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Abstract: We generalize the (n + 1)-dimensional twisted R-Poisson topological sigma model with
flux on a target Poisson manifold to a Lie algebroid. Analyzing the consistency of constraints in the
Hamiltonian formalism and the gauge symmetry in the Lagrangian formalism, geometric conditions
of the target space to make the topological sigma model consistent are identified. The geometric
condition is an universal compatibility condition of a Lie algebroid with a multisymplectic structure.
This condition is a generalization of the momentum map theory of a Lie group and is regarded as a
generalization of the momentum section condition of the Lie algebroid.
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1. Introduction

Algebroid structures appear as background mathematical structures in physics, such
as T-duality in string theory [1–6], gauged nonlinear sigma models [7–14], topological
sigma models [15–18], double field theory [19–25], etc. It is important to analyze geometric
structures in duality physics. A Lie algebroid [26], which is a generalization of a Lie algebra,
is the most fundamental algebroid structure. In this paper, we propose a new topological
sigma model with a Lie algebroid structure.

The Poisson structure is not only a fundamental structure of the classical mechanics,
but also a generalization of Lie algebra, which mainly appears as symmetries. It is defined
by a bivector field π ∈ Γ(∧2TM), satisfying the following: [π, π]S = 0, where [−,−]S
is the Schouten bracket defined on the space of multivector fields Γ(∧•TM). A sigma
model with the Poisson structure, the Poisson sigma model [27,28], describes topological
aspects of the NS flux and has many applications, such as the derivation of the Kontsevich
formula of the deformation quantization [29]. The Poisson sigma model is generalized to
the twisted Poisson sigma model by introducing the WZ term as a consistent constrained
mechanical system. Consistency requires the deformation of the Poisson structure to
the twisted Poisson structure [30–32]. The twisted Poisson structure is defined by the
following equations:

1
2
[π, π]S = 〈⊗3π, H〉, (1)

dH = 0, (2)

where H is a closed 3-form. For a manifold M with a Poisson or a twisted Poisson structure,
the cotangent bundle T∗M has a Lie algebroid structure. Thus, it is interesting to generalize
a Poisson or a twisted Poisson structure to a general Lie algebroid case.

Recently, Chatzistavrakidis proposed a higher generalization of the twisted Poisson struc-
ture and the twisted Poisson sigma model by considering a higher dimensional topological
sigma model [33]. It is a topological sigma model with WZ term on a (n + 1)-dimensional
worldvolume. The twisted R-Poisson structure is defined by the following condition:
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[π, π]S = 0, (3)

[π, J]S = 〈⊗n+2π, H〉, (4)

dH = 0, (5)

where π is the Poisson bivector field, H ∈ Ωn+2(M) is a closed (n + 2)-form and
J ∈ Γ(∧n+1(M)) is an (n + 1)-multivector field on M. (In this paper, we denote a multivec-
tor field by J though it is denoted by R in the paper [33]. R is used for a curvature.)

In this paper, we consider a new topological sigma model by generalizing the Poisson
structure to a Lie algebroid in the twisted R-Poisson sigma model. The key equation is
as follows:

EdJ = −〈⊗n+2ρ, H〉, (6)

where Ed is the Lie algebroid differential, J is an E-(n + 1)-form, ρ is the so-called anchor
map of a Lie algebroid, and H is a closed (n + 2) form. We analyze the mathematical
structures of Equation (6) in detail in Section 3. We show that the total structure is regarded
as a higher Dirac structure of a Lie (n + 1) algebroid.

Another purpose is to generalize the so-called AKSZ sigma models [34–37] adding the
WZ term. The AKSZ construction of topological sigma models is a clear geometric construc-
tion method of the rather complicated BFV formalism [38,39] and the BV formalism [40,41]
from a classical action based on graded symplectic geometry. The BV bracket and the BV
action are directly constructed by pullbacks of the target space graded symplectic structure.
For instance, refer to a review of AKSZ sigma models [15]. However, the AKSZ construction
does not work if we twist the classical action adding the WZ term. In the two-dimensional
case, the BV and BFV formalisms of the twisted Poisson sigma model were constructed in
the paper [42], and it was discussed that the correct BV action of the twisted PSM was not
obtained by the genuine AKSZ procedure. In order to consider generalizations to higher
dimensions, first we need to clarify background geometric structures of higher dimensional
twisted topological sigma models with the WZ term.

This paper is organized as follows. In Section 2, we introduce a topological sigma
model with a Lie algebroid structure and WZ term. In Section 3, we prepare geometric
structures that appear in our model, such as a Lie algebroid, a pre-multisymplectic structure
and their compatibility condition. We also explain some related examples. In Section 4, we
analyze the Hamiltonian formalism and show that the theory is consistent if and only if
the geometric compatibility condition holds. In Section 5, the Hamiltonian formalism is
rewritten to the target space covariant expression. All equations are described by geometric
quantities of the target manifold. In Section 6, we consider the Lagrangian formalism
and obtain consistent gauge transformations under the same geometric compatibility
condition. In Section 7, we rewrite gauge transformations to the manifestly covariant
formulation. Section 8 is devoted to the discussion and outlook. In Appendix A, some
formulas are summarized.

2. Lie Algebroid Topological Sigma Model with Flux and WZ Term

Let N be an n + 2 dimensional manifold with n + 1 dimensional boundary, Σ = ∂N.
Consider a d-dimensional target space M and a vector bundle E over M. Suppose E has a
Lie algebroid structure. A Lie algebroid has two operations: a Lie bracket [−,−] on Γ(E)
and the bundle map ρ : E → TM called the anchor map. A Lie algebroid is reviewed in
Section 3. We introduce the pairing of TM and T∗M, 〈−, −〉, and the pairing of E and E∗,
(−,−).

We consider a smooth map from N to M, X : N → M. A ∈ Γ(T∗Σ, X∗E) is a 1-form
taking a value on the pullback of E, X∗E. Y ∈ Γ(∧n−1T∗Σ, X∗E∗) is an (n− 1)-form taking
a value on X∗E∗. Z ∈ Γ(∧nT∗Σ, X∗T∗M) is an n-form taking a value on X∗T∗M. We
consider the following sigma model action functional:
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S =
∫

Σ

[
〈Z, dX〉+ (Y, dA)− 〈Z, X∗ρ(A)〉+ 1

2
(Y, X∗[A, A]) + X∗ J(A, . . . , A)

]
+
∫

N
X∗H. (7)

Here, d is the de Rham differential on Σ. For pairings of pullbacks by X, the same
notation are used, i.e., 〈−, −〉 is the pairing of a pullback of TM and T∗M, and (−,−)
is the pairing of a pullback of E and E∗. J ∈ Γ(∧n+1E∗) is an E-(n + 1)-form on E and
H ∈ Ωn+2(M) is an (n + 2)-form on M.

Taking local coordinates on M and E, we have four kinds of fields Xi, Zi, Aa and Ya,
where i is the index of M, and a is the index of the fiber of E. The action is as follows:

S =
∫

Σ

[
Zi ∧ dXi + Ya ∧ dAa − ρi

a(X)Zi ∧ Aa +
1
2

Cc
ab(X)Yc ∧ Aa ∧ Ab

+
1

(n + 1)!
Ja1 ...an+1(X)Aa1 ∧ . . . ∧ Aan+1

]
+
∫

N

1
(n + 2)!

Hi1 ...in+2(X)dXi1 ∧ . . . ∧ dXin+2 . (8)

where ρi
a is local coordinate expression of the anchor map ρ, Cc

ab are the structure functions
of the Lie bracket, and Ja1 ...an+1 and Hi1 ...in+2 are J and H, which are completely antisym-
metric tensors. We call this model the twisted Lie algebroid sigma model with flux, or the
Lie algebroid sigma model with the WZ term.

The equations of motion are computed as follows:

Fi
X := dXi − ρi

a(X)Aa = 0 , (9)

Fa
A := dAa + 1

2 Ca
bc(X)Ab ∧ Ac = 0 , (10)

FYa := dYa + (−1)nρi
aZi + (−1)n−1Cc

abYc ∧ Ab

+
1
n!

Jab2 ...bn+1(X)Ab2 ∧ . . . ∧ Abn+1 = 0 , (11)

FZi := (−1)ndZi − ∂iρ
j
aZj ∧ Aa + 1

2 ∂iCa
bcYa ∧ Ab ∧ Ac

+
1

(n + 1)!
∂i Ja1 ...an+1(X)Aa1 ∧ . . . ∧ Aan+1

+
1

(n + 1)!
Hij1 ...jn+1dX j1 ∧ . . . ∧ dX jn+1 = 0 . (12)

3. Lie Algebroid and Compatible E-Flux on Pre-Multisymplectic Manifold

In this section, we explain the background geometry of the sigma model (7) introduced
in Section 2.

3.1. Lie Algebroid

Since we want to consider a generalization of the R-Poisson structure, we assume that
the target vector bundle is a Lie algebroid.

Definition 1. Let E be a vector bundle over a smooth manifold M. A Lie algebroid (E, ρ, [−,−])
is a vector bundle E with a bundle map ρ : E → TM called the anchor map, and a Lie bracket
[−,−] : Γ(E)× Γ(E)→ Γ(E) satisfying the Leibniz rule as follows:

[e1, f e2] = f [e1, e2] + ρ(e1) f · e2, (13)

where ei ∈ Γ(E) and f ∈ C∞(M).

Local coordinate expressions of formulas in a Lie algebroid are listed in Appendix A.
A Lie algebroid is a generalization of a Lie algebra and the space of vector fields.
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Example 1. Let a manifold M be one point M = {pt}. Then, a Lie algebroid is a Lie algebra g.

Example 2. If a vector bundle E is a tangent bundle TM and ρ = id, then a bracket [−,−] is a
normal Lie bracket of vector fields and (TM, id, [−,−]) is a Lie algebroid.

Example 3. Let g be a Lie algebra and assume an infinitesimal action of g on a manifold M. g

acts as a differential operator, the infinitesimal action determines a map ρ : M× g → TM. The
consistency of a Lie bracket requires a Lie algebroid structure on (E = M× g, ρ, [−,−]). This Lie
algebroid is called an action Lie algebroid.

Example 4. An important nontrivial Lie algebroid is a Lie algebroid induced from a Poisson
structure. A bivector field π ∈ Γ(∧2TM) is called a Poisson structure if [π, π]S = 0, where
[−,−]S is a Schouten bracket on Γ(∧•TM).

Let (M, π) be a Poisson manifold. Then, we can define a bundle map, π] : T∗M → TM
by π](α)(β) = π(α, β) for all β ∈ Ω1(M). A Lie bracket on Ω1(M) is defined by the so-called
Koszul bracket as follows:

[α, β]π = Lπ](α)β− Lπ](β)α− d(π(α, β)), (14)

where α, β ∈ Ω1(M). Then, (T∗M,−π], [−,−]π) is a Lie algebroid.

Example 5. More generally, let (M, π, H) be a twisted Poisson manifold. i.e., suppose that a
bivector field π ∈ Γ(∧2TM) and H ∈ Ω3(M) satisfy the following equations:

1
2
[π, π]S = 〈⊗3π, H〉, (15)

dH = 0, (16)

If we define a bundle map,π] : T∗M→ TM and a Lie bracket on Ω1(M),

[α, β]π,H = Lπ](α)β− Lπ](β)α− d(π(α, β)) + ιαιβ H, (17)

for α, β ∈ Ω1(M). Then, (T∗M,−π], [−,−]π,H) is a Lie algebroid.

One can refer to many other examples, for instance, in [26].

3.2. Lie Algebroid Differential

Consider the spaces of exterior products of sections of E∗ called the space of E-
differential forms, Γ(∧•E∗). We define a Lie algebroid differential Ed : Γ(∧mE∗) →
Γ(∧m+1E∗) such that (Ed)2 = 0.

Definition 2. A Lie algebroid differential Ed : Γ(∧mE∗)→ Γ(∧m+1E∗) is defined by the following:

Edα(e1, . . . , em+1) =
m+1

∑
i=1

(−1)i−1ρ(ei)α(e1, . . . , ěi, . . . , em+1)

+ ∑
1≤i<j≤m+1

(−1)i+jα([ei, ej], e1, . . . , ěi, . . . , ěj, . . . , em+1), (18)

where α ∈ Γ(∧mE∗) and ei ∈ Γ(E). (In Equation (18), indices i, j are not indices of local coordinates
on M, but counting of elements of Γ(E)).

One can easily check (Ed)2 = 0 using identities of the Lie algebroid.
Lie algebroids are described by means of Z-graded geometry [43]. A graded mani-

fold E[1] for a vector bundle E is a shifted vector bundle spanned by local coordinates xi,
(i = 1, . . . , dimM) on the base manifold M of degree zero, and qa, (a = 1, . . . , rankE) on the
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fiber of degree one, respectively. Degree one coordinate qa has the property, qaqb = −qbqa.
E-differential forms, which are sections of ∧•E∗ identified with functions on the graded
manifold E[1], i.e., C∞(E[1]) ' Γ(∧•E∗), where the degree one odd coordinate qa is identi-
fied by a basis ea of sections of E∗. A product for homogeneous elements f , g ∈ C∞(M)
has the property f g = (−1)| f ||g|g f , where | f | is degree of f . The differential operator of
degree −1, ∂

∂qa , is the derivation satisfying ∂
∂qa qb = δb

a , which is a linear operator on a space
of functions satisfying the Leibniz rule.

We define a degree plus one vector field Q on E[1]:

Q = ρi
a(x)qa ∂

∂xi −
1
2

Cc
ab(x)qaqb ∂

∂qc , (19)

Then, the odd vector field Q satisfies the following:

Q2 = 0 . (20)

if and only if ρ, C are the anchor map and the structure function of a Lie algebroid on E.
Identifying functions on C∞(E[1]) ' Γ(∧•E∗), Q is the Lie algebroid differential Ed.

We explain the precise correspondence of Q with Ed. For ea, the basis of E∗, the map
j : Γ(∧•E∗)→ C∞(E[1]) is given by the map of basis, j : (xi, ea) 7→ (xi, qa). The differential
Ed on Γ(∧•E∗) is defined by the pullback, Ed = j∗Q.

3.3. Compatible Condition of E-Differential form with Pre-Multisymplectic Form

We introduce another geometric notion which appears in the topological sigma
model (7). It is a condition on a pre-multisymplectic structure analogous to the condition
of the momentum map in the symplectic manifold.

Definition 3. A pre-(n + 1)-plectic form H is a closed (n + 2)-form on a smooth manifold M, i.e.,
dH = 0. A manifold M with a pre-(n + 1)-plectic form H is called a pre-(n + 1)-plectic manifold.

A pre-(n + 1)-plectic manifold is also called a pre-multisymplectic manifold for n ≥ 1.
A pre-(n + 1)-plectic structure is called an (n + 1)-plectic structure if H is nondegenerate,
i.e., if ιv H = 0 for a vector field v ∈ X(M) is equivalent to v = 0. A 1-plectic manifold
(n = 0) is nothing but a symplectic manifold.

We introduce an ordinary connection ∇ on the vector bundle E, i.e., a covariant
derivative ∇ : Γ(E) → Γ(E ⊗ T∗M), satisfying ∇( f e) = f∇e + ∇ f ⊗ e for a section
e ∈ Γ(E) and a function f ∈ C∞(M). A dual connection on E∗ is defined by the following:

d(µ, e) = (∇µ, e) + (µ,∇e), (21)

for all sections µ ∈ Γ(E∗) and e ∈ Γ(E). The connection is extended to the space of
differential forms and the dual connection extends to a degree 1 operator on the space of
differential forms Ωk(M, E) and Ωk(M, E∗) .

An E-connection E∇ : Γ(TM) → Γ(TM ⊗ E∗) on the space of sections Γ(TM) is
defined by the following:

E∇ev := Lρ(e)v + ρ(∇ve) = [ρ(e), v] + ρ(∇ve), (22)

where e ∈ Γ(E) and v ∈ Γ(TM).
For an (n + 2)-form H and the anchor map ρ, 〈⊗n+2ρ, H〉 is defined by the following:

〈⊗n+2ρ, H〉(e1, . . . , en+2) = (ιρ)
(n+2)H(e1, . . . , en+2) = H(ρ(e1), . . . , ρ(en+2)), (23)

for ei ∈ Γ(E).
We introduce a new notion.
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Definition 4. Let (M, H) be a pre-(n + 1)-plectic manifold and (E, ρ, [−,−]) be a Lie algebroid
over M. Then, an E-(n + 1)-form J ∈ Γ(∧n+1E∗) is called bracket-compatible if J satisfies
the following:

EdJ = −〈⊗n+2ρ, H〉 = −(ιρ)n+2H. (24)

Then, a flux J is also called compatible with a pre-multisymplectic form H.

The important note is the left hand side in (24) is the E-derivative Ed, not the E-
covariant derivative E∇.

The condition (24) appears in many situations; we list some examples below. This
condition is regarded as one universal generalization of compatibility conditions of a Lie
algebroid structure with a pre-multisymplectic form.

Some known geometric structures are regarded as special cases of Equation (24).

Example 6 (Twisted Poisson structure). Let (π, H) be a twisted Poisson structure on M. In this
case, the cotangent bundle T∗M has a Lie algebroid structure as explained in Example 5. Using the
Lie algebroid differential Ed induced from this Lie algebroid, Equation (15) is rewritten as follows:

Edπ = −〈⊗3π, H〉. (25)

J = π is bracket-compatible on a pre-2-plectic manifold with a pre-2-plectic form H.

Example 7 (twisted R-Poisson structure). Let M be a twisted R-Poisson manifold [33]. π ∈
Γ(∧2TM) is a Poisson bivector field, H is a closed (n + 2)-form, and J ∈ Γ(∧n+1TM) is an
(n + 1)-multivector field. As explained in Example 4, the Poisson bivector field π induces a Lie
algebroid structure on T∗M. Under this Lie algebroid structure, the only nontrivial condition of
R-Poisson structure (4) is written as follows:

EdJ = 〈⊗n+2π, H〉. (26)

−J is bracket-compatible for the pre-(n + 2)-plectic form H.

Example 8 (Momentum section). The terminology ’bracket-compatible’ comes from the momen-
tum section theory with a Lie algebroid action on a symplectic manifold, which is a generalization of
the moment map theory on a symplectic manifold with a Lie group (Lie algebra) action [44]. See
also [14,45,46].

Suppose that a base manifold M is a pre-symplectic manifold, i.e., M has a a closed 2-form
ω = H ∈ Ω2(M), which is not necessarily nondegenerate. Moreover, suppose a Lie algebroid
(E, ρ, [−,−]) over M.

Definition 5. A section µ ∈ Γ(E∗) of E∗ is called a momentum section if µ satisfies the following
two conditions. (The connection is denoted by D in the papers [44] and [14].)

(M1) A section µ ∈ Γ(E∗) is a momentum section if the following holds:

∇µ = −ιρω. (27)

(M2) A momentum section µ is bracket-compatible if the following holds:

Edµ = −〈ρ⊗2, ω〉 = −ι2ρω. (28)

For an action Lie algebroid E = M× g, a momentum section reduces a momentum
map. Since we can take the zero connection ∇ = d for the trivial bundle, the condition
(M1) is dµ = −ιρω. The condition (M2) reduces to the equivariant condition as follows:

ad∗e1
µ(e2) = µ([e1, e2]). (29)
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for e1, e2 ∈ g using (27).
If we take n = 0 in Definition 4 and J = µ, Equation (24) coincides with the condition

(M2). Therefore, Equation (24) is a generalization of the bracket-compatible condition of
the momentum section to a pre-multisymplectic manifold.

We make several comments about relations with our theory to the above definitions of
momentum sections. The condition corresponding to (M1), Equation (27), does not appear
in our model. It is because our model is purely a topological sigma model. Refer to [14]
about relations of the conditions (M1) and (M2) with the Hamiltonian mechanics. Since
the Hamiltonian is zero,H = 0, we obtain only the consistency conditions of constraints,
which are identified to the condition (M2). The condition (M1) is related to consistency
with the Hamiltonian and constraints as discussed in [14]. If we consider non-topological
gauged nonlinear sigma models, the condition (M1) is needed as the consistency condition
of gauge invariance.

The following additional condition (M0) is imposed in the paper [44].

(M0) E is presymplectically anchored with respect to ∇ if the following holds:

∇2µ = 0, (30)

The condition (M0) is regarded as a flatness condition of the connection ∇ on µ. We
do not require the condition (M0) for J in our paper.

3.4. Lie (n + 1)-Algebroid and Higher Dirac Structure

The compatibility condition (24) is regarded as the higher Dirac structure of a Lie
m-algebroid induced from the Lie algebroid E. Let m = n + 1 in this section.

A Lie m-algebroid is a higher analogue of a Lie algebroid. A QP-manifold description
based on graded geometry provides a clear method of the definition of a Lie m-algebroid.
A graded manifold (M,OM) is a ringed space, whose structure sheaf OM is a Z-graded
commutative algebra over an ordinary smooth manifold M. The grading is compatible
with the supermanifold grading, that is, a variable of even degree is commutative and a
variable of odd degree is anticommutative. By definition, the structure sheaf of M is locally
isomorphic to C∞(U)⊗ S•(V), where U is a local chart on M, V is a graded vector space,
and S•(V) is a free graded commutative ring on V.

We consider nonnegatively graded manifolds called an N-manifold in this section. Let
m be a nonnegative integer.

Definition 6. Consider an N-manifoldM equipped with a graded symplectic structure ω of degree
m, and a vector field Q of degree plus one such that Q2 = 0.M is called a QP-manifold of degree
m if (ω, Q) satisfies LQω = 0 [47].

We call this vector field Q the homological vector field. The graded Poisson bracket
{−,−} is given from symplectic form ω. For any QP-manifold, there exists a homological
function Θ ∈ C∞((M) associated to Q such that Q = {Θ,−} The homological condition,
Q2 = 0, implies that Θ is a solution of Equation (31) as follows:

{Θ, Θ} = 0. (31)

One can refer to some references of mathematics of a QP-manifold [15,37].
Let E be a vector bundle over M. In order to construct a Lie m-algebroid induced

from a vector bundle E as a QP-manifold, we consider the (m− 1)-shifted vector bundle,
E[m− 1] and the 1-shifted dual bundle E∗[1] with coordinates of the fiber shifted by m− 1
and 1.

A function on a graded manifold E∗[m− 1]⊕ E[1] is identified to a section on the
vector bundle E⊕ ∧m−1E∗. C∞(E∗[m− 1]⊕ E[1]) ' Γ(E⊕ ∧m−1E∗). Let us explain the
precise correspondence of two spaces. We consider a QP-manifold M = E∗[m − 1] ⊕
E[1]⊕ T∗[m]M. Let ∂i, ea and ea be the basis of TM, E and E∗, respectively. The map
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j : E⊕∧m−1E∗ ⊕ TM→ E∗[m− 1]⊕ E[1]⊕ T∗[m]M, (32)

is given by j : (xi, ea, ea, ∂i) 7→ (xi, pa, qa, ξi), where pa, qa and ξi are coordinates of E∗[m− 1],
E[1] and T∗[m]M of degree (1, m − 1, m), respectively. The map j induces the map, j :
C∞(E∗[m− 1]⊕ E[1])→ Γ(E⊕∧m−1E∗). A canonical graded symplectic form is defined
by the following:

ω = δxi ∧ δξi + δqa ∧ δpa, (33)

where δ is the graded de Rham differential.
Now suppose a QP-manifold structure onM = E∗[m− 1]⊕ E[1]⊕ T∗[m]M, i.e., take

the canonical symplectic form (33) and a homological function Θ satisfying Equation (31).
A Lie m-algebroid on E ⊕ ∧m−1E∗ consists of an algebra on Γ(E ⊕ ∧m−1E∗) over

C∞(M) with three operations, ((−,−), ρ, [−,−]D). (−,−) : Γ(E ⊕ ∧m−1E∗) ⊗ Γ(E ⊕
∧m−1E∗) → Γ(∧m−2E∗) is an inner product. The bundle map ρ : E ⊕ ∧m−1E∗ → TM
is called the anchor map, and the bilinear bracket [−,−]D : Γ(E ⊕ ∧m−1E∗) × Γ(E ⊕
∧m−1E∗) → Γ(E⊕ ∧m−1E∗) is called the (higher) Dorfman bracket. In the QP-manifold
description, they are defined by the following:

(e1, e2) = j∗{e1, e2}, (34)

ρ(e) f = j∗{{e, Θ}, f }, (35)

[e1, e2]D = j∗{{e1, Θ}, e2}, (36)

for e, e1, e2 ∈ Γ(E⊕ ∧m−1E∗) and f ∈ C∞(M). Here, e = j∗e is the super function corre-
sponding to e ∈ Γ(E). j∗ and j∗ are the pushforward and the pullback with respect to the
map j defined in Equation (32). All the identities of three operations are induced from
Equation (31). We identify the graded manifold description and the normal vector bundle
description and drop the operation j.

Now, let the vector bundle E be a Lie algebroid and M be an m-plectic manifold. Then,
E has the anchor map and the Lie bracket ρ, [−,−] and M has a closed (m + 1)-form H. If
we define

Θ = Θ0 + ιm+1
ρ H

= ρi
a(x)ξiqa +

1
2

Ca
bc(x)paqbqc +

1
(m + 1)!

ρi1
a1 . . . ρ

im+1
am+1 Hi1 ...im+1(x)qa1 . . . qam+1 , (37)

then Θ satisfies {Θ, Θ} = 0, where the following holds:

Θ0 = ρi
a(x)ξiqa +

1
2

Ca
bc(x)paqbqc. (38)

because Θ0 satisfies {Θ0, Θ0} = 0 from the identities of the Lie algebroid and {Θ0, ιm+1
ρ H} = 0

is given from dH = 0. {ιm+1
ρ H, ιm+1

ρ H} = 0 is trivially satisfied. Thus, Equation (31) is
satisfied, and it gives a QP manifold. Therefore Equation (37) defines a Lie m-algebroid.
Note that Equation (37) does not include J. Equation EdJ = −〈⊗m+1ρ, H〉 is described as
a higher Dirac structure, which is explained next.

Three operations of this Lie m-algebroid are defined as follows. Let u + α, v + β ∈
Γ(E⊕∧m−1E∗), where u, v ∈ Γ(E) and α, β ∈ Γ(∧m−1E∗).

(u + α, v + β) = (u, β) + (α, v), (39)

ρ(e) f = ρ(u) f , (40)

[u + α, v + β]D = [u, v] + Luβ− ιv
Edα + ιuιv(ι

m+1
ρ H), (41)
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where the bracket (−,−) in the right hand side of (39) is the pairing of E and E∗. ρ in the
right hand side of (40) is the anchor map of the Lie algebroid E. The interior product of
the right hand side of (41) is the contraction with respect to E and E∗, The Lie derivative is
Lu = ιu

Ed + Edιu.
The higher Dirac structure is the subbundle L of the Lie m-algebroid satisfying the

conditions, (e1, e2) = 0 for all e1, e2 ∈ Γ(L), and [e1, e2]D is an element of Γ(L), i.e., Γ(L) is
involutive with respect to the bracket [−,−]D.

Now, we take J ∈ Γ(∧mE∗) satisfying Equation (24), i.e., EdJ = −〈⊗m+1ρ, H〉. Then,
we consider the following set:

Γ(L) = {u + (J, u) ∈ Γ(E⊕∧m−1E∗)|u ∈ Γ(E)}. (42)

Theorem 1. If J and H satisfy EdJ = −〈⊗m+1ρ, H〉, L is a higher Dirac structure of a Lie
m-algebroid.

In fact, the inner product of two elements of Γ(L), u + (J, u) and v + (J, v) for
u, v ∈ Γ(E) is the following:

(u + (J, u), v + (J, v)) = (u, Jv) + (Ju, v) = 0, (43)

from completely antisymmetricity of J. Moreover the Dorfman bracket is computed by the
derived bracket of the graded functions as follows:

[u + (J, u), v + (J, v)]D = j∗{{u + (J, u), Θ}, v + (J, v)}
= [u, v] + (J, [u, v]), (44)

which is the element of Γ(L) again. Here, we use {Θ0, j∗ J} = −ιm+1
ρ H induced from

EdJ = −〈⊗m+1ρ, H〉.
The Q-structure (37) correctly gives the Lie algebroid structure with H; however, there

is no information of J. The geometric condition, EdJ = −〈⊗m+1ρ, H〉, is realized as a higher
Dirac structure of a Lie m-algebroid induced by Equation (37). A higher Dirac structure
is not generally realized as a QP manifold. As a result, our Lie algebroid sigma model
with the WZ term cannot be formulated as an AKSZ sigma model since the AKSZ sigma
model has a QP-manifold structure. This is analogous to the twisted Poisson structure,
which is a Dirac structure of the standard Courant algebroid on TM⊕ T∗M. Though the
standard Courant algebroid is a QP manifold of degree 2, the twisted Poisson structure is
not realized as any QP manifold. It is known that the twisted Poisson sigma model cannot
be formulated as an AKSZ sigma model.

4. Hamiltonian Formalism

In this section, the Hamiltonian formalism and constraints are analyzed to make
the action functional (7) consistent. We show that the classical action (7) is consistent
if the target space geometric data satisfy Equation (24), i.e., the target space is a pre-
multisymplectic manifold with a Lie algebroid action and a bracket-compatible E flux.

Take the worldvolume, Σ = R× Tn or Σ = S1 × Tn. Canonical conjugate momenta of
Xi and Ai (Zi and Ya appear as canonical conjugates of Xi and Ai. ) are

PXi =
δS
δẊi =

(
Zi +

1
n!
(−1)nBij1 ...jn(X)dX j1 ∧ . . . ∧ dX jn

)(s)

=
1
n!

ε0µ1 ...µn
(

Zµ1 ...µni + (−1)nBij1 ...jn(X)∂µ1 X j1 ∧ . . . ∧ ∂µn X jn
)

, (45)

Pµ
Aa =

δS
δȦµ

a = Y(s)
a =

1
(n− 1)!

ε0µν2 ...νn Yν2 ...νna. (46)
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where (s) means coefficient functions of the space components of the differential forms on
Σ. µ, ν = 1, . . . , n are spatial indices on Σ and 0 is the time component.

Substituting Equations (45) and (46) to the basic Poisson bracket of canonical quan-
tities, {xI(σ), pJ(σ

′)}PB = δI
J δ(σ− σ′), we obtain Poisson brackets of fundamental fields,

as follows:

{Xi(σ), Z(s)
j (σ′)}PB = δi

jδ(σ− σ′), (47)

{A(s)a(σ), Y(s)
b (σ′)}PB = δa

bδ(σ− σ′) = (−1)n−1{Y(s)
b (σ), A(s)a(σ′)}PB, (48)

{Z(s)
i (σ), Z(s)

j (σ′)}PB =
(−1)n

2n!
Hijk1···kn(X(σ))(dXk1 ∧ . . . ∧ dXkn)(s)δn(σ− σ′). (49)

The symplectic form corresponding to these Poisson brackets (47)–(49) is the following:

ω =
∫

Tn

(
δXi ∧ δZ(s)

i + δA(s)a ∧ δY(s)
a

+
(−1)n+1

n!
Hi1 ...in jk(X)(dXi1 ∧ . . . ∧ dXin)(s)δX j ∧ δXk

)
. (50)

The canonical conjugates of time components A(0)a, Y(0)
a , Z(0)

i are 0. These give the
following primary constraints:

PA(0)a ≈ 0, Pa
Y(0) ≈ 0, PZ(0)i ≈ 0, (51)

where (0) denotes the time component of the field. The Hamiltonian is proportional to the
following constraints:

H =
∫

Tn
dn+1σ(Z0iGi

X + Y0aGa
A + Aa

0GYa). (52)

Here, Gs are constraints without time derivatives:

Gi
X := (dXi − ρi

a(X)Aa)(s) , (53)

Ga
A := (dAa + 1

2 Ca
bc(X)Ab ∧ Ac)(s) , (54)

GYa :=
(

dYa + (−1)nρi
a(X)Zi

+(−1)n−1Cc
ab(X)Yc ∧ Ab +

1
n!

Jab2 ...bn+1(X)Ab2 ∧ . . . ∧ Abn+1

)(s)
, (55)

which are spatial parts of equations of motion. The secondary constraints are calculated by
computing Poisson brackets with primary constraints (51) and the Hamiltonian H. The
secondary constraints are Gi

X , Ga
A and GYa:

Gi
X ≈ 0, Ga

A ≈ 0, GYa ≈ 0. (56)

For the consistency condition of the mechanics, we require that Gi
X, Ga

A and GYa
are first class constraints, i.e., Equations (53)–(55) generate a closed algebra under Pois-
son brackets.

We suppose that a Lie algebroid structure on the target space vector bundle E. ρi
a and

Cc
ab are local coordinate expressions of the anchor map and structure functions satisfying

Equations (A1) and (A2). Moreover, suppose that H in the WZ term is a closed (n + 2)-
form. Under the above assumptions, Poisson brackets of constraints Gi

X , Ga
A and GYa are

computed using the fundamental Poisson brackets (47)–(49). They are the first class if and
only if J satisfies the bracket-compatible condition (24). In fact, under Equation (24), we
obtain the following Poisson brackets of three constraints:
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{Gi
X(σ), Gj

X(σ
′)}PB = 0, (57)

{Gi
X(σ), Ga

A(σ
′)}PB = 0, (58)

{Gi
X(σ), GYa(σ

′)}PB = (−1)n−1∂jρ
i
aGj

X(σ)δ
n(σ− σ′), (59)

{Ga
A(σ), Gb

A(σ
′)}PB = 0, (60)

{Ga
A(σ), GYb(σ

′)}PB = (−1)n[∂iCa
bc Ac ∧ Gi

X(σ) + Ca
bcGc

A(σ)]
(s)δn(σ− σ′), (61)

{GYa(σ), GYb(σ
′)}PB =

[(
∂iCc

abYc +
(−1)n−1

n!
∂i Jabc3 ...cn+1

Ac3 ∧ . . . ∧ Acn+1

)
∧ Gi

X

+(−1)n−1Cc
abGYc +

(−1)n−2

(n− 1)!
Jabce4 ...en+1

Ae4 ∧ . . . ∧ Aen+1 ∧ Gc
A

+
(−1)n−1

(n + 1)!

n

∑
m=1

ρi
aρ

j
b Hijk1 ...kmkm+1 ...kn dXk1 ∧ . . . ∧ dXkm−1 ∧ Gkm

X

∧ρ
km+1
cm+1 Acm+1 ∧ . . . ∧ ρkn

cn
Acn
](s)

(σ)δn(σ− σ′), (62)

which shows that all the constraints are the first class. Here, σµ, σ
′µ are local coordinates on

Tn, and all the fields are spatial components. Equation (24) is necessary for the closedness
of the final Poisson bracket (62). The detail computation of Equation (62) appears in
Appendix B.

5. Target Space Covariantization

Constraints and Poisson brackets are rewritten by geometric quantities of the target
Lie algebroid by introducing a connection ∇ on E.

Let ω = ωb
aidxi ⊗ ea ⊗ eb be the connection 1-form for the connection ∇. Let s, s′ ∈

Γ(E). Additional to the following ordinary curvature,

R(s, s′) := [∇s,∇s′ ]−∇[s,s′ ], (63)

in a Lie algebroid, the following E torsion T, the E curvature and the basic curvature S are
defined [45,48]:

T(s, s′) := E∇ss′ − E∇s′ s− [s, s′], (64)
ER(s, s′) := [E∇s, E∇s′ ]− E∇[s,s′ ], (65)

S(s, s′) := Ls(∇s′)−Ls′(∇s)−∇ρ(∇s)s
′ +∇ρ(∇s′)s−∇[s, s′]

= (∇T + 2Alt ιρR)(s, s′). (66)

The local coordinate expressions appear in the Appendix A.
We can rewrite the constraints as follows. Since Gi

X is already covariant under the
target space diffeomorphism, the local coordinate expression is the same as Equation (53).
Ga

A and GYa are written as follows:

G∇a
A := (∇Aa − 1

2 Ta
bc(X)Ab ∧ Ac)(s) , (67)

G∇Ya :=
(
∇Ya + (−1)nρi

a(X)Zi + (−1)nTc
ab(X)Yc ∧ Ab

+
1
n!

Jab2 ...bn+1(X)Ab2 ∧ . . . ∧ Abn+1

)(s)
, (68)

where

∇Aa := dAa −ωa
bi A

bdXi, (69)

∇Ya := dYa + (−1)nωc
aiYcdXi, (70)
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and the covariantized constraints are given by the following:

G∇a
A = Ga

A − (ωa
bi(X)AbGi

X)
(s) , (71)

G∇Ya = GYa +
(
(−1)nωc

aiYcGi
X

)(s)
. (72)

If we impose the bracket-compatible condition (24), we obtain the following Pois-
son brackets:

{Gi
X(σ), Gj

X(σ
′)}PB = 0, (73)

{Gi
X(σ), G∇a

A (σ′)}PB = 0, (74)

{Gi
X(σ), G∇Ya(σ

′)}PB = (−1)n−1∇jρ
i
aGj

X(σ)δ
n(σ− σ′), (75)

{G∇a
A (σ), G∇b

A (σ′)}PB = 0, (76)

{G∇a
A (σ), G∇Yb(σ

′)}PB = (−1)n+1[Sa
ibc Ac ∧ Gi

X(σ) + Ta
bcG∇c

A (σ)](s)δn(σ− σ′), (77)

{G∇Ya(σ), G∇Yb(σ
′)}PB =

[(
−Sc

iabYc +
(−1)n−1

n!
∇i Jabc3 ...cn+1

Ac3 ∧ . . . ∧ Acn+1

)
∧ Gi

X

+(−1)nTc
abG∇Yc +

(−1)n−2

(n− 1)!
Jabce4 ...en+1

Ae4 ∧ . . . ∧ Aen+1 ∧ G∇c
A

+
(−1)n−1

(n + 1)!

n

∑
m=1

ρi
aρ

j
b Hijk1 ...kmkm+1 ...kn dXk1 ∧ . . . ∧ dXkm−1 ∧ Gkm

X

∧ρ
km+1
cm+1 Acm+1 ∧ . . . ∧ ρkn

cn
Acn
](s)

(σ)δn(σ− σ′), (78)

which shows that all the constraints are the first class. Here, ∇iρ
j
a = ∂iρ

j
a + ωb

aiρ
j
b. The

coefficients of Poisson brackets are written by ρ, H, J, ∇, T and S. Therefore, we obtain the
following result from Equations (73)–(78).

Theorem 2. Suppose that the target space has a Lie algebroid structure and dH = 0. Then,
constraints Gi

X, Ga
A and GYa are the first class if and only if J satisfies the bracket-compatible

condition (24).

6. Gauge Transformation

In this section, we discuss the Lagrangian formalism.
The gauge transformations are given from constraints and Poisson brackets in the

Hamiltonian formalism. From the general theory of the analytical mechanics, a gauge
transformation of a field Φ in the Lagrangian formalism is computed by the Poisson bracket
of constraints and Φ as follows:

δΦ = {εaGa, Φ}+ τa(Φ)Ga, (79)

where we should carefully fix freedom of the term τa(Φ)Ga, which is the freedom of on-
shell vanishing trivial gauge transformations. τa(Φ) is an arbitrary function of fields. These
ambiguities and problems were discussed in the paper [49] for the twisted Poisson sigma
model. In the twisted Poisson sigma model, τa(Φ) is a nonzero function. The situation
for our twisted Lie algebroid topological sigma model is similar to the twisted Poisson
sigma model. We need a nontrivial term τa(Φ), and it is fixed by imposing the Lorentz, or
diffeomorphism covariance of gauge transformations, on Σ.

Using this formula, we can compute the gauge transformations of each field from the
constraints in Section 4. We need three gauge parameters corresponding to constraints GYa,
Ga

A and Gi
X: ca ∈ Γ(Σ, X∗(E)), ta ∈ Γ(∧n−2T∗Σ, X∗(E∗)), wi ∈ Γ(∧n−1T∗Σ, X∗(T∗M)). ca

is a function, ta is an (n− 2)-form and wi is an (n− 1)-form.
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Gauge transformations of fundamental fields are given by the following:

δXi = ρi
a(X)ca, (80)

δAa = dca + Ca
bc(X)Abcc, (81)

δYa = dta + (−1)nρi
a(X)wi + Cc

ab(X)(−Yccb + (−1)ntc ∧ Ab)

+
(−1)n

(n− 1)!
Jab2 ...bn+1

(X)Ab2 ∧ . . . ∧ Abn cbn+1 , (82)

δZi = dwi + ∂iρ
j
a(−Zj ∧ ca + (−1)nwj ∧ Aa) +

1
2

∂iCa
bc(2Ya ∧ Abcc + (−1)nta ∧ Ab ∧ Ac)

+
1
n!

∂i Ja1 ...an+1 (X)Aa1 ∧ . . . ∧ Aan can+1

− 1
(n + 1)!

Hij1 ...jnk

n

∑
m=0

dX j1 ∧ . . . ∧ dX jm ∧ ρ
jm+1
am+1 Aam+1 ∧ . . . ∧ ρ

jn
an Aan ρk

bcb

= dwi + ∂iρ
j
a(−Zj ∧ ca + (−1)nwj ∧ Aa) +

1
2

∂iCa
bc(2Ya ∧ Abcc + (−1)nta ∧ Ab ∧ Ac)

+
1
n!

(
∂i Ja1 ...an+1 (X)− ρ

j1
a1 . . . ρ

jn
an ρk

an+1
Hij1 ...jnk

)
Aa1 ∧ . . . ∧ Aan can+1 − 1

(n + 1)!
Hij1 ...jnk

×
n

∑
m=1

(n−m + 1)dX j1 ∧ . . . ∧ dX jm−1 ∧ Fjm
X ∧ ρ

jm+1
am+1 Aam+1 ∧ . . . ∧ ρ

jn
an Aan ρk

bcb . (83)

In fact, the action functional (8) is gauge invariant δS = 0 under these gauge transfor-
mations (80)–(83).

Computations of the gauge algebra are rather complicated; however, from the general
theory of the analytical mechanics, the first class constraints in the Hamiltonian formalism
give an on-shell closed gauge algebra such that [δ1, δ2] ≈ δ3 in the Lagrangian formalism.

7. Manifestly Target Space Covariant Gauge Transformation

Gauge transformations are written to target space covariant ones by introducing a
connection ∇ on E as in Section 5.

In gauge transformations of the basis of E and E∗, terms using the connection 1-form
ωb

ai appear as follows:

δ∇ea = ωb
ai(X)δXieb = ωb

ai(X)ρi
ccceb, (84)

δ∇ea = −ωa
bi(X)δXieb = −ωa

bi(X)ρi
ccceb. (85)

The gauge transformation of Xi, Equation (80), is already covariant δ∇Xi = δXi. The
covariant gauge transformation of Aa is the following:

δ∇Aa = dca + Ca
bc(X)Abcc + ωa

bi(X)cbFi
X . (86)

In fact, using transformations of basis (84), the gauge transformation of the coordinate
independent form A = Aa ⊗ ea is calculated as follows:

δ∇A = δ∇(Aa ⊗ ea)

= δ∇Aa ⊗ ea + Aa ⊗ δ∇ea

= (dca + Ca
bc(X)Abcc + ωa

bi(X)cbFi
X + ρi

bωa
ci(X)Accb)⊗ ea

= (∇ca − Ta
bc(X)Abcc)⊗ ea

= ∇c− X∗T(A, c), (87)

where ∇ca = dca + ωa
bidXicb. Equation (87) is covariant under the diffeomorphism on

M and coordinate transformations on the fiber of E. For instance, ωb
ai is transformed

as ω
′b
aidxi = (M−1)c

aωd
cidxi Mb

d + (M−1)c
adMb

c under a transition function Mb
a(X) of the

bundle, and Aa is transformed as A′a = Ma
b(X)Ab, etc. Using transformations of all fields
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and functions under the transition function Mb
a(X), we can check δ∇A is invariant under

coordinate changes on the target vector bundle.
For Y, a similar calculation gives the following covariant gauge transformation:

δ∇Ya = dta + (−1)nρi
a(X)wi + Cc

ab(X)(−Yccb + Abtc)

+
1

(n− 1)!
Jab2 ...bn+1(X)Ab2 ∧ . . . ∧ Abn cbn+1 + (−1)n−1ωb

aiF
i
Xtb. (88)

We can check the coordinate-independent covariant gauge transformation:

δ∇Y = δ∇(Ya ⊗ ea)

=
(
∇ta + (−1)nρi

a(X)w∇i − Tc
ab(X)(−Yccb + Abtc)

+
1
n!

Jab1 ...bn+1(X)Ab1 ∧ . . . ∧ Abn cbn+1

)
⊗ ea,

= ∇t + (−1)nιX∗ρw∇ + X∗T(Y, c)− X∗T(A, t) + X∗ J(A, . . . , A, c), (89)

where

∇ta = dta −ωb
aidXitb, (90)

w∇i = wi + (−1)n−1ωc
bi(−Yccb + Abtc). (91)

Similarly, we obtain the covariant gauge transformation of Z as follows:

δ∇Zi = ∇w∇i +∇iρ
j
a(−Zj ∧ ca + (−1)nw∇j ∧ Aa)

− 1
2 Sa

ibc(2Ya ∧ Abcc + (−1)n Ab ∧ Acta)

+
1
n!

(
∇i Ja1 ...an+1(X)− ρ

j1
a1 . . . ρ

jn
an ρ

jn+1
an+1 Hij1 ...jn+1

)
Aa1 ∧ . . . ∧ Aan can+1

− 1
(n + 1)!

Hij1 ...jnk

n

∑
m=1

(n−m + 1)dX j1 ∧ . . . ∧ dX jm−1 ∧ Fjm
X

∧ ρ
jm+1
am+1 Aam+1 ∧ . . . ∧ ρ

jn
an Aan ρk

bcb . (92)

The coordinate independent form is as follows:

δ∇Z = ∇w∇ − ιX∗∇ρ(c)Z + ιX∗∇ρ(A)w
∇ − X∗S(Y, A, c) + (−1)nX∗S(t, A, A)

+X∗∇J(A, . . . , A, c)− ιX∗ρ(c)ι
⊗n
X∗ρ(A)

H

+
n

∑
m=1

(n−m + 1)(−1)nιX∗ρ(c)ιFX ι
⊗(n−m)
X∗ρ(A)

H . (93)

We obtain invariant coordinate independent gauge transformations (87), (89) and (93).

8. Conclusions and Discussion

We have constructed an (n + 1) dimensional topological sigma model with a Lie
algebroid structure, an E-flux and the WZ term, generalizing the twisted Poisson sigma
model and the twisted R-Poisson sigma model. The Poisson manifold target space is
generalized to a Lie algebroid target space. Moreover, from the consistency condition of
constraints, we fixed a consistency condition of the E-flux, the WZ term and other coefficient
functions. They are universal geometric conditions of compatibility of E-differential forms
with a pre-multisymplectic structure under a Lie algebroid action. We pointed out that
they were regarded as a Lie algebroid generalization of parts of the momentum map theory
on the multi-symplectic manifold. We will be able to understand and apply this result to
geometric description of higher fluxes and dualities in higher dimensions.



Universe 2021, 7, 391 15 of 18

In general, a higher dimensional topological sigma model of AKSZ type has a higher
L∞-algebroid structure. If we deform the theory, adding the WZ term to the action, the
AKSZ construction does not work. We need to modify the AKSZ construction of the
BV formalism for topological sigma models with the WZ term. Though the BFV and
BV formalisms of the two-dimensional twisted Poisson sigma model were geometrically
constructed [42], they are still open in higher dimensional topological sigma models with
the WZ term. In order to construct the BFV and BV in higher dimensions, geometric
analysis of compatibility conditions of the Lie n-, or the L∞ algebroid structure with the
pre-multisymplectic structure, may be a key point. The result in this paper gives a new
insight and is one step. The construction of the BV and BFV formalism of the twisted
Lie algebroid sigma model and the twisted Lie n-, or L∞-algebroid sigma model, are an
important future problem for the analysis of higher dimensional duality physics.
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Appendix A. Geometry of Lie Algebroid

We summarize the notation, formulas and their local coordinate expressions of geom-
etry of a Lie algebroid.

Let (E, ρ, [−,−]) be a Lie algebroid over a smooth manifold M. xi is a local coordinate
of M and ea ∈ Γ(E) is a basis of sections of E. i, j, etc., are indices on M; a, b, etc., are indices
on the fiber of E. Local coordinate expressions of the anchor map and the Lie bracket are
ρ(ea) f = ρi

a(x)∂i f , [ea, eb] = Cc
ab(x)ec, where ∂i =

∂
∂xi . Then, the conditions of ρ and C are

as follows:

ρ
j
a∂jρ

i
b − ρ

j
b∂jρ

i
a = Cc

abρi
c, (A1)

Ce
adCd

bc + ρi
a∂iCe

bc + Cycl(abc) = 0. (A2)

Let ∇ be an ordinary connection on the vector bundle E. An E-connection E∇ :
Γ(TM)→ Γ(TM⊗ E∗) on the space of sections Γ(TM) is defined by the following:

E∇ev := Lρ(e)v + ρ(∇ve) = [ρ(e), v] + ρ(∇ve), (A3)

where e ∈ Γ(E) and v ∈ Γ(TM).
The E-connection E∇ satisfies the following:

Ed〈v, α〉 = 〈E∇e, α〉+ 〈e, E∇α〉, (A4)

for a vector field v and a 1-form α. For a 1-form α, it is given by the following:

E∇eα := Lρ(e)α + 〈ρ(∇e), α〉. (A5)

ω = ωb
aidxi⊗ ea⊗ eb be a connection 1-form. Then, local coordinate expressions of covariant

derivatives and the E-covariant derivative are the following:
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∇iα
a = ∂iα

a −ωa
biα

b, (A6)

∇iβa = ∂iβa + ωb
aiβb, (A7)

E∇avi = ρ
j
a∂jvi − ∂jρ

i
avj − ρi

bωb
ajv

j, (A8)

E∇aαi = ρ
j
a∂jαi + ∂iρ

j
aαj + ρ

j
bωb

aiαj. (A9)

An E torsion, a curvature, an E-curvature and a basic curvature, T, R, ER and S, are
defined by the following:

R(s, s′) := [∇s,∇s′ ]−∇[s,s′ ],

T(s, s′) := E∇ss′ − E∇s′ s− [s, s′],
ER(s, s′) := [E∇s, E∇s′ ]− E∇[s,s′ ],

S(s, s′) := Ls(∇s′)−Ls′(∇s)−∇ρ(∇s)s
′ +∇ρ(∇s′)s

−∇[s, s′] = (∇T + 2Alt ιρR)(s, s′),

The following local coordinate expressions are given as follows:

Tc
ab ≡ −Cc

ab + ρi
aωc

bi − ρi
bωc

ai, (A10)

Ra
ijb ≡ ∂iω

b
aj − ∂jω

b
ai + ωc

aiω
b
cj −ωc

ajω
b
ci, (A11)

Sc
iab ≡ ∇iTc

ab + ρ
j
bRc

ija − ρ
j
aRc

ijb,

= −∂iCc
ab + ωc

diC
d
ab −ωd

aiC
c
db −ωd

biC
c
ad + ρ

j
a∂jω

c
bi − ρ

j
b∂jω

c
ai

+∂iρ
j
aωc

bj − ∂iρ
j
bωc

aj + ωd
aiρ

j
dωc

bj −ωd
biρ

j
dωc

aj, (A12)

where the covariant derivative ∇iTc
ab is the following:

∇iTc
ab ≡ ∂iTc

ab −ωc
diT

d
ab + ωd

aiT
c
db + ωd

biT
c
ad. (A13)

and the E-curvature is given from the basic curvature as

ERd
abc = ρi

cSd
iab. (A14)

Appendix B. Computation of Equation (62)

The derivation of Poisson bracket, {GYa(σ), GYb(σ
′)}PB is slightly complicated. Using

Lie algebroid identities of ρi
a and Ca

bc, identities of J and H, we obtain the following:

{GYa(σ), GYb(σ
′)}PB =

[(
∂iCc

abYc +
(−1)n−1

n!
∂i Jabc3 ...cn+1

Ac3 ∧ . . . ∧ Acn+1

)
∧ Gi

X

+(−1)n−1Cc
abGYc +

(−1)n−2

(n− 1)!
Jabce4 ...en+1

Ae4 ∧ . . . ∧ Aen+1 ∧ Gc
A

](s)
(σ)δn(σ− σ′)

+

[
(−1)n−1

(n + 1)!
ρi

aρ
j
b Hijk1 ...kn dXk1 ∧ . . . ∧ dXkn

+
(−1)n

(n + 1)!
ρi

aρ
j
b Hijk1 ...kn ρk1

c1
Ac1 ∧ . . . ∧ ρkn

cn
Acn

](s)
(σ)δn(σ− σ′). (A15)
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The final two terms are rewritten using the constraint Gk
X as follows:[

(−1)n−1

(n + 1)!

n

∑
m=1

ρi
aρ

j
b Hijk1 ...kmkm+1 ...kn dXk1 ∧ . . . ∧ dXkm−1 ∧ Gkm

X

∧ρ
km+1
cm+1 Acm+1 ∧ . . . ∧ ρkn

cn Acn
](s)

(σ)δn(σ− σ′), (A16)

which gives Equation (62).

References
1. Grana, M.; Minasian, R.; Petrini M.; Waldram, D. T-duality, Generalized Geometry and Non-Geometric Backgrounds. J. High

Energy Phys. 2009, 4, 75 [CrossRef]
2. Cavalcanti, G.R.; Gualtieri, M. Generalized complex geometry and T-duality. In A Celebration of the Mathematical Legacy of Raoul Bott

(CRM Proceedings and Lecture Notes); American Mathematical Society: Providence, RI, USA, 2010; pp. 341–366, ISBN 0821847775.
3. Blumenhagen, R.; Deser, A.; Plauschinn, E.; Rennecke, F. Bianchi Identities for Non-Geometric Fluxes-From Quasi-Poisson

Structures to Courant Algebroids. Fortsch. Phys. 2012, 60, 1217–1228. [CrossRef]
4. Asakawa, T.; Muraki, H.; Sasa, S.; Watamura, S. Poisson-generalized geometry and R-flux. Int. J. Mod. Phys. A 2015, 30, 1550097.

[CrossRef]
5. Ševera, P. Poisson–Lie T-Duality and Courant Algebroids. Lett. Math. Phys. 2015, 105, 1689–1701. [CrossRef]
6. Heller, M.A.; Ikeda N.; Watamura, S. Unified picture of non-geometric fluxes and T-duality in double field theory via graded

symplectic manifolds. J. High Energy Phys. 2017, 2, 78. [CrossRef]
7. Chatzistavrakidis, A.; Deser, A.; Jonke, L. T-duality without isometry via extended gauge symmetries of 2D sigma models. J. High

Energy Phys. 2016, 1601, 154. [CrossRef]
8. Chatzistavrakidis, A.; Deser, A.; Jonke, L.; Strobl, T. Strings in Singular Space-Times and their Universal Gauge Theory. Ann.

Henri Poincare 2017, 18, 2641. [CrossRef]
9. Chatzistavrakidis, A.; Deser, A.; Jonke, L.; Strobl, T. Beyond the standard gauging: Gauge symmetries of Dirac Sigma Models. J.

High Energy Phys. 2016, 1608, 172. [CrossRef]
10. Chatzistavrakidis, A.; Deser, A.; Jonke, L.; Strobl, T. Gauging as constraining: The universal generalised geometry action in two

dimensions. PoS CORFU 2017, 2016, 87.
11. Bouwknegt, P.; Bugden, M.; Klimcik, C.; Wright, K. Hidden isometry of “T-duality without isometry”. J. High Energy Phys. 2017,

08, 116. [CrossRef]
12. Bugden, M. A Tour of T-duality: Geometric and Topological Aspects of T-dualities. arXiv 2019, arXiv:1904.03583.
13. Wright, K. Lie Algebroid Gauging of Non-linear Sigma Models. J. Geom. Phys. 2019, 146, 103490. [CrossRef]
14. Ikeda, N. Momentum sections in Hamiltonian mechanics and sigma models. SIGMA 2019, 15, 76. [CrossRef]
15. Ikeda, N. Lectures on AKSZ Sigma Models for Physicists. In Noncommutative Geometry and Physics 4, Workshop on Strings,

Membranes and Topological Field Theory; World Scientific: Singapore, 2017; pp. 79–169.
16. Chatzistavrakidis, A.; Grewcoe, C.J.; Jonke, L.; Khoo, F.S.; Szabo, R.J. BRST symmetry of doubled membrane sigma-models. arXiv

2019, arXiv:1904.04857.
17. Grewcoe, C.J.; Jonke, L. L∞-algebras and membrane sigma models. arXiv 2020, arXiv:2004.14087.
18. Marotta, V.E.; Szabo, R.J. Algebroids, AKSZ Constructions and Doubled Geometry. arXiv 2021, arXiv:2104.07774.
19. Siegel, W. Superspace duality in low-energy superstrings. Phys. Rev. D 1993, 48, 2826–2837. [CrossRef]
20. Siegel, W. Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 1993, 47, 5453–5459. [CrossRef]
21. Hull, C.; Zwiebach, B. Double Field Theory. J. High Energy Phys. 2009, 9, 99. [CrossRef]
22. Hull, C.; Zwiebach, B. The Gauge algebra of double field theory and Courant brackets. J. High Energy Phys. 2009, 9, 90. [CrossRef]
23. Chatzistavrakidis, A.; Jonke, L.; Khoo F.S.; Szabo, R.J. Double Field Theory and Membrane Sigma-Models. J. High Energy Phys.

2018, 7, 15. [CrossRef]
24. Chatzistavrakidis, A.; Jonke, L.; Khoo, F.S.; Szabo, R.J. The Algebroid Structure of Double Field Theory. PoS CORFU2018

2019, submitted.
25. Grewcoe, C.J.; Jonke, L. Double field theory algebroid and curved L∞-algebras. J. Math. Phys. 2021, 62, 5. [CrossRef]
26. Mackenzie, K. Lie Groupoids and Lie Algebroids in Differential Geometry; LMS Lecture Note Series; Cambridge U. Press: Cambridge,

UK, 1987; Volume 124.
27. Ikeda, N. Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 1994, 235, 435–464. [CrossRef]
28. Schaller, P.; Strobl, T. Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 1994, 9, 3129–3136. [CrossRef]
29. Cattaneo, A.S.; Felder, G. A Path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 2000, 212, 591.

[CrossRef]
30. Klimcik, C.; Strobl, T. WZW-Poisson manifolds. J. Geom. Phys. 2002, 43, 341–344. [CrossRef]
31. Park, J.S. Topological open p-branes. In Proceedings of the 4th KIAS Annual International Conference on Symplectic Geometry

and Mirror Symmetry, Seoul, Korea, 14–18 August 2000.

http://doi.org/10.1088/1126-6708/2009/04/075
http://dx.doi.org/10.1002/prop.201200099
http://dx.doi.org/10.1142/S0217751X15500979
http://dx.doi.org/10.1007/s11005-015-0796-4
http://dx.doi.org/10.1007/JHEP02(2017)078
http://dx.doi.org/10.1007/JHEP01(2016)154
http://dx.doi.org/10.1007/s00023-017-0580-3
http://dx.doi.org/10.1007/JHEP08(2016)172
http://dx.doi.org/10.1007/JHEP08(2017)116
http://dx.doi.org/10.1016/j.geomphys.2019.103490
http://dx.doi.org/10.3842/SIGMA.2019.076
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://dx.doi.org/10.1103/PhysRevD.47.5453
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://dx.doi.org/10.1088/1126-6708/2009/09/090
http://dx.doi.org/10.1007/JHEP07(2018)015
http://dx.doi.org/10.1063/5.0041479
http://dx.doi.org/10.1006/aphy.1994.1104
http://dx.doi.org/10.1142/S0217732394002951
http://dx.doi.org/10.1007/s002200000229
http://dx.doi.org/10.1016/S0393-0440(02)00027-X


Universe 2021, 7, 391 18 of 18

32. Ševera, P.; Weinstein, A. Poisson geometry with a 3 form background. Prog. Theor. Phys. Suppl. 2001, 144, 145–154. [CrossRef]
33. Chatzistavrakidis, A. Topological Field Theories induced by twisted R-Poisson structure in any dimension. arXiv 2021,

arXiv:2106.01067.
34. Alexandrov, M.; Kontsevich, M.; Schwartz, A.; Zaboronsky, O. The Geometry of the master equation and topological quantum

field theory. Int. J. Mod. Phys. A 1997, 12, 1405. [CrossRef]
35. Cattaneo, A.S.; Felder, G. On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 2001, 56, 163–179. [CrossRef]
36. Ikeda, N. Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy

Phys. 2001, 7, 37. [CrossRef]
37. Roytenberg, D. AKSZ-BV formalism and Courant algebroid-induced topological field theories. Lett. Math. Phys. 2007, 79, 143.

[CrossRef]
38. Batalin, I.A.; Vilkovisky, G.A. Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints. Phys. Lett. B 1977,

69, 309. [CrossRef]
39. Batalin, I.A.; Fradkin, E.s. A Generalized Canonical Formalism and Quantization of Reducible Gauge Theories. Phys. Lett. B 1983,

122, 157. [CrossRef]
40. Batalin, I.A.; Vilkovisky, G.A. Gauge Algebra and Quantization. Phys. Lett. B 1981, 102, 27–31. [CrossRef]
41. Batalin, I.A.; Vilkovisky, G.A. Quantization of Gauge Theories with Linearly Dependent Generators. Phys. Rev. D 1983, 28,

2567–2582; Erratum in 1984, 30, 508. [CrossRef]
42. Ikeda, N.; Strobl, T. BV and BFV for the H-twisted Poisson sigma model. Ann. Henri Poincare 2021, 22, 1267–1316. [CrossRef]
43. Vaintrob, A. Lie algebroids and homological vector fields. Uspekhi Mat. Nauk. 1997, 52, 161–162 [CrossRef]
44. Blohmann, C.; Weinstein, A. Hamiltonian Lie algebroids. arXiv 2018, arXiv:1811.11109.
45. Kotov, A.; Strobl, T. Lie algebroids, gauge theories, and compatible geometrical structures. Rev. Math. Phys. 2018, 31, 1950015.

[CrossRef]
46. Ikeda, N. Momentum section on Courant algebroid and constrained Hamiltonian mechanics. J. Geom. Phys. 2021, 170, 104350.

[CrossRef]
47. Schwarz, A. Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 1993, 155, 249. [CrossRef]
48. Blaom, A.D. Geometric structures as deformed infinitesimal symmetries. Trans. Amer. Math. Soc. 2006, 358, 3651. [CrossRef]
49. Ikeda, N.; Strobl, T. From BFV to BV and spacetime covariance. J. High Energy Phys. 2020, 12, 141. [CrossRef]

http://dx.doi.org/10.1143/PTPS.144.145
http://dx.doi.org/10.1142/S0217751X97001031
http://dx.doi.org/10.1023/A:1010963926853
http://dx.doi.org/10.1088/1126-6708/2001/07/037
http://dx.doi.org/10.1007/s11005-006-0134-y
http://dx.doi.org/10.1016/0370-2693(77)90553-6
http://dx.doi.org/10.1016/0370-2693(83)90784-0
http://dx.doi.org/10.1016/0370-2693(81)90205-7
http://dx.doi.org/10.1103/PhysRevD.28.2567
http://dx.doi.org/10.1007/s00023-020-00988-0
http://dx.doi.org/10.1070/RM1997v052n02ABEH001802
http://dx.doi.org/10.1142/S0129055X19500156
http://dx.doi.org/10.1016/j.geomphys.2021.104350
http://dx.doi.org/10.1007/BF02097392
http://dx.doi.org/10.1090/S0002-9947-06-04057-8
http://dx.doi.org/10.1007/JHEP12(2020)141

	Introduction
	Lie Algebroid Topological Sigma Model with Flux and WZ Term
	Lie Algebroid and Compatible E-Flux on Pre-Multisymplectic Manifold
	Lie Algebroid
	Lie Algebroid Differential
	Compatible Condition of E-Differential form with Pre-Multisymplectic Form
	Lie (n+1)-Algebroid and Higher Dirac Structure

	Hamiltonian Formalism
	Target Space Covariantization
	Gauge Transformation
	Manifestly Target Space Covariant Gauge Transformation
	Conclusions and Discussion
	Geometry of Lie Algebroid
	Computation of Equation (62) 
	References

