, 862, 40. [Google Scholar] [CrossRef]
- Kreisch, C.D.; Cyr-Racine, F.Y.; Doré, O. The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions. arXiv 2019, arXiv:1902.00534. [Google Scholar]
- Jaakkola, T.; Le Denmat, G. Remarks on the low value obtained for the Hubble constant. Mon. Not. R. Astron. Soc. 1976, 176, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Sandage, A.; Tammann, G. Steps toward the Hubble constant. VII-Distances to NGC 2403, M101, and the Virgo cluster using 21 centimeter line widths compared with optical methods: The global value of H sub 0. Astrophys. J. 1976, 210, 7–24. [Google Scholar] [CrossRef]
- Visvanathan, N.; Griersmith, D. Distance to the Virgo I cluster and the value of the Hubble constant. Astrophys. J. 1979, 230, 1–10. [Google Scholar] [CrossRef]
- Stenning, M.; Hartwick, F. The local value of the Hubble constant from luminosity classification of SB galaxies. Astron. J. 1980, 85, 101–116. [Google Scholar] [CrossRef]
- Rubin, V.C.; Thonnard, N. A new method for evaluating the Hubble constant. Highlights Astron. 1983, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Jõeveer, M. The type I supernovae absolute magnitude brightness decline rate relation and the Hubble constant. Publ. Tartu Astrofiz. Obs. 1984, 50, 327–334. [Google Scholar]
- Gondhalekar, P.; Wilson, R.; Dupree, A.; Burke, B. Ultraviolet light curve of the double quasar QO957+ 561, A, B and determination of the Hubble constant. In New Insights in Astrophysics 8 Years of UV Astronomy with IUE; Rolfe, E.J., Ed.; European Space Agency: Paris, France, 1986; p. 715. [Google Scholar]
- Melnick, J.; Terlevich, R.; Moles, M. Giant H II regions as distance indicators–II. Application to H II galaxies and the value of the Hubble constant. Mon. Not. R. Astron. Soc. 1988, 235, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Macri, L.; Casertano, S.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R. A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 2011, 730, 119. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Ratra, B. Median statistics and the Hubble constant. Publ. Astron. Soc. Pac. 2011, 123, 1127. [Google Scholar] [CrossRef] [Green Version]
- Chávez, R.; Terlevich, E.; Terlevich, R.; Plionis, M.; Bresolin, F.; Basilakos, S.; Melnick, J. Determining the Hubble constant using giant extragalactic H II regions and H II galaxies. Mon. Not. R. Astron. Soc. Lett. 2012, 425, L56–L60. [Google Scholar] [CrossRef] [Green Version]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017–3032. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Scowcroft, V.; Burns, C.; Monson, A.; Persson, S.E.; Seibert, M.; Rigby, J. Carnegie Hubble program: A mid-infrared calibration of the Hubble constant. Astrophys. J. 2012, 758, 24. [Google Scholar] [CrossRef] [Green Version]
- Braatz, J.; Reid, M.; Kuo, C.Y.; Impellizzeri, V.; Condon, J.; Henkel, C.; Lo, K.; Greene, J.; Gao, F.; Zhao, W. Measuring the Hubble constant with observations of water-vapor megamasers. Proc. Int. Astron. Union 2012, 8, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.; Braatz, J.; Condon, J.; Lo, K.; Kuo, C.; Impellizzeri, C.; Henkel, C. The megamaser cosmology project. IV. A direct measurement of the Hubble constant from UGC 3789. Astrophys. J. 2013, 767, 154. [Google Scholar] [CrossRef]
- Fiorentino, G.; Musella, I.; Marconi, M. Cepheid theoretical models and observations in HST/WFC3 filters: The effect on the Hubble constant H0. Mon. Not. R. Astron. Soc. 2013, 434, 2866–2876. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.; Larson, D.; Weiland, J.; Hinshaw, G. The 1% concordance Hubble constant. Astrophys. J. 2014, 794, 135. [Google Scholar] [CrossRef]
- Rigault, M.; Aldering, G.; Kowalski, M.; Copin, Y.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Baugh, D.; Bongard, S.; et al. Confirmation of a star formation bias in type Ia supernova distances and its effect on the measurement of the Hubble constant. Astrophys. J. 2015, 802, 20. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Huang, Q. An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. Sci. China Phys. Mech. Astron. 2015, 58, 599801. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Chen, Y.; Kumar, S.; Ratra, B. Determining the Hubble constant from Hubble parameter measurements. Astrophys. J. 2017, 835, 86. [Google Scholar] [CrossRef] [Green Version]
