
universe

Review

Hyperons in Neutron Stars

Domenico Logoteta 1,2

����������
�������

Citation: Logoteta, D. Hyperons in

Neutron Stars. Universe 2021, 7, 408.

https://doi.org/10.3390/

universe7110408

Academic Editor: Daniela D. Doneva

Received: 1 September 2021

Accepted: 14 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Fisica, Universita di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy;
domenico.logoteta@unipi.it

2 INFN, Sezione di Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

Abstract: I review the issues related to the appearance of hyperons in neutron star matter, focusing
in particular on the problem of the maximum mass supported by hyperonic equations of state.
I discuss the general mechanism that leads to the formation of hyperons in the core of neutron
stars and I review the main techniques and many-body methods used to construct an appropriate
equation of state to describe the strongly interacting system of hadrons hosted in the core of neutron
stars. I outline the consequences on the structure and internal composition of neutron stars and also
discuss the possible signatures of the presence of hyperons in astrophysical dynamical systems like
supernova explosions and binary neutron star mergers. Finally, I briefly report about the possible
important role played by hyperons in the transport properties of neutron star matter and on the
consequences of neutron star cooling and gravitational wave instabilities induced by the presence
of hyperons.
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1. Introduction

The birth of hyperon physics dates back to 1947 when Rochester and Butler observed
the first hyperon by studying cosmic rays in a gas chamber [1]. Some years later, in 1953,
Danysz and Pniewski discovered the first hypernucleus [2] by the analysis of an emulsion
experiment. Today, hypernuclear physics represents a very active research field whose
main goal is to explain the features of systems that include hyperons starting from the un-
derlying interactions that involve nucleons and hyperons. Unfortunately, several technical
issues affect the experimental research about hyperons. The short lifetimes of hyperons
and the low beam fluxes produced in scattering experiments do not allow constraints
in the nucleon-hyperon (NY) interaction as much as the nucleon-nucleon (NN) one. NY
scattering has been studied mainly in the p−Λ channel [3,4]; few data points exist in the
p− Σ− channel [5,6]. No direct data scattering information is currently available in the
hyperon-hyperon (YY) channel. Besides the scattering experiments, additional informa-
tions on hypernuclear physics is provided by the binding energies of hypernuclei, which
are bound nuclear systems where one or more nucleons are replaced by hyperons. Today,
more than 40 Λ-hypernuclei have been identified, while there is no clear evidence of the
existence of Σ− hypernuclei. Ξ− hypernuclei have been observed in some events [7–10].
The study of hypernuclei represents a crucial step towards the understanding of hypernu-
clear interactions.

Besides the experimental and theoretical interest in the systems mentioned above, the
study of hyperon physics is strongly correlated with the study of physics neutron stars.
The latter poses a tough challenge that tests our ability to understand the behaviour of
matter under extreme conditions of density and temperature. The huge density varia-
tion in the range ∼(1− 1015) g/cm3 expected in neutron stars requires the modelling of
systems in very different physical conditions, like heavy neutron-rich nuclei arranged
to form a lattice structure, as in the outer crust of the star, or a neutral charge system of
interacting hadrons and leptons forming a quantum fluid, as in the stellar core [11]. The

Universe 2021, 7, 408. https://doi.org/10.3390/universe7110408 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-2011-2328
https://doi.org/10.3390/universe7110408
https://doi.org/10.3390/universe7110408
https://doi.org/10.3390/universe7110408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7110408
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7110408?type=check_update&version=2


Universe 2021, 7, 408 2 of 33

description of such a variety of systems, of considerable interest for nuclear physics as
well as for astrophysics, needs a challenging theoretical effort and an accurate knowledge
of the interactions between the particles present inside the star. The bulk properties of
neutron stars (e.g., gravitational mass, radius, moment of inertia, mass-shed frequency,
tidal deformability, etc.) chiefly depend on the equations of state (EOS) describing the
microscopic properties of stellar matter. The EOS of the dense matter is also one of the
main inputs for the study of various astrophysical phenomena related to neutron stars like
core-collapse supernovae (CCSN) [12] and binary neutron star mergers (BNSMs) [13–15].
The recent detection of gravitational waves (GWs) by the LIGO-Virgo collaboration [16–19],
from several systems of merging neutron stars, has strongly increased interest in dense
matter physics.

The behaviour of hyperons in a vacuum is very different from what occurs in the high-
density matter, as in the core of neutron stars. Simple thermodynamical considerations
suggest that hyperons are produced in neutron star matter when the baryonic density
becomes larger than a certain threshold, which depends on the features of the interaction
between particles. If the baryonic density, namely the sum of the neutron and proton
numerical densities, exceeds the threshold value, the system starts to convert some nucleons
into hyperons. In addition, the huge density of the system and the action of the Pauli-
blocking mechanism prevent hyperon decay. Conversely, in a vacuum, hyperons are
unstable and decay on a typical timescale set by the weak interaction. Typical processes
that lead to the formation of Λ and Σ− hyperons are: p+ e− → Λ+ νe and n+ n→ p+Σ−,
where n and p stand for neutron and proton, while e− is the electron with corresponding
electron neutrino νe. In the following, I focus on cold neutron star matter; this condition is
approximately realized after about 30 s from the star birth when the temperature in the
core drops below 1 MeV [11]. In addition, on these timescales, the neutrino mean-free path
becomes much larger than the star radius, and thus, in weak equilibrium reactions, the
neutrinos chemical potential can be assumed to be zero. The hyperon formation processes
mentioned above are energetically favourable in neutron star matter because they allow a
decrease in both the total energy and pressure of the system. A well-known problem related
to this scenario is that the softening of the EOS, induced by the formation of hyperons, leads
to a quite low neutron star maximum mass, which may be inconsistent with observations.
This issue is known in the literature as the “hyperon puzzle” of neutron stars. One of the
main tasks of this work is to review the various mechanisms proposed to solve this issue.

According to various theoretical models, that will be discussed in this review, the
hyperons expected to appear in neutron star matter are those contained in the baryonic
octect: n, p, Λ, Σ−, Σ0, Σ+, Ξ0, Ξ− and, in addition, the ∆ quartet (∆−, ∆0, ∆+, ∆++) of the
decuplet. The specific population of hyperons according to a given model depends on the
features of the interactions between nucleons and hyperons. Note that the present review
is focused on the formation of hyperons in neutron star matter and it is, therefore, assumed
that cold neutron stars are in general hyperonic stars. However, it should be stressed that
other scenarios, which involve a quark deconfinement phase transition, cannot be currently
excluded [20–25]. Another important point that should be clear is that such alternative
scenarios are not incompatible with the presence of hyperons in neutron stars [26].

The paper is organised as follows, I first discuss the many-body methods and corre-
sponding interactions used to derive the hyperonic matter EOS employed for this task.
Specifically, I first discuss relativistic mean field approaches and then move to the non-
relativistic microscopic ones. In both cases, I show the main features about the resulting
neutron star structure and composition when hyperons are included in the system. In
the last part of this review, I report the possible signatures of the appearance of hyperons
in astrophysical systems like BNSMs and SNe, as well as some possible important roles
played by the presence of hyperons in hot young neutron stars.
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2. Many-Body Methods

The first study of hyperons in neutron stars dates back to the work of Ambartsumyan
and Saakyan in 1960 [27]. Later on, this research was considered by several other authors,
who employed various many-body methods to carry out their investigations. These
different techniques can be divided into two main categories: phenomenological and
microscopic approaches. The first ones are mainly based on relativistic mean-field (RMF)
theory, while the second is built in a non-relativistic framework, where hadrons interact
with each other through a potential. Among the phenomenological approaches, some
authors have also tried to implement non-relativistic Skyrme interactions [28] that have
been widely used in the pure nucleonic sector to describe both finite nuclei and infinite
nuclear matter. In the following, I review the main features of these methods and discuss
their predictions about the structure of neutron stars.

2.1. Relativistic Mean-Field Models

RMF models are based on a relativistic Lagrangian density inspired by quantum
field theory. Hadron fields are assumed to interact with mesons by a minimal Yukawa
coupling. In this approach, all baryon and meson fields are treated as classical fields, and
the various operators entering the Lagrangian density are replaced by their expectation
values calculated in the nuclear medium. A typical Walecka-type Lagrangian density can
be written as:

L = ∑
B

Ψ̄B

[
γµDµ

B −m∗B
]
ΨB

+ ∑
l

ψ̄l
[
iγµ∂µ −ml

]
ψl

+
1
2

(
∂µσ∂µσ−m2

σσ2
)
− 1

3!
kσ3 − 1

4!
λσ4

+
1
2

m2
ωωµωµ − 1

4
ΩµνΩµν +

1
4!

ξg4
ω

(
ωµωµ

)2

+
1
2

m2
ρbµbµ − 1

4
BµνBµν

+
[
Λω

(
g2

ωωµωµ
)
+ ΛN g2

σσ2
](

g2
ρbµ.bµ

)
+

1
2

(
∂µσ∗∂µσ∗ −m2

σ∗σ
∗2
)

+
1
2

m2
φφµφµ − 1

4
φµνφµν , (1)

where Dµ
B = i∂µ− gωBωµ− gφBφµ− gρBτB.bµ and m∗B = mB− gσBσ− gσ∗Bσ∗ is the baryon

effective mass. ΨB and ψl are the baryon and lepton Dirac fields, respectively, and σ, ω,
and ρ represent the scalar, vector, and isovector meson fields, which describe the nuclear
interaction. The two additional hidden strangeness mesons σ∗ and φ do not couple with
nucleons using SU(6) symmetry (gσ∗N = 0, gφN = 0). The scalar σ∗ meson corresponds
to the physical f0(975) meson, while the vector φ one corresponds to the φ(1020) (meson
mass is reported in parenthesis). The φ meson is interpreted at the quark level as an ss̄
state (being s (s̄), the strange quark (antiquark)), while there is no unique interpretation
for the σ∗ meson. The σ∗ and φ mesons were originally introduced in Ref. [29], to solve
the problem of the attractive ΛΛ bond (see discussion below for additional details and
definitions). Lepton masses and bare baryon masses are denoted by ml and mB, respectively.
The coupling constants of i-meson (where i = σ, ω, ρ) with a baryon B are denoted by gi,B,
where the index B runs over the eight baryons of the baryonic octect: n, p, Λ, Σ−, Σ0, Σ+,
Ξ−, and Ξ0. The couplings gi,B set the strength of the interaction between two baryons
and a meson. The sum on l is over electrons (e−) and muons (µ−). The ∆-quartet can
also be included in this formalism as discussed later. For simplicity, in (1), I set gi,N ≡ gi
for nucleons.

Λω is a coupling constant of the mixed ρω-term [30] introduced to adjust the behaviour
of symmetry energy near saturation density (n0 = 0.16 fm−3). The coupling of ΛN
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allows us to finally consider a mixing between the σ- and ρ-meson. The constants k
and ξ are the weights of the σ and ω self-interaction terms and τB is the isospin operator,
namely the vector of the three Pauli matrices. The mesonic field tensors are given by
their usual antisymmetric expressions: Ωµν = ∂µων − ∂νωµ, Bµν = ∂µbν − ∂νbµ, and
φµν = ∂µφν − ∂νφµ. In this notation, the b-field is associated to the ρ-meson.

Note that, so far, various classes of RMF models have been developed according to
the terms retained in the Lagrangian density (1). In some models, the couplings gσ, gω,
and gρ have a density dependence, and where terms proportional to k, λ, ξ, Λω, and ΛN
are set to zero, while in other models gσ, gω, and gρ are constant, and all terms of the
above Lagrangian are kept. In the following, I refer to the first class of models as density-
dependent (DD) mean-field models and to the seconds as non-linear (NL) mean-field
models. In the following, I discuss these two kinds of RMF models, considering them as
representative cases and then briefly report other possible choices.

In the case of DD models, the density dependence of the couplings is usually taken in
the form:

gαβ(n) = gαβ(n0)hm(x) , (2)

with x = n/n0 and:

hm(x) = am
1 + bm(x + dm)2

1 + cm(x + dm)2 , (3)

for the isoscalar coupling and:

hm(x) = exp(−am(x− 1)) , (4)

for the isovector couplings. The values of the parameters am, bm, cm, dm, and the density de-
pendence in the above functions were originally proposed in Ref. [31] in order to reproduce
the density behaviour of the σ-, ω-, and ρ-couplings found in Dirac-Brueckner-Hartree-Fock
calculations [32,33]. More in general, the meson-nucleon coupling constants can be fixed in
order to reproduce nuclear experimental observables like the saturation properties of sym-
metric nuclear matter [20], finite nuclei properties (binding energies, radii, etc.), constraints
from heavy ion collision experiments, or even neutron star properties [31,34–40].

Concerning the meson-hyperon and the strange meson-hyperon coupling constants
gωH , gρH , gσH , gσ∗H , and gφH , one of the first models that attempted to determine these
meson-hyperon couplings was proposed by Glendenning [41], using Λ hypernuclear data
to fix the σ−Λ coupling and assuming simple rescaling relations between the couplings
between the other mesons and the hyperons. I note that in this model, the presence of
the σ∗, and φ mesons was not considered. Later on, other ways to fix the meson-hyperon
couplings were proposed; one popular choice assumes that the ω- and ρ-hyperon couplings
are determined by SU(6) symmetry relations:

1
3

gωN =
1
2

gωΛ =
1
2

gωΣ = gωΞ , (5)

gρN = gρΛ =
1
2

gρΣ = gρΞ , (6)

The coupling constants gσH of the hyperons with the scalar meson σ are then adjusted
to the potential depths UH felt by a hyperon H in symmetric nuclear matter at saturation
density which is given by the relation:

UH = gωHω0 − gσHσ0 . (7)

In the above expression ω0 and σ0 are the values of the fields ω and σ in symmetric
nuclear matter at saturation density. According to Equations (5)–(7), all hyperon couplings{

gσH , gωH , gρH
}

H=Λ,Σ,Ξ are finally determined once the coupling constants
{

gσ, gω, gρ

}
of the nucleon sector are provided, together with the values of UH . Concerning the
hyperon-single particle potential depths in symmetric nuclear matter at saturation density,
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typical values used are in the following ranges: UΛ = (−28; −32) MeV, UΣ = (−30; 30)
MeV, and UΞ = (−18; 18) MeV. Note that apart from the Λ-hyperon, whose value of
UΛ can be obtained from the extrapolation of the separation energy of Λ-hypernuclei in
the limit of infinite mass number [42], the other hyperons of the experimental scenario
is quite uncertain. For the Σ-hyperon, no information from hypernuclei is currently
available; some experiments on Σ−-atoms and inclusive (π−, K+) [43–46] spectra on
medium to heavy targets seem to indicate a repulsive Σ potential. For the Ξ-hyperon there
are some experimental data from the hypernuclei: 15

Ξ−C and 12
Ξ−Be. The latter was produced

in (K−, K+) reaction on a 12C target [7], while the first, known as the Kiso event [8],
corresponds to an intermediate state in the reaction Ξ− +14 N→15

Ξ− C→10
Λ Be +5

Λ He. Both
sets of data indicate an attractive Ξ single particle potential compatible with a 1p state,
and consequently bound Ξ-hypernuclei. More recently, in an emulsion-counter hybrid
experiment performed at J-PARC [9], they observed a Ξ− absorption event on 14N, which
decayed into twin single-Λ hypernuclei. Furthermore, in this case, the Ξ− energy level
was compatible with a 1p state. Finally, in Ref. [10], they reported evidence for a 15

Ξ−C
hypernucleus with the Ξ− hyperon in a 1s state. The experimental scenario is even worse
in the hyperon-hyperon (YY) sector where the only informations come from double-Λ-
hypernuclei and no direct data scattering is available. Such uncertainties clearly reflect the
setting of YY-meson couplings. In order to set the σ∗-meson couplings, a popular choice
adopted is to fix it by considering the ΛΛ coupling according to the bond energy in double
ΛΛ hypernuclei: ∆BΛΛ = BΛΛ(

A
ΛΛZ)− 2BΛ(

A−1
Λ Z). ∆BΛΛ can thus be determined once

the double- and single-Λ binding energies are experimentally measured. Old experiments
of Λ emulsion suggested a value of ∆BΛΛ ∼ 5 MeV [47,48]. One should, however, note that
the identification of some double-Λ hypernuclei in these experiments was ambiguous and,
therefore, some caution should be used when employing the data of these experiments to
constrain the ΛΛ interaction. More recently, at KEK [49], the 6

ΛΛHe double-Λ hypernucleus
was identified without ambiguity and a value of ∆BΛΛ ∼ 1.1± 0.2+0.18

−0.11 MeV was derived.
This last value has been updated to ∆BΛΛ ∼ 0.67± 0.17 MeV, considering the variation of
the Ξ-mass [50].

The gσ∗Λ is related to ∆BΛΛ by:

− BΛΛ = UΛ
Λ = −gσΛσ0 − gσ∗Λσ∗0 + gωΛω0gφΛφ0 , (8)

where UΛ
Λ is the Λ potential depth in Λ matter at saturation density, and like in Equation (7),

the label 0 indicates the mean-field value of the meson fields. Note that both Equations (7)
and (8) are correct in the case of RMF models without a density dependence in the coupling
constants. For the general case of DD RMF models, one should account for extra terms
involving the derivative of the couplings (see for instance Ref. [51]). Once the value of gσ∗Λ
has been obtained by the above procedure, the use of SU(6) fixes the couplings of the σ∗

meson with the other hyperons: 2gσ∗Λ = 2gσ∗Σ = gσ∗Ξ.
For the φ-meson couplings, using again SU(6) symmetry relations one has:

2gφΛ = 2gφΣ = gφΞ = −2
√

2
3

gω . (9)

This setting of YY-meson couplings has been implemented, for instance, in Ref. [36]
(assuming BΛΛ = 5 MeV), using as base model for the nucleonic sector of both the
TM1 RMF parametrisation of the NL Walecka model and a modification (TM1-2 model)
proposed again in Ref. [36], where the nucleon-meson couplings were adjusted to better
fit the flow constraint in heavy-ion-collision experiments by Danielewicz [52]. I remark
that, besides the representative example reported above, several other possibilities for
the determination of the NY-meson and the strange meson-hyperon couplings have been
proposed. In Ref. [51], the NY-meson couplings where calibrated on the separation energies
of Λ-hypernuclei. For a fixed value of the ω-Λ coupling taken both from SU(6) symmetry
and by considering an extreme value for which the symmetry is broken, the authors
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determined the σ-Λ coupling by minimising the spread between the theoretical prediction
given by the RMF calculations on several hypernuclei, and the corresponding experimental
value. Concerning the value of the coupling constants of the Λ-hyperon to the hidden-
strangeness mesons σ∗ and φ, they were fixed using the measured ΛΛ bond energy of
6HeΛΛ by KEK. From this analysis, it turned out that the usual value used in the literature
of UΛ

Λ = −5 MeV was not consistent with hypernuclear data. I note that the resulting value
of UΛ varied in the range of −30 to −35 MeV, according to the specific parametrisation
adopted for the nuclear matter Lagrangian density. In Ref. [53], the σ-Λ coupling was fixed
using hypernuclear data from a single Λ-hypernuclei, while an upper bound on the σ-Σ
coupling was obtained from the requirement that the lower bound on the maximum mass
of a neutron star be around 2M�. It is important to note that in some works, different
versions of the Lagrangian density (1) have been proposed. In Ref. [54], a nonlinear chiral
SU(3) model was developed to study the generation of baryon mass. Later, the model
was extended to study finite nuclei [55] and neutron stars [56]. In addition, the model
was also extended to finite temperature with the inclusion of the ∆ quartet [57]. In this
model, baryons interact through the usual one-meson-exchange with the inclusion of an
effective δ-meson plus a dilaton field χ, which was included to mimic the effect of a gluon
condensate, and a ζ-meson that corresponds to the strange quark condensate. The inclusion
of the δ-meson turned out to be important to achieve a good description of asymmetric
nuclear matter and, more generally, leads to a larger repulsion in dense neutron-rich matter
and to a definite splitting of proton and neutron effective masses [58–60]. It is interesting
to note that in hyperonic matter, the effect is the opposite, namely, there is a softening of
the equation of state due to the effect of the δ meson [61].

Another RMF model employed in the literature, is the quark-meson coupling
(QMC) [62,63]. In this model, baryons are described in the framework of the MIT bag
model and the properties of nuclear matter can be self-consistently calculated by the
coupling of scalar (σ) and vector (ω) fields to the quarks within the nucleons, rather than
to the nucleons themselves. As a result of the scalar coupling to the quarks, the internal
structure of the baryon is modified with respect to the free case.

Another ingredient that has been considered in the Lagrangian density (1) is the possi-
bility to have a kaon and/or other meson condensation in neutron star matter. The possi-
bility of pion condesation was proposed independently by Migdal [64] and Sawyer [65],
pointing out that pions could condense in dense matter due to attractive p-wave inter-
actions with nucleons. Later, several authors contributed to this research [66–69] with
contradictory conclusions. As stressed in Ref. [69], the pion condensation in neutron star
matter should be revisited using modern experimental data in the pion-nucleon interaction,
as well as most advanced many-body techniques. Concerning the kaon condensation, if
the K− meson develops sufficient attraction in dense matter, it could be energetically more
favorable, above some critical density, to neutralise the positive charge with antikaons
rather than with electrons. Such possibility has been proposed by Kaplan and Nelson [70]
and investigated extensively by several authors [71–81]. All these works agree that the kaon
condensation leads to a softening of the hadronic EOS of neutron star matter. In addition,
Ref. [82] argued that the presence of hyperons may shift the onset of kaon condensation
to very large densities, not expected to be reached in neutron stars. I remark that there
are still uncertainties in the K̄N (K̄ = K−, K0) interaction, especially about the so-called
sigma term (ΣKN), which describes the kaon-nucleon interaction as s-wave. The sigma
term is poorly known and, unfortunately, it turns out to be one of the main ingredients to
determine the onset of kaon condensation in neutron stars. This issue is one of the main
challenges for theoretical investigations. New studies on the kaon-atom system carried out
on at Siddharta experiment [83] will probably improve the status of this research.

The ρ condensation in neutron stars has been considered in Refs. [84,85] assuming
Brown-Rho-type hadronic mass modifications at high density [86]. The Brown-Rho con-
jecture is based on the assumption that hadrons (excluding the pseudo-Goldstone bosons
like pions) experience a mass reduction in nuclear matter, which is proportional to the in-
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medium quark condensate. The idea behind the ρ−-meson condensation is quite similar to
the one that concerns the kaon condensation—at some density, the role played by electrons
should be replaced by ρ−-mesons for generating a charge-neutral system. In Ref. [87], they
discussed the effects of a magnetic field on the ρ-condensation; the authors concluded that
the magnetic field has a relevant effect in triggering such processes.

Note that some studies point out the important role that may be played by the ∆-
baryon in neutron star matter, especially considering the shift they could produce of the
hyperon onset. The ∆-baryon is part of the baryon decuplet and is in a isospin quartet
state; old calculations [88] suggested that ∆-baryons do not appear in cold β-stable neutron
star matter. Recently, the issue of ∆ formation in cold matter has been reconsidered in
several works [89–97], where they have critically discussed the influence and uncertainties
of the meson-baryon couplings in this specific channel. In Ref. [89], according to a NL
RMF model, it was found that the presence of the ∆-baryon shifts the onset of the other
hyperons to a larger density and accordingly gives rise to a very strong softening of the
EOS of the system. The authors concluded that this mechanism may trigger a quark
deconfinement phase transition. The authors of Ref. [95] essentially reached the same
conclusion using a different hadronic model. Finally, in Ref. [96], using the quark meson
coupling model (QMC), it was found that the appearance of ∆ baryons is suppressed by
strongly repulsive many-body forces that modify the internal structure of baryons at large
densities. Unfortunately, just one microscopic calculation [98], based on the microscopic
Brueckner-Hartree-Fock (BHF) approach currently exists on the single particle potential of
∆-baryon in symmetric nuclear matter. In addition, no β-stable calculation in a microscopic
framework has ever been carried out. These kind of calculations, based on a different
many-body approaches, are important to independently test the assumptions made in the
RMF theory and to benchmark such results.

In the Hartree approximation, the equations of motion of the various fields can be
easily obtained starting from a typical Lagrangian density, like (1), and the Euler-Lagrange
equations. In this approximation, all of the fields retain only a density dependence. The
total set of equations is therefore reduced to a set of nonlinear ordinary equations, which
can be solved numerically with a multidimensional Newton-Raphson method. I note,
however, that some works have been successfully considered, such as the inclusion of the
Fock-term in the equations of motion [99–101]. In this case, the solution of the resulting
system of equations is much more complex and requires the solution of several coupled
integral equations. In cold β-stable hyperonic matter for a given baryonic density, the full
set of equations is closed by weak equilibrium relations between the chemical potentials of
hadrons and leptons, and by the charge neutrality condition. A final remark that to make
is that almost all RMF approaches employed in the literature assume a phenomenological
one-meson exchange model in the Lagrangian density. This hypothesis regarding the
form of the interaction is mainly dictated by the request of simplicity rather than a real
physical motivation. Recently, in Ref. [102], they developed an extension of RMF theory
beyond the one-meson exchange approximation, including contributions from two-loop
diagrams arising from the exchange of isoscalar and isovector mesons between nucleons.
In the future, it would be very interesting if similar calculations could be extended to the
hyperonic sector.

2.2. Neutron Star Structure of RMF Models

In this section, I consider representative RMF models described in the previous section,
to show results about the mass-radius relation obtained, solving the Toleman-Oppheneimer-
Volkov (TOV) equations and the corresponding β-stable matter composition. In Figure 1, I
report several mass-radius curves together with the observed pulsars PSR J0348+0432 with
mass 2.01± 0.04 M� [103] and PSR J0740+6620 [104], which are represented by yellow and
purple bands, respectively, indicating the uncertainty on the measurement. Recently, the
mass of PSR J0740+6620 has been updated to 2.08± 0.07 M� in Ref. [105]. Together with the
PSR J1614-2230 with mass 1.97± 0.04 M� [106], these pulsars represent the largest neutron
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star masses ever observed. It is interesting to note that the error bars on these measurement
is very small. This has been possible by the use of the Shapiro delay effect [107]. I note
that other indirect constraints on the maximum mass of neutron stars came very recently
from the analysis of the BNSM event GW170817 [108–110]. Previous works agree that the
maximum mass of neutron stars cannot be larger than ∼2.2 M� in perfect agreement with
direct observations. A very tight constrain on the EOS of neutron star matter would be
provided by the combined mass-radius measurements for a series of neutron stars. Such
very difficult tasks have been considered by several authors [111–114]. In Ref. [113], using
spectroscopic techniques, a constraint of R > 11.1 km was placed on the radius on the
millisecond pulsar PSR J0437–4715 at the 3σ of the confidence level. In Ref. [112], from the
analysis of thermal emissions during thermonuclear X-ray bursts from neutron stars in
low-mass X-ray binaries has been deduced at a range of 11.5 < R/km < 13 for neutron
stars with mass between (1.3–1.8) M�. In Ref. [111], the authors reported a study of
spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear
bursts, or in quiescence. It was concluded that a 1.5 M� neutron star has a radius in the
range 10.1 < R/km < 11.1. Very recently, new constraints on the mass radius relation have
been provided by the Neutron Star Interior Composition Explorer (NICER) experiment.
A constraint on the radius measurement on PSR J0740+6620 has been recently proposed
in Ref. [115], where it was put as a limit of R < 13.7−1.5

+2.6 km, and in Ref. [116], where it
was concluded that R < 12.39−0.98

+1.3 km. The above results derived from two independent
analyses of the X-ray data taken by NICER and the X-ray Multi-Mirror (XMM-Newton)
observatory. Previously, NICER reported estimates of the mass and radius of the isolated
205.53 Hz millisecond pulsar PSR J0030+0451 obtained using a Bayesian inference approach
to analyze its energy-dependent thermal X-ray waveform [117,118]. The best estimates
of mass and radius turned out to be: M = 1.44+0.15

−0.14 M� R = 13.02+1.24
−1.06 km at 68% of the

confidence level. Future more refined measurements of this kind may offer the opportunity
to further constrain the EOS of high density matter.
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Figure 1. Mass-radius relations for several EOSs models discussed in the text. The observed pulsars
PSR J0348+0432 [103] and PSR J0740+6620 [104], which are represented by yellow and purple bands,
respectively, indicate the uncertainty on the measurement. See text for details.

The black continuous line in Figure 1 is the mass-radius relation derived in Ref. [101]
in a relativistic Hartree-Fock (RHF) calculation using the QMC model in the SU(3)-flavour
symmetry. Coupling constants and form factors were taken from the Nijmegen-Soft-Core
2008 interaction. The authors showed that the only hyperon that appears in β-stable
neutron star matter, according to the chosen model setting, is the Ξ− one. This is shown
in the right panel of Figure 2, where the particle composition for this model is reported.
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The maximum mass predicted is consistent with a 2M� neutron star. A similar conclusion
was obtained also by Huber [119], considering a Walecka model in HF approximation and
using hyperon-meson couplings compatible with hypernuclei calculations performed in
Hartree approximations. The authors of Ref. [101], pointed out that the same result cannot
be replicated if the SU(6)-quark symmetry is considered. The mechanism that allows an
EOS hard enough to support a 2M� neutron star is due to several competing effects. The
Fock-term, in general, tends to soften the EOS, except in the channel that takes into account
the tensor coupling. The last one acts in a such way as to shift the hyperon onset to a larger
density. In addition, medium modification of the baryon structure provided by the QMC
model produces a repulsive effect which gets the full stiffer. The red dotted line (FSU2R) in
Figure 1 has been obtained in Ref. [120] using the IUFSU RMF parametrisation including
hyperons. The model does not take into account the effect of the σ∗-meson while strong
repulsion is provided by the effective YY-interaction given by the φ-meson couplings. Note
that one of the first systematic studies on the effect of the variation of hyperon single particle
potential depths in β-stable neutron star matter was carried out in Ref. [121], employing a
standard σωρ Walecka model with the inclusion of the φ-meson repulsion in the hyperonic
sector. In this work, the authors concluded that the main effect on maximum neutron star
mass is not provided by the inclusion of YY repulsion caused by the φ-meson. The blue
long-dashed and green-dashed lines in Figure 1, represent the gravitational mass-radius
relation found in Ref. [122] using the DD2 [40] and DDME2 [39] parametrisations with
hyperonic degrees of freedom. At nucleonic level DD2 and DDME2, the EOSs differ in
the fit performed to fix the parameters of the model. In the DD2 case, parameters were
fixed in order to reproduce the properties of selected double magic atomic nuclei and
additionally requiring that the neutron skin thickness in 208Pb be well reproduced. In the
case of the DDME2 model, the properties of twelve spherical nuclei were used to adjust the
interaction Lagrangian and, in addition, employed some data on the excitation energies of
isoscalar monopole and isovector dipole giant resonances in spherical nuclei. Concerning
the hyperon single particle potentials in symmetric nuclear matter, they were fixed as
follows: UΞ = −17.5 MeV for the DD2 parametrisation and UΞ = −18.78 MeV for the
DDME2 parametrisation; while for both models, it was assumed that UΣ = +30 MeV
and UΛ = −32 MeV. The Ξ-single particle potential depth was fixed as suggested by the
observation of Ξ-hypernuclei [7,44], while the UΛ value was obtained, fixing the single-Λ
hypernuclei separation energies in the s and d shells as detailed in Ref. [51]. These two
EOSs have the nice feature of being consistent with the existing hypernuclear data and
to reproduce the constraints of a two solar mass neutron star. The corresponding particle
composition for the two models is shown in Figure 3. The nucleonic part of the EOS does
not provide significant variations to the concentration of hyperons. Note that, in this case,
there is a richer aboundance of hyperons compared to the RHF calculation by Katayama
and collaborators. This scenario clearly reflects the strong uncertainties on the hypernuclear
interactions, especially at a large baryonic density. The maroon and purple dot-dashed
lines in Figure 1 represent the gravitational mass-radius relation found in Ref. [57] using
the SU(3) chiral model without the inclusion of ∆-isobars (blue line) and with the inclusion
of ∆-isobars (green line). The inclusion of the ∆-degrees of freedom makes the EOS softer,
which results in a maximum mass below the 2M� limit. The particle composition for the
model without ∆’s is shown in the left panel of Figure 2. Among the considered EOSs,
those based on the Chiral SU(3) model give rise to radii larger than those based on the
density-dependent models DD2Y and DDMEY, the RHF by Katayama, and the FSU2H
model. All models considered seem more consistent with the radii measurements reported
by NICER in Ref. [116]. The formation of hyperons leads to an EOS softer than that with
a a pure nucleonic content. Consequently, hyperonic neutron stars have smaller radii
compared to the nucleonic ones. This discussion shows that more precise mass-radius
measurements should be provided in order to get more stringent constraints on the EOS of
matter at large densities and, consequently, on the neutron star structure.
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Figure 2. Particle composition (Yi) as a function of the baryonic density for the Chiral SU(3) model ,
adapt from Ref. [57], (left panel) and RHF model (right panel) by Katayama (adapt from Ref. [101]).
See text for details.
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Figure 3. Particle composition (Yi) as a function of the baryonic density of DD2Y model [122] (left
panel) and DD2MEY model [122] (right panel). See text for details.

Finally, we report, for comparison, the mass-radius relation for the old GM3Y model
proposed by Glendenning [41] in order to reconcile the canonical value of a 1.4M� neutron
star with single-Λ hypernuclei separation energy. This last EOS is clearly inconsistent with
recent astrophysical observations; however, it is worth analysing it in order to understand
the missing physical mechanism responsible for the stiffening of the EOS at a large baryonic
density. Note that, in all other EOSs considered, one of the key ingredients to get repulsion
at a large density is the YY repulsion produced by the exchange of the φ-vector meson. This
mechanism does not alter the onset of hyperons in β-stable hadronic matter because the φ-
meson does not couple with nucleons. The φ-meson effect was not taken into account in the
GM3Y model, which indeed resulted in a soft EOS. I want to stress that some authors also
suggest other mechanisms to provide stiffening to the hyperonic matter EOS. In Ref. [123],
they proposed a study of hypernuclear matter within a relativistic density functional
theory with density-dependent couplings. The hyperon-scalar meson couplings were
obtained by allowing for mixing and breaking of SU(6) symmetry keeping the nucleonic
coupling constants fixed. The authors showed that in a restricted parameter space of
the coupling constants, massive neutron stars with mass ∼2.25M� could be obtained.
Maslov [124] proposed an RMF model where both baryon masses and coupling constants
carry a σ-meson dependence. The couplings of hyperons with vector-mesons were fixed by
SU(6)-symmetry. The parameters of the model allow for reproduced constraints from both
heavy-ion-collisions and astrophysics. The authors pointed out that the hyperon puzzle
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can be solved in this framework if a dependence of the φ-meson mass on the σ field is
introduced. This last assumption gives rise to an increased stiffening of the EOS. Finally,
Bednarek [125] proposed inclusion in the Lagrangian density quartic terms involving the φ-,
ρ-, and ω-meson fields, plus mixed terms of the form φ2ω2, φ2ρ2, and ρ2ω2, getting an EOS
able to support a 2M� neutron star. A similar approach was also used by Taurines [126]
and Gomes [127], who reached the same conclusion.

The RMF formalism recently discussed for cold hadronic matter has been extended at
finite temperatures in several works [128–132]. Finite temperature EOSs are fundamental
in order to study the properties of proto-neutron stars and investigate the evolution of
dynamical systems like BNSM and SNe. I briefly discuss these issues in the last part of
this review.

I conclude this discussion on the EOSs based on RMF models by making some general
comments on the EOS of hyperonic matter based on this approach. All the EOSs proposed
are able to explain the existence of hyperonic massive neutron stars, and include some
specific mechanisms to provide repulsion at large baryonic density. RMF models are
sufficiently flexible to take care of these essential ingredients in a rather easy way. In
the next section, I will take up microscopic approaches, which are much more complex
to implement from a numerical point of view. However, I want to stress that similar
repulsive mechanisms required by RMF models to get the EOS of hyperonic matter stiff,
are also present in microscopic frameworks and have their origin in the many-body forces
between nucleons and hyperons. A tedious technical complication concerning microscopic
approaches is that many-body forces are quite difficult to implement. Nonetheless, they
represent an essential ingredient that naturally emerges due to the very same nature of
baryons. The latter are not point-like particles, and their internal structure gets modified
when baryons are near each other. The modification of the internal structure of baryons,
from a classical point of view, produces some polarisation effects, which are similar to
those that originate in a three-body system earth-sun-satellite. Due to the action of the
gravitational force and the finite size of the earth and sun, matter distribution inside the
earth loses its spherical symmetry, giving rise to tidal forces. A satellite orbiting around the
earth is consequently affected by these tidal forces; the latter would not be present if the
size of the earth and sun could be considered point-like. This is an example of a three-body
force realised in classical physics.

2.3. Microscopic Approaches

Microscopic approaches are based on a non-relativistic framework and the interaction
between particles is described by a potential. One of the main difference between phe-
nomenological and microscopic approaches is that in the second ones, the interaction is
fixed forever from the very beginning of each calculation. Among the microscopic many-
body methods, we can distinguish between diagrammatic methods like: Brueckner-Hartree-
Fock [133], Many-body perturbation theory [134], Self-Consistent-Green-Function [135,136],
and exact approaches like: Diffusion Monte Carlo [137], Green function Monte Carlo
(GFMC) [138], and Auxiliary-Field-Monte Carlo (AFDMC) [139]. According to the diagram-
matic methods, the thermodynamical properties of the considered system are calculated
perturbatively as the sum of specific contributions that can be represented as diagrams and
can be evaluated according to well defined rules. Exact approaches are, in principle, able
to solve the many-body problem in an exact way.

Currently, to the best of my knowledge, only the BHF and AFDMC have been extended
to include hyperonic degrees of freedom. I now briefly review the main aspects of both
methods. Additional details can be found in the quoted literature.

The main idea behind the BHF approach is that the repulsive hard core, present in the
baryon-baryon interaction, does not allow a conventional perturbation theory to calculate
the energy per particle of the system. The BHF approach designs a method to get the matrix
elements of the interaction of such a value that the perturbation theory converges quite
quickly. The bare baryon-baryon interaction is replaced by the so called G-matrix, which
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describe the interaction between two baryons in the presence of a surrounding medium.
The G-matrices are obtained by solving the coupled-channel Bethe–Goldstone equation,
written schematically as:

G(ω)B1B2,B3B4 = VB1B2,B3B4 + ∑
Bi Bj

VB1B2,Bi Bj

QBi Bj

ω− EBi − EBj + iη
G(ω)Bi Bj ,B3B4 , (10)

where the first (last) two subindices indicate the initial (final) two-baryon states compatible
with a given value S of the strangeness, namely nucleon-nucleon (NN) for S = 0 and
nucleon-hyperon (NY) for S = −1; VB1B2,B3B4 is the bare baryon-baryon interaction; QBi Bj is
the Pauli operator, that prevents the intermediate baryons Bi and Bj from being scattered to
states below their respective Fermi momenta; ω is the starting energy, which corresponds
to the sum of the nonrelativistic single-particle energies of the interacting baryons.

The single-particle energy of a baryon Bi is given by:

EBi (
~k) = MBi +

h̄2k2

2MBi

+ Re[UBi (
~k)] . (11)

where MBi denotes the rest mass of the baryon, and the single-particle potential UBi
represents the average field “felt” by the baryon owing to its interaction with the other
baryons of the medium. In the BHF approximation, UBi is calculated through the “on-shell
energy” G-matrix, and is given by:

UBi (
~k) = ∑

Bj

∑
~k′

nBj(|~k′|)〈~k~k′|G(EBi (
~k) + EBj(

~k′))Bi Bj ,Bi Bj |~k~k′〉A , (12)

where nBj(|~k|) is the occupation number of the species Bj, and the index A indicates that
the matrix elements are properly antisymmetrised when baryons Bi and Bj belong to the
same isomultiplet. I note that in order to determine the single-particle potentials when
solving the Bethe–Goldstone equation, two possibilities are usually adopted. The first one
is the so-called continuous prescription, where the single particle potential is assumed
to be continuous above the Fermi momentum. The second possibility is to adopt the
so-called gap choice: in this case the single particle potential is set to zero above the
Fermi momentum.

It has been shown by the authors of Ref. [140] that the contribution to the energy
per particle from the three-hole line diagrams, which include correlations between three
particle, is minimised employing the continuous prescription. The inclusion of three-
baryon forces in the framework of the BHF approach follows a strategy implemented in
the case of pure nuclear matter calculations where a density-dependent NN interaction
is obtained from the original NNN force by averaging over the coordinates of one of the
nucleons [141,142]. In the case of a generic BBB interaction, such an average is performed
with respect to one of the baryons. The exact treatment of three-baryon forces in the BHF
approach would require the solution of several coupled Bethe-Faddev equations in the
medium. This task is currently too difficult to deal with. The Bethe-Goldstone equation
is usually solved numerically using the inversion matrix technique [143] after a partial
waves expansion. I note, however, that Ref. [144] proposed a method to solve Equation (10)
without partial wave expansion.

I now turn to a discussion on the DMC method and one of its extensions, the AFDMC,
that is suitable for applications in nuclear systems. The general idea of the DMC method
is to solve, in a stochastic way, the time-dependent many-body Schrödinger equation. A
formal solution of this equation in the imaginary time (it = τ) is given by:

Ψ(R, τ) =
∫

G(R, R′, τ)Ψ(R′, 0)dR′ , (13)
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where G(R, R′, τ) is the Green’s function of the operator H + ∂
∂τ that can be expanded as:

G(R, R′, τ) =< R|exp(−(H − E0)τ)|R′ >= ∑
n

exp(−(En − ET)τ)φ
∗
n(R)φ∗n(R′) . (14)

{φn} is a complete set of the eigenvectors of H, while the global coordinate R specifies a
walker, namely the 3N spatial coordinates of the particles. Now, if we consider a generic
trial wave function ΨT as linear combination of {φn}, the imaginary time evolution is
given by:

Ψ(R, τ) = exp(−(H − E0)τ)Ψ(R, 0) , (15)

where E0 is the exact ground state. If Ψ(R, τ) is not orthogonal to Ψ(R, 0), for large τ, it
converges to the ground state Ψ0 of H. The evolution can then be done by solving the
integral of Equation (13) in the limit of infinite imaginary time. For a non-interacting system,
it can be shown that the Green’s function is a simple Gaussian with variance proportional
to τ. Such a Gaussian represents a Brownian diffusion of a set of particles with a dynamic
governed by random collisions. In the case of a generic interaction, several complications
arise because, in general, the kinetic and interaction operators do not commute. However,
by using the Trotter formula of order (∆τ)3, valid in the limit ∆τ → 0, the Green’s function
can be broken up into the product of a diffusion term containing the interaction, and a free
Green function. The resulting integral can be finally worked out in a Monte Carlo way by
propagating the particle coordinates by sampling a path according to the diffusion term in
the integral. Several aspects about the sampling of the states are important for the correct
implementation of DMC. The interested reader can find in the quoted literature, further
details about these issues.

The AFDMC is an extension of the diffusion DMC method to deal with interactions
with spin-isospin dependence. The main issue against the direct implementation of the
DMC to nuclear systems is that the nuclear Hamiltonian contains terms that are quadratic
in the spin-isospin operator. This prevents solving the total wave function as a product of
single-particle spin-isospin states, which is essential for the implementation of the method.
The idea of AFDMC is to rewrite the Green’s function in such a way as to transform the
quadratic dependence on spin and isospin operators into a linear dependence by means
of the Hubbard-Stratonovich transformation. The direct implementation of the GFMC
is not feasible for an infinite system due to the unfavourable scaling behaviour of the
computational time. In contrast, in the AFDMC approach, the propagator is rewritten by
applying the Hubbard-Stratonovich transformation using auxiliary fields, which changes
the scaling behaviour favourably at the cost of additional integrations over auxiliary fields.

Considering the trial wave function, a simple choice for Ψ(R, 0) is given by a Slater
Determinant of one-body space-spin orbitals multiplied by a purely central Jastrow correla-
tion operator:

Ψ(R, 0) = ∏
i≤j

f (rij)A[∏
i

φ(ri)|si >] (16)

In quantum Monte Carlo simulations for light nuclei, a more realistic correlation
operator, that includes spin-dependent operators, is generally used. Usually, the operators
employed are those present in the two- and three-body potential in the Hamiltonian. This
requires, however, a complete sum over the spin-isospin degrees of freedom. To avoid an
exponential growth with N in the calculation time, a sample of the spin-isospin degrees
of freedom is usually performed, rather than a complete sum. In order to do this, the
imaginary time propagator exp(−(H − E0)τ) is applied to the walkers and a sample on
the final configuration is carried out. It is, therefore, necessary to provide an efficient
method for sampling the states produced when they are operated on by the imaginary time
propagator.

the walker remains the same in this limit. The fermion sign problem, which affects
fermionic systems on the lattice, in the considered case, becomes a phase problem as the
overlap of the walkers with the complex trial function. In order to deal with this, the path



Universe 2021, 7, 408 14 of 33

of the walkers is constrained to regions where the real part of the overlap with the trial
function is positive [145]. For spin independent potentials, this reduces to the so called
fixed-node approximation [146]. For more details and a recent review on the applications
of AFDMC to nuclear systems, see Refs. [147,148]. The AFDMC has been extended to finite
and infinite systems, which includes hyperons in Ref. [149]. Despite its complexity, the
AFDMC method has been successfully used to describe finite nuclear systems [150,151],
as well as infinite nuclear matter [152,153]. A benchmark study between the BHF and the
AFDMC approaches for pure neutron matter has been reported in Ref. [154].

2.4. The NY and YY Interactions

The NY and YY interactions have been developed mainly by the Nijmegen and Jülich
groups. The first potentials have been first developed by the Nijmegen group and are
known as hard core potentials [155,156]. Later, in 1989, the two groups constructed new
soft core potentials, that included both the NΛ and NΣ channels, using the available
scattering data in the NY sector. The two potentials are based on the meson-exchange
model. Specifically, the Nijmegen Soft Core 1989 (NSC89) [157] potential takes into account
the one meson exchange process considering the following exchanged mesons: π, η, η′, ρ,
ω, φ, ε, and S∗ Regge trajectories. In addition, the J = 0 contributions from the tensor f , f ′,
A2, and pomeron exchange are also considered. The meson-baryon coupling constants are
calculated via SU(3) symmetry, using the coupling constants of the NN analysis as input.
The interactions described by this potential are limited to the NΛ and NΣ channels. The
potential is regularised using a Gaussian cutoff in order to assure a regular behaviour at
short distances.

The potential provided by the Jülich group in 1989 (Ju89) [158] differs from the NSC89
by also considering the two-meson exchange processes. The mesons included in the
potential are: π, ρ, K, K∗. All the possible combinations of two meson exchange diagrams
built using the previous mesons are considered. In addition, the excitations of ∆ and Σ∗

baryons in the NY-meson vertices of the various Feynman diagrams are also included.
Coupling constants and cutoffs of this potential involving N and ∆ baryons, are taken from
the Bonn NN potential [159], while the couplings for hyperons are related to the nucleonic
ones using the SU(6) symmetry. The free parameters of the Ju89 potential are the values of
cutoff at vertices involving strange particles. Such freedom is fixed using the available data
scattering. Later, in 2005, a new version of this NY potential was proposed [160]. In this
potential, the various contributions to the NY scattering amplitude are restricted to those
of the baryonic octect.

The first evolution of the NSC89 potential is represented by the Nijmegen Soft Core
1997 (NSC97) [161], which also includes the YY interaction in channels with strangeness
S = −2,−3,−4 of the baryonic octect. A new version of the NSC97 potential was the
Extended Soft Core 2008 (ESC08) [162–164]. In this potential, the two-meson exchange
process is implemented. The ESC models describe the NN, NY, and YY interactions in
a unified way using broken flavour SU(3) symmetry. The NSC97 and ESC08 potentials
are characterised by different choices of the magnetic vector F/(F + D) ratio, αm

v , which
produces different scattering lengths in the NΛ and NΣ channels. This freedom allows a
description in a similar way to the NY scattering data. The latest versions of the baryon-
baryon potentials by the Nijmegen group are the extended-soft-core baryon-baryon models
(ESC16) [165,166]. The main new features of these potentials are the inclusion of the axial-
vector meson potentials, a zero in the scalar- and axial-vector meson form factors, and a
treatment of the strange scalar κ-meson within the scheme of the Gell-Mann-Okubo mass
relations resulting from considering the κ-meson as a broad one like the ρ and ε mesons.
In contrast to ESC08, in the ESC16, potential is not considered a medium strong flavor-
symmetry breaking of the coupling constants. In addition, the multiple-gluon exchanges
are added contributions, due to the odd number of gluon exchanges. Finally, a novel
contribution is represented by the inclusion of structural effects, due to the quark core of
the baryons.
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A very promising approach to describe the NY and YY interaction is provided by
Chiral Effective Field Theory (ChEFT). This theory derives a generic BB interaction and,
more generally, many-body baryon interactions according to a well defined scheme. ChEFT
for low-energy quantum chromodynamics (QCD) opened a new and systematic way
to describe the interaction between baryons. In 1960, following the ideas developed by
Schwinger [167], Gell-Mann and Levy [168] proposed a linear realisation of chiral symmetry.
This model was elaborated to solve an issue related to the the pion-nucleon scattering
length, which came out two orders of magnitude too large when the pseudo-scalar pion-
nucleon interaction was employed. In the linear sigma model, the problem was fixed by
including the contributions of a fictitious σ-meson. Such a solution was not, however, very
satisfying, due to the reliance on cancellations of large terms and the fictitious character
of the σ-meson. Later, inspired by a suggestion of Schwinger [169], Weinberg worked
out a general theory of non-linear realisations of chiral SU(2)× SU(2) [170,171], which
was soon generalised to arbitrary groups in the papers of Callan, Coleman, Wess, and
Zumino [172,173]. The considerable advantage of using ChEFT lies in the fact that two-
body, as well as many-body, baryonic potentials can be calculated order by order, according
to a well defined scheme based on a low-energy effective QCD Lagrangian, which retains
the main symmetries of QCD and the approximate chiral symmetry. This ChEFT is
based on power counting in the ratio q/Λχ, where q denotes a low-energy scale identified
with the magnitude of the three-momenta of the external baryon; whereas, Λχ ∼ 1 GeV
denotes the chiral symmetry breaking scale. In the pure nucleonic sector, single-pion
exchange and multi-pion exchange give the long- and intermediate-range part of the
nuclear interaction; whereas, the short-range components are included via contact terms.
Within this approach, the details of the QCD dynamics are contained in the parameters, the
so called low-energy constants (LECs), which are fixed by low-energy experimental data.
Note that the relativistic treatment of baryons in ChEFT leads to some problems because
the time-derivative of a relativistic baryon field generates a factor E ∼ M (M being the
baryon mass), which is not small compared to the chiral-symmetry breaking scale (indeed,
M/Λχ ∼ 1). In addition, the baryon mass does not vanish in the chiral limit. A solution
to this problem has been proposed in Refs. [174,175], where the so called Heavy-Baryon
chiral EFT has been developed. The basic idea is to treat the baryons as heavy static
sources in such a way that the momentum transfer between baryons by pion exchange
is small compared to the baryon mass. The expansion is, thus, carried out in terms of
these small momenta over the baryon mass. For further details see the quoted references.
For a review on these issues see, for instance, Ref. [176]. It is important to remark that
although there is a vast number of NN and NNN interactions derived so far in ChPT,
NY, and YY interactions, they have been constructed only by the Jülich–Bonn–Munich
group within this framework [177–180]; it was developed first by the NY interaction at the
leading order (LO) [177], and next-to-leading order (NLO) [178]. Then, the YY interaction
was constructed at NLO [180]. Recently, the NY potential at NLO, reported in Ref. [178],
has been revised by using a different strategy to fit the LECs appearing at this order of
ChEFT [179]. Specifically, in the potential reported in Ref. [179], some of the S-wave LECs
were inferred from the NN sector via the underlying SU(3) flavour symmetry; in this
way, only a reduced number of LECs were needed to be determined from the empirical
information in the NY sector.

A totally different (and in a way, more fundamental) method to derive the baryon-
baryon interaction has been recently provided by lattice QCD calculations performed by
the HALQCD and NPLQCD collaborations. The two groups adopt different approaches to
the problem. The HALQCD collaboration [181] tries to extract the various baryon-baryon
interactions from the Nambu-Bethe-Salpeter wave function calculated on the lattice in
terms of the derivative expansion, which is shown to reproduce the scattering phase shifts
correctly below the inelastic threshold. Using this definition, it is possible to formulate
a method to extract the potential in lattice QCD. Results obtained in the three-flavour
lattice [182–184] for the NN potential show that they reproduce the qualitative features
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of the phenomenological NN potentials, namely, attractive wells at long and medium
distances, central repulsive cores at short distances, and strong tensor forces with a negative
sign. At long distances, it was observed that the ranges of the tail structures in the central
and tensor forces become longer at lighter quark masses. At short distances, the repulsive
cores in the central forces are found to be enhanced at lighter quark masses. This could be
explained by the short-range repulsion due to the one-gluon-exchange in the quark model,
whose strength is proportional to the inverse of the constituent quark mass. Such studies
extended to the case of hyperon forces with the same lattice setup reveal that the nature of
the repulsive core is well-described by the quark Pauli blocking effect together with the
one-gluon-exchange effect [182,183,185–188].

In some recent works [189,190], the HALQCD collaboration reported the study of ΛΛ,
NΞ, and NΩ systems near the physical mass of the pion (mπ ∼ 146 MeV) and the kaon
(mK ∼ 525 MeV). For further details, and a recent review about the results and methods of
the HALQCD collaboration, see Ref. [191].

The strategy of the NPLQCD collaboration is to numerically evaluate path integrals
representing Euclidean correlation functions using Monte Carlo sampling methods. In
recent work [192], the NPLQCD collaboration performed a study of BB scattering, including
baryons of the octect, up to a channel with strangeness S = −4. In Ref. [192], they adopted
values of pion and kaon masses of 450 and 596 MeV, respectively. At the unphysical
pion mass, the authors found bound BB systems, but in the spin-triplet ΣN and ΞΞ
channels. In addition, using results from some previous studies at larger pion masses
mπ ∼ 806 MeV [193], the authors performed a naive extrapolation of the results of the
binding energies of the two-baryon systems at the physical point. In this way, a comparison
with experimental values and phenomenological predictions was possible. The results
for ground-state energies of two-nucleon systems were found to be compatible with
the experimental values. Furthermore, stronger evidence for the existence of bound
states in the ΞΞ (1S0) and NΞ (3S1) channels was observed. Finally, the determination
of scattering parameters at low energies of two-baryon systems allow constraints on the
LO and NLO interactions of a pionless EFT, for both the SU(3) flavor-symmetric and
symmetry-breaking interactions.

In conclusion, lattice approaches are very promising in the attempt to derive the inter-
action between baryons from a more fundamental point of view. In addition, they provide
a powerful tool to calculate nuclear and hypernuclear observables using a unique approach
comparing those usually employed for studies in nuclear and hypernuclear physics.

2.5. Results from Microscopic Calculations

I now discuss the main works where the microscopic BHF and AFDMC approaches
have been used to describe infinite hyperonic matter. A study of the onset of the Λ and Σ
hyperons in β-stable neutron star matter was first proposed in Ref. [194] in the framework
of a BHF approach. The NN force employed was the AV14 [195] potential, supplemented by
a density-dependent-interaction derived by the UIX three-nucleon force [196]; concerning
the NY interaction, where the NSC89 potential was adopted. The conclusion of this
study was that hyperons are expected to appear at 2–3 times normal saturation density in
cold β-stable neutron star matter. In Ref. [197], they carried out a study of hypernuclear
matter based on the NN, NY, and YY interactions provided by the NSC97 interaction.
The first EOS calculation of β-stable hyperonic matter based on the BHF approach was
performed in Refs. [198,199]. These works concluded that the appearance of hyperons
strongly softens the EOS of neutron star matter giving rise to maximum masses of the order
of 1.3M�. Some subsequent studies [200,201] used some different updated versions of the
NY and YY interactions without changing the previous conclusion. In Ref. [202], Djapo and
collaborators reported several BHF calculations based on a large variety of NY interactions
provided by the Nijmegen (NSC89, NSC97) and Jülich (Ju89, Ju04) groups supplemented
by a phenomenological three-nucleon force, and using the Vlow−k technique to reduce the
high-momentum component of the baryon-baryon interaction. Furthermore, in this case
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very low maximum neutron star masses were found. This scenario was well summarized
in Ref. [203], where several hyperonic EOSs based on different combinations of NY, NN,
and NNN interactions were compared. The authors of Ref. [203], concluded that some new
mechanism should be considered in order to solve the neutron star hyperon puzzle.

This quite intricate scenario, has been improved in the last years when, following
an old idea by Takatsuka and collaborators [204,205], some authors tried to incorporate
the effects of many-body forces between nucleons and hyperons. Note that such baryonic
many-body forces can play an important role is a quite natural one; keeping in mind the
studies carried out in pure nucleonic systems (both finite and infinite). It is well known
that it is not possible to correctly reproduce binding energies of finite nuclei or good
nuclear matter at saturation properties unless to introduce a three-nucleon force [206,207].
From a microscopic point of view, such many-body forces originate from the fact that
nucleons have a quite complicated quark structure, which strongly changes when nucleons
are near each other. Recently, a consistent theory of three-baryon forces in SU(3)-flavour
symmetry, involving the octet baryons has been successfully developed in the framework
of ChEFT [208]. Note that the ChEFT of many-body nucleonic forces was discussed earlier
in Ref. [209]. Later works derived explicit expressions of the many-body nuclear force at
various orders of ChEFT [210–212].

A preliminary study on the impact of hyperonic three-body forces on neutron star
matter was proposed in Ref. [213], where they developed a model based on a microscopic
BHF approach of hyperonic matter employing the Argonne V18 [214] NN force and the
Nijmegen NY soft-core NSC89 force, supplemented by some phenomenological density-
dependent contact terms, to set a numerical lower and upper limit to the effect of hyperonic
three-body forces on the maximum mass of neutron stars. Assuming that the strength
of these forces is either smaller or as large as the pure nucleonic ones, the results of this
work showed that, although hyperonic three-body-forces can reconcile the maximum
mass predicted by microscopic approaches with the canonical value of 1.4–1.5M�, they are
unable to provide the repulsion needed to make the predicted maximum masses compatible
with the recent observations of massive neutron stars.

In Ref. [215], it was reported that a Monte Carlo calculation of neutron matter with
nonvanishing concentrations of Λ-hyperons including neutron-neutron (nn), neutron-
neutron-neutron (nnn), neutron-Λ (nΛ), and neutron-neutron-Λ (nnΛ) interactions. Specif-
ically, in order to describe the nn and nnn interactions, the authors employed the AV6’
and UIX potentials. Concerning the nΛ interaction, the authors used a phenomenological
potential fitted to the available NΛ scattering data, while they considered a purely central
repulsive nnΛ force of the same form of the one present in the UIX interaction. The authors
of Ref. [215] proposed two parametrisations (hereafter I and II) for the nnΛ force. Such
parametrisations were developed in Ref. [149], with the aim of reproducing the separation
energies of several single-Λ hypernuclei. The resulting EOSs obtained using the settings
described above are reported in the right panel of Figure 4. The green line refers to the
pure neutron matter system, while the red and blue dashed curves correspond to the
EOSs obtained, employing the nΛ potential alone, and the full nΛ+nnΛ (I) interaction,
respectively. The onset of the Λ hyperon is shown in the left panel of the same figure for
both calculations. The blue lines in the left panel of Figure 4 refer to the case where the
full nΛ+nnΛ (I) interaction was adopted. Using parametrisation II (black dots in the right
panel of Figure 4), the authors found that the effect of the hyperonic three-body force is
so large that Λ-hyperons do not appear in neutron matter up to a density corresponding
to the central one, of a two-solar-mass neutron star. According to such calculations, this
rather simplified version of the hyperon puzzle is solved by the fact that hyperons are not
formed in the core of neutron stars due to the very strong repulsive effect of three-baryon
forces. According to parametrisation I (blue line in Figure 5), hyperons appear around 2n0,
giving rise to a very soft EOS and to a quite low maximum mass of the order ∼1.34M�,
not consistent with observations. A similar result was also obtained using of the sole nΛ
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potential, where the resulting maximum neutron star mass turned out to be below 1M�
(red line in Figure 5).
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Figure 4. Neutron star matter compositions (left panel) and corresponding EOSs (right panel) as a
function of the baryonic density, for the AFDMC calculations proposed (adapt from Ref. [215]). See
text for details.
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In Ref. [215] was reported a Monte Carlo calculation of neutron matter with nonva-
nishing concentrations of Λ-hyperons including neutron-neutron (nn), neutron-neutron-
neutron (nnn), neutron-Λ (nΛ) and neutron-neutron-Λ (nnΛ) interactions. Specifically
in order to describe the nn and the nnn interactions the authors employed the AV6’ and
the UIX potentials. Concerning the nΛ interaction, the authors used a phenomenological
potential fitted to the available NΛ scattering data, while they considered a purely central
repulsive nnΛ force of the same form of the one present in the UIX interaction. The authors
of Ref. [215] proposed two parametrizations (hereafter I and II) for the nnΛ force. Such
parametrizations were developed in Ref. [149] with the aim of reproducing the separation
energies of several single-Λ hypernuclei. The resulting EOSs obtained using the setting
described above are reported in the right panel of Fig. 4. The green line refers to the pure
neutron matