Nuclear Pairing Gaps and Neutron Star Cooling
Abstract
:1. Introduction
2. Formalism
2.1. Nuclear Equation of State
2.2. Nuclear Cooling Processes
2.3. Pairing Gaps and Critical Temperatures
2.4. Cooling Simulations
3. Results
- (a)
- there is no bias on the masses (and thus luminosities) in the current data set of isolated NSs, that is, bright and dim objects are supposed to be present with equal probability, thus the detection of these sources is independent of their brightness;
- (b)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yakovlev, D.G.; Kaminker, A.D.; Gnedin, O.Y.; Haensel, P. Neutrino emission from neutron stars. Phys. Rep. 2001, 354, 1–155. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.G.; Pethick, C.J. Neutron Star Cooling. Annu. Rev. Astron. Astrophys. 2004, 42, 169–210. [Google Scholar] [CrossRef]
- Haskell, B.; Sedrakian, A. Superfluidity and Superconductivity in Neutron Stars. In Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2018; Volume 457, p. 401. [Google Scholar]
- Sedrakian, A.; Clark, J.W. Superfluidity in nuclear systems and neutron stars. EPJA 2019, 55, 167. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X 2019, 9, 011001. [Google Scholar] [CrossRef] [Green Version]
- Taranto, G.; Burgio, G.F.; Schulze, H.J. Cassiopeia A and direct Urca cooling. Mon. Not. R. Astron. Soc. 2016, 456, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Taranto, G.; Burgio, G.F.; Haensel, P.; Schulze, H.J.; Zdunik, J.L. Thermal states of neutron stars with a consistent model of interior. Mon. Not. R. Astron. Soc. 2018, 475, 5010–5022. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.B.; Burgio, G.F.; Schulze, H.J. Neutron star cooling with microscopic equations of state. Mon. Not. R. Astron. Soc. 2019, 484, 5162–5169. [Google Scholar] [CrossRef]
- Wei, J.B.; Burgio, G.F.; Schulze, H.J.; Zappalà, D. Cooling of hybrid neutron stars with microscopic equations of state. Mon. Not. R. Astron. Soc. 2020. [Google Scholar] [CrossRef]
- Beznogov, M.V.; Yakovlev, D.G. Statistical theory of thermal evolution of neutron stars. Mon. Not. R. Astron. Soc. 2015, 447, 1598–1609. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Zyuzin, D.A.; Yakovlev, D.G.; Beznogov, M.V.; Shibanov, Y.A. Thermal luminosities of cooling neutron stars. Mon. Not. R. Astron. Soc. 2020, 496, 5052–5071. [Google Scholar] [CrossRef]
- Jeukenne, J.P.; Lejeune, A.; Mahaux, C. Many-body theory of nuclear matter. Phys. Rep. 1976, 25, 83–174. [Google Scholar] [CrossRef]
- Baldo, M. Nuclear Methods And The Nuclear Equation of State; World Scientific: Singapore, 1999; Volume 8. [Google Scholar]
- Baldo, M.; Burgio, G.F. Properties of the nuclear medium. Rep. Prog. Phys. 2012, 75, 026301. [Google Scholar] [CrossRef]
- Song, H.; Baldo, M.; Giansiracusa, G.; Lombardo, U. Bethe-Brueckner-Goldstone Expansion in Nuclear Matter. Phys. Rev. Lett. 1998, 81, 1584–1587. [Google Scholar] [CrossRef]
- Baldo, M.; Giansiracusa, G.; Lombardo, U.; Song, H.Q. Bethe-Brueckner-Goldstone expansion in neutron matter. Phys. Lett. B 2000, 473, 1–5. [Google Scholar] [CrossRef]
- Lu, J.J.; Li, Z.H.; Chen, C.Y.; Baldo, M.; Schulze, H.J. Convergence of the hole-line expansion with modern nucleon-nucleon potentials. Phys. Rev. C 2017, 96, 044309. [Google Scholar] [CrossRef]
- Lu, J.J.; Li, Z.H.; Chen, C.Y.; Baldo, M.; Schulze, H.J. Neutron matter in the hole-line expansion. Phys. Rev. C 2018, 98, 064322. [Google Scholar] [CrossRef]
- Wiringa, R.B.; Stoks, V.; Schiavilla, R. An accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 1995, 51, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Grangé, P.; Lejeune, A.; Martzolff, M.; Mathiot, J.F. Consistent three-nucleon forces in the nuclear many-body problem. Phys. Rev. C 1989, 40, 1040–1060. [Google Scholar] [CrossRef]
- Zuo, W.; Lejeune, A.; Lombardo, U.; Mathiot, J.F. Microscopic three-body force for asymmetric nuclear matter. EPJA 2002, 14, 469–475. [Google Scholar] [CrossRef]
- Li, Z.; Lombardo, U.; Schulze, H.J.; Zuo, W. Consistent nucleon-nucleon potentials and three-body forces. Phys. Rev. C 2008, 77, 034316. [Google Scholar] [CrossRef]
- Li, Z.H.; Schulze, H.J. Neutron star structure with modern nucleonic three-body forces. Phys. Rev. C 2008, 78, 028801. [Google Scholar] [CrossRef]
- Wei, J.B.; Lu, J.J.; Burgio, G.F.; Li, Z.H.; Schulze, H.J. Are nuclear matter properties correlated to neutron star observables? EPJA 2020, 56, 63. [Google Scholar] [CrossRef]
- Baldo, M.; Burgio, G.F.; Schulze, H.J.; Taranto, G. Nucleon effective masses within the Brueckner-Hartree-Fock theory: Impact on stellar neutrino emission. Phys. Rev. C 2014, 89, 048801. [Google Scholar] [CrossRef] [Green Version]
- Negele, J.W.; Vautherin, D. Neutron star matter at subnuclear densities. Nucl. Phys. A 1973, 207, 298–320. [Google Scholar] [CrossRef]
- Baym, G.; Pethick, C.; Sutherland, P. The ground state of matter at high densities: Equation of state and stellar models. Astrophys. J. 1971, 170, 299–317. [Google Scholar] [CrossRef]
- Feynman, R.P.; Metropolis, N.; Teller, E. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory. Phys. Rev. 1949, 75, 1561–1573. [Google Scholar] [CrossRef]
- Burgio, G.F.; Schulze, H.J. The maximum and minimum mass of protoneutron stars in the Brueckner theory. Astron. Astrophys. 2010, 518, A17. [Google Scholar] [CrossRef] [Green Version]
- Baldo, M.; Burgio, G.F.; Centelles, M.; Sharma, B.K.; Viñas, X. From the crust to the core of neutron stars on a microscopic basis. Phys. At. Nucl. 2014, 77, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Providência, C.; Raduta, A.R.; Gulminelli, F.; Zdunik, J.L.; Haensel, P.; Bejger, M. Neutron star radii and crusts: Uncertainties and unified equations of state. Phys. Rev. C 2016, 94, 035804. [Google Scholar] [CrossRef] [Green Version]
- Tsang, C.Y.; Tsang, M.B.; Danielewicz, P.; Fattoyev, F.J.; Lynch, W.G. Insights on Skyrme parameters from GW170817. Phys. Lett. B 2019, 796, 1–5. [Google Scholar] [CrossRef]
- Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.; Hessels, J.W. A two-solar-mass neutron star measured using Shapiro delay. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 6131. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, E.; Pennucci, T.T.; Ellis, J.A.; Stairs, I.H.; Nice, D.J.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Crowter, K.; Dolch, T.; et al. The NANOGrav Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars. Astrophys. J. 2016, 832, 167. [Google Scholar] [CrossRef]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2019, 4, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Burgio, G.F.; Drago, A.; Pagliara, G.; Schulze, H.J.; Wei, J.B. Are Small Radii of Compact Stars Ruled out by GW170817/AT2017gfo? Astrophys. J. 2018, 860, 139. [Google Scholar] [CrossRef]
- Wei, J.B.; Figura, A.; Burgio, G.F.; Chen, H.; Schulze, H.J. Neutron star universal relations with microscopic equations of state. J. Phys. G Nucl. Part. Phys. 2019, 46, 034001. [Google Scholar] [CrossRef] [Green Version]
- Margalit, B.; Metzger, B.D. Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817. Astrophys. J. Lett. 2017, 850, L19. [Google Scholar] [CrossRef]
- Ruiz, M.; Shapiro, S.L.; Tsokaros, A. GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 2018, 97, 021501. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Weih, L.R.; Rezzolla, L.; Schaffner-Bielich, J. New constraints on radii and tidal deformabilities of neutron stars from GW170817. Phys. Rev. Lett. 2018, 120, 261103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezzolla, L.; Most, E.R.; Weih, L.R. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. Astrophys. J. Lett. 2018, 852, L25. [Google Scholar] [CrossRef]
- Shibata, M.; Zhou, E.; Kiuchi, K.; Fujibayashi, S. Constraint on the maximum mass of neutron stars using GW170817 event. Phys. Rev. D 2019, 100, 023015. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Papenfort, L.J.; Weih, L.R.; Rezzolla, L. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. arXiv 2020, arXiv:2006.14601. [Google Scholar]
- Shao, D.S.; Tang, S.P.; Sheng, X.; Jiang, J.L.; Wang, Y.Z.; Jin, Z.P.; Fan, Y.Z.; Wei, D.M. Estimating the maximum gravitational mass of nonrotating neutron stars from the GW170817/GRB 170817A/AT2017gfo observation. Phys. Rev. D 2020, 101, 063029. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. 2019, 887, L21. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Reddy, S. Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints. Annu. Rev. Nucl. Part. Sci. 2006, 56, 327–374. [Google Scholar] [CrossRef] [Green Version]
- Page, D.; Geppert, U.; Weber, F. The cooling of compact stars. Nucl. Phys. A 2006, 777, 497–530. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 2007, 442, 109–165. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Pons, J.A.; Page, D. Neutron Stars–Cooling and Transport. Space Sci. Rev. 2015, 191, 239–291. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Pethick, C.J.; Prakash, M.; Haensel, P. Direct URCA process in neutron stars. Phys. Rev. Lett. 1991, 66, 2701–2704. [Google Scholar] [CrossRef] [PubMed]
- Amundsen, L.; østgaard, E. Superfluidity of neutron matter (II). Triplet pairing. Nucl. Phys. A 1985, 442, 163–188. [Google Scholar] [CrossRef]
- Baldo, M.; Cugnon, J.; Lejeune, A.; Lombardo, U. Proton and neutron superfluidity in neutron star matter. Nucl. Phys. A 1992, 536, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Takatsuka, T.; Tamagaki, R. Chapter II. Superfluidity in Neutron Star Matter and Symmetric Nuclear Matter. Prog. Theor. Phys. Suppl. 1993, 112, 27–65. [Google Scholar] [CrossRef]
- Elgarøy, ø.; Engvik, L.; Hjorth-Jensen, M.; Osnes, E. Triplet pairing of neutrons in β-stable neutron star matter. Nucl. Phys. A 1996, 607, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Khodel, V.A.; Khodel, V.V.; Clark, J.W. Universalities of Triplet Pairing in Neutron Matter. Phys. Rev. Lett. 1998, 81, 3828–3831. [Google Scholar] [CrossRef] [Green Version]
- Baldo, M.; Elgarøy, ø.; Engvik, L.; Hjorth-Jensen, M.; Schulze, H.J. 3P2-3F2 pairing in neutron matter with modern nucleon-nucleon potentials. Phys. Rev. C 1998, 58, 1921–1928. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, D.G.; Levenfish, K.P.; Shibanov, Y.A. Reviews of Topical Problems: Cooling of neutron stars and superfluidity in their cores. Phys. Uspekhi 1999, 42, 737–778. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, P.; Clark, J.W. Three-Nucleon Forces and Triplet Pairing in Neutron Matter. J. Low Temp. Phys. 2017, 189, 361–382. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.R.; Schulze, H.J.; Zhao, E.G.; Pan, F.; Draayer, J.P. Pairing gaps in neutron stars. Phys. Rev. C 2004, 70, 048802. [Google Scholar] [CrossRef] [Green Version]
- Baldo, M.; Schulze, H.J. Proton pairing in neutron stars. Phys. Rev. C 2007, 75, 025802. [Google Scholar] [CrossRef]
- Lombardo, U.; Schulze, H.J. Superfluidity in Neutron Star Matter. In Physics of Neutron Star Interiors; World Scientific: Singapore, 2001; Volume 578, p. 30. [Google Scholar]
- Khodel, V.A.; Clark, J.W.; Takano, M.; Zverev, M.V. Phase Transitions in Nucleonic Matter and Neutron-Star Cooling. Phys. Rev. Lett. 2004, 93, 151101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwenk, A.; Friman, B. Polarization Contributions to the Spin Dependence of the Effective Interaction in Neutron Matter. Phys. Rev. Lett. 2004, 92, 082501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Rios, A.; Dussan, H.; Dickhoff, W.H.; Witte, S.J.; Carbone, A.; Polls, A. Pairing in high-density neutron matter including short- and long-range correlations. Phys. Rev. C 2016, 94, 025802. [Google Scholar] [CrossRef]
- Page, D. NSCool Code. 2010. Available online: http://www.astroscu.unam.mx/neutrones/NSCool (accessed on 7 August 2020).
- Potekhin, A.; Chabrier, G.; Yakovlev, D. Internal temperatures and cooling of neutron stars with accreted envelopes. Astron. Astrophys. 1997, 323, 415. [Google Scholar]
- Beznogov, M.V.; Yakovlev, D.G. Statistical theory of thermal evolution of neutron stars - II. Limitations on direct Urca threshold. Mon. Not. R. Astron. Soc. 2015, 452, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Beznogov, M.V.; Rrapaj, E.; Page, D.; Reddy, S. Constraints on axion-like particles and nucleon pairing in dense matter from the hot neutron star in HESS J1731-347. Phys. Rev. C 2018, 98, 035802. [Google Scholar] [CrossRef] [Green Version]
- Potekhin, A.Y.; Chugunov, A.I.; Chabrier, G. Thermal evolution and quiescent emission of transiently accreting neutron stars. Astron. Astrophys. 2019, 629, A88. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G.; Heinke, C.O. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Nature 2009, 462, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Heinke, C.O.; Ho, W.C.G. Direct Observation of the Cooling of the Cassiopeia A Neutron Star. Astrophys. J. Lett. 2010, 719, L167–L171. [Google Scholar] [CrossRef] [Green Version]
- Elshamouty, K.G.; Heinke, C.O.; Sivakoff, G.R.; Ho, W.C.G.; Shternin, P.S.; Yakovlev, D.G.; Patnaude, D.J.; David, L. Measuring the Cooling of the Neutron Star in Cassiopeia A with all Chandra X-ray Observatory Detectors. Astrophys. J. 2013, 777, 22. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G.; Elshamouty, K.G.; Heinke, C.O.; Potekhin, A.Y. Tests of the nuclear equation of state and superfluid and superconducting gaps using the Cassiopeia A neutron star. Phys. Rev. C 2015, 91, 015806. [Google Scholar] [CrossRef]
- Posselt, B.; Pavlov, G.G.; Suleimanov, V.; Kargaltsev, O. New Constraints on the Cooling of the Central Compact Object in Cas A. Astrophys. J. 2013, 779, 186. [Google Scholar] [CrossRef] [Green Version]
- Posselt, B.; Pavlov, G.G. Upper Limits on the Rapid Cooling of the Central Compact Object in Cas A. Astrophys. J. 2018, 864, 135. [Google Scholar] [CrossRef]
- Özel, F.; Psaltis, D.; Narayan, R.; Santos Villarreal, A. On the Mass Distribution and Birth Masses of Neutron Stars. Astrophys. J. 2012, 757, 55. [Google Scholar] [CrossRef] [Green Version]
- Kiziltan, B.; Kottas, A.; De Yoreo, M.; Thorsett, S.E. The Neutron Star Mass Distribution. Astrophys. J. 2013, 778, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.M.; Wang, J.; Zhao, Y.H.; Yin, H.X.; Song, L.M.; Menezes, D.P.; Wickramasinghe, D.T.; Ferrario, L.; Chardonnet, P. Study of measured pulsar masses and their possible conclusions. Astron. Astrophys. 2011, 527, A83. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, J.; Tauris, T.M.; Özel, F.; Barr, E.; Champion, D.J.; Freire, P.C.C. The millisecond pulsar mass distribution: Evidence for bimodality and constraints on the maximum neutron star mass. arXiv 2016, arXiv:1605.01665. [Google Scholar]
- Alsing, J.; Silva, H.O.; Berti, E. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state. Mon. Not. R. Astron. Soc. 2018, 478, 1377–1391. [Google Scholar] [CrossRef] [Green Version]
- Rocha, L.S.; Bernardo, A.; Horvath, J.E.; Valentim, R.; de Avellar, M.G.B. The distribution of neutron star masses. Astron. Nachrichten 2019, 340, 957–963. [Google Scholar] [CrossRef]
- Farrow, N.; Zhu, X.J.; Thrane, E. The Mass Distribution of Galactic Double Neutron Stars. Astrophys. J. 2019, 876, 18. [Google Scholar] [CrossRef] [Green Version]
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.5 | 3.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.300 | 0.388 | 0.467 | 0.536 | 0.599 | 0.658 | 0.713 | 0.767 | 0.818 | 0.869 | 0.992 | 1.114 | |
[] | 0.70 | 1.11 | 1.46 | 1.73 | 1.92 | 2.06 | 2.16 | 2.23 | 2.28 | 2.31 | 2.34 | 2.34 |
Atmosphere | Fe | Light Elements | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.6 | 0.8 | 1.0 | 1.2 | 1.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | ||
Unimodal Antoniadis [83] | 1.0 | 2.46 | 2.28 | 2.22 | 1.96 | 2.61 | 2.09 | 1.39 | 1.54 | 1.60 | 1.36 |
0.8 | 2.69 | 1.77 | 1.56 | 2.07 | 2.20 | 1.95 | 1.23 | 1.33 | 1.79 | 1.53 | |
0.6 | 2.69 | 1.78 | 1.28 | 1.42 | 2.33 | 1.95 | 1.07 | 1.17 | 1.76 | 1.87 | |
0.4 | 3.29 | 1.83 | 1.31 | 1.28 | 1.78 | 1.78 | 1.55 | 1.48 | 1.43 | 1.90 | |
0.2 | 3.72 | 2.45 | 1.55 | 1.37 | 1.00 | 2.03 | 1.59 | 1.34 | 1.22 | 1.57 | |
Unimodal Rocha [85] | 1.0 | 1.92 | 1.99 | 1.94 | 1.57 | 2.03 | 1.64 | 1.23 | 1.26 | 1.17 | 1.38 |
0.8 | 2.12 | 1.54 | 1.43 | 1.69 | 1.68 | 1.50 | 1.08 | 1.10 | 1.36 | 1.23 | |
0.6 | 2.11 | 1.49 | 1.22 | 1.65 | 1.85 | 1.48 | 0.86 | 1.43 | 1.35 | 1.42 | |
0.4 | 2.63 | 1.45 | 1.22 | 1.14 | 1.41 | 1.54 | 1.29 | 1.27 | 1.06 | 1.41 | |
0.2 | 3.00 | 1.90 | 1.20 | 1.20 | 0.90 | 1.18 | 1.34 | 1.13 | 0.95 | 1.19 | |
Unimodal Zhang [82] | 1.0 | 2.37 | 2.48 | 2.48 | 2.61 | 2.80 | 1.97 | 1.48 | 2.12 | 2.17 | 2.28 |
0.8 | 2.68 | 1.61 | 1.95 | 2.71 | 1.95 | 1.86 | 1.29 | 1.92 | 2.34 | 2.08 | |
0.6 | 2.74 | 1.76 | 1.10 | 2.54 | 2.42 | 1.86 | 1.33 | 1.77 | 2.29 | 2.28 | |
0.4 | 3.38 | 1.45 | 1.14 | 1.90 | 2.15 | 1.77 | 1.38 | 1.65 | 2.06 | 2.33 | |
0.2 | 3.81 | 2.47 | 1.29 | 1.22 | 1.40 | 2.15 | 1.51 | 1.47 | 1.78 | 2.09 | |
Bimodal Antoniadis [83] | 1.0 | 3.22 | 1.92 | 3.15 | 2.56 | 3.00 | 3.32 | 2.55 | 2.68 | 2.52 | 2.15 |
0.8 | 3.43 | 1.09 | 2.54 | 2.72 | 2.62 | 3.18 | 2.23 | 2.49 | 2.75 | 2.36 | |
0.6 | 3.40 | 1.30 | 2.24 | 2.19 | 2.83 | 3.18 | 1.87 | 2.39 | 2.61 | 2.69 | |
0.4 | 3.95 | 1.99 | 1.72 | 2.29 | 2.43 | 3.00 | 1.84 | 2.70 | 2.49 | 2.83 | |
0.2 | 4.37 | 3.17 | 1.76 | 1.90 | 1.58 | 3.24 | 2.05 | 2.55 | 2.37 | 2.45 | |
Bimodal Rocha [85] | 1.0 | 2.11 | 1.80 | 2.46 | 2.19 | 2.51 | 1.67 | 1.40 | 1.82 | 1.70 | 1.77 |
0.8 | 2.40 | 1.14 | 1.88 | 2.31 | 2.21 | 1.57 | 1.22 | 1.64 | 1.90 | 1.69 | |
0.6 | 2.45 | 1.09 | 1.53 | 2.23 | 2.39 | 1.57 | 1.25 | 1.51 | 1.85 | 1.88 | |
0.4 | 3.03 | 1.20 | 1.19 | 1.73 | 2.01 | 1.50 | 1.21 | 1.54 | 1.67 | 1.85 | |
0.2 | 3.42 | 2.20 | 1.09 | 1.17 | 1.28 | 1.86 | 1.21 | 1.36 | 1.50 | 1.68 | |
Bimodal Alsing [84] | 1.0 | 3.49 | 2.66 | 3.91 | 3.11 | 3.47 | 2.76 | 2.64 | 2.84 | 2.52 | 2.21 |
0.8 | 3.89 | 1.53 | 3.21 | 3.32 | 3.07 | 2.66 | 2.37 | 2.61 | 2.76 | 2.41 | |
0.6 | 3.94 | 1.20 | 2.81 | 2.74 | 3.34 | 2.66 | 2.08 | 2.50 | 2.62 | 2.64 | |
0.4 | 4.62 | 1.69 | 2.29 | 2.87 | 2.89 | 2.66 | 2.14 | 2.80 | 2.56 | 2.72 | |
0.2 | 5.12 | 3.58 | 1.86 | 2.13 | 2.19 | 3.16 | 1.68 | 2.58 | 2.46 | 2.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.-B.; Burgio, F.; Schulze, H.-J. Nuclear Pairing Gaps and Neutron Star Cooling. Universe 2020, 6, 115. https://doi.org/10.3390/universe6080115
Wei J-B, Burgio F, Schulze H-J. Nuclear Pairing Gaps and Neutron Star Cooling. Universe. 2020; 6(8):115. https://doi.org/10.3390/universe6080115
Chicago/Turabian StyleWei, Jin-Biao, Fiorella Burgio, and Hans-Josef Schulze. 2020. "Nuclear Pairing Gaps and Neutron Star Cooling" Universe 6, no. 8: 115. https://doi.org/10.3390/universe6080115
APA StyleWei, J. -B., Burgio, F., & Schulze, H. -J. (2020). Nuclear Pairing Gaps and Neutron Star Cooling. Universe, 6(8), 115. https://doi.org/10.3390/universe6080115