- Bethapudi, S.; Desai, S. Median statistics estimates of Hubble and Newton’s constants. Eur. Phys. J. Plus 2017, 132, 78. [Google Scholar] [CrossRef] [Green Version]
- Braatz, J.; Condon, J.; Henkel, C.; Greene, J.; Lo, F.; Reid, M.; Pesce, D.; Gao, F.; Impellizzeri, V.; Kuo, C.Y.; et al. A Measurement of the Hubble Constant by the Megamaser Cosmology Project. Proc. Int. Astron. Union 2017, 13, 86–91. [Google Scholar] [CrossRef]
- Addison, G.; Watts, D.; Bennett, C.; Halpern, M.; Hinshaw, G.; Weiland, J. Elucidating ΛCDM: Impact of baryon acoustic oscillation measurements on the Hubble constant discrepancy. Astrophys. J. 2018, 853, 119. [Google Scholar] [CrossRef]
- Vega-Ferrero, J.; Diego, J.M.; Miranda, V.; Bernstein, G. The Hubble Constant from SN Refsdal. Astrophys. J. Lett. 2018, 853, L31. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New parallaxes of galactic cepheids from spatially scanning the hubble space telescope: Implications for the hubble constant. Astrophys. J. 2018, 855, 136. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ratra, B.; Wang, F.Y. Hubble parameter and Baryon Acoustic Oscillation measurement constraints on the Hubble constant, the deviation from the spatially flat ΛCDM model, the deceleration–acceleration transition redshift, and spatial curvature. Astrophys. J. 2018, 856, 3. [Google Scholar] [CrossRef] [Green Version]
- Feeney, S.M.; Mortlock, D.J.; Dalmasso, N. Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder. Mon. Not. R. Astron. Soc. 2018, 476, 3861–3882. [Google Scholar] [CrossRef]
- Hotokezaka, K.; Nakar, E.; Gottlieb, O.; Nissanke, S.; Masuda, K.; Hallinan, G.; Mooley, K.P.; Deller, A.T. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 2019, 3, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Follin, B.; Knox, L. Insensitivity of the distance ladder Hubble constant determination to Cepheid calibration modelling choices. Mon. Not. R. Astron. Soc. 2018, 477, 4534–4542. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Fishbach, M.; Holz, D.E. A two per cent Hubble constant measurement from standard sirens within five years. Nature 2018, 562, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozmanyan, A.; Bourdin, H.; Mazzotta, P.; Rasia, E.; Sereno, M. Deriving the Hubble constant using Planck and XMM-Newton observations of galaxy clusters. Astron. Astrophys. 2019, 621, A34. [Google Scholar] [CrossRef] [Green Version]
- Birrer, S.; Treu, T.; Rusu, C.; Bonvin, V.; Fassnacht, C.; Chan, J.; Agnello, A.; Shajib, A.; Chen, G.C.; Auger, M.; et al. H0LiCOW–IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+ 4332 and a new measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 2019, 484, 4726–4753. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Wojtak, R.; Finke, J.; Ajello, M.; Helgason, K.; Prada, F.; Desai, A.; Paliya, V.; Marcotulli, L.; Hartmann, D.H. A New Measurement of the Hubble Constant and Matter Content of the Universe Using Extragalactic Background Light γ-Ray Attenuation. arXiv 2019, arXiv:1903.12097. [Google Scholar] [CrossRef] [Green Version]
- Macaulay, E.; Nichol, R.; Bacon, D.; Brout, D.; Davis, T.; Zhang, B.; Bassett, B.A.; Scolnic, D.; Möller, A.; D’Andrea, C.; et al. First cosmological results using Type Ia supernovae from the Dark Energy Survey: Measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 2019, 486, 2184–2196. [Google Scholar] [CrossRef] [Green Version]
1 | For two independent variables X and Y, the correlation factor is defined as , with error . The Pearson correlation coefficient would be . |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faerber, T.; López-Corredoira, M. A Chi-Squared Analysis of the Measurements of Two Cosmological Parameters over Time. Universe 2020, 6, 114. https://doi.org/10.3390/universe6080114
Faerber T, López-Corredoira M. A Chi-Squared Analysis of the Measurements of Two Cosmological Parameters over Time. Universe. 2020; 6(8):114. https://doi.org/10.3390/universe6080114
Chicago/Turabian StyleFaerber, Timothy, and Martín López-Corredoira. 2020. "A Chi-Squared Analysis of the Measurements of Two Cosmological Parameters over Time" Universe 6, no. 8: 114. https://doi.org/10.3390/universe6080114
APA StyleFaerber, T., & López-Corredoira, M. (2020). A Chi-Squared Analysis of the Measurements of Two Cosmological Parameters over Time. Universe, 6(8), 114. https://doi.org/10.3390/universe6080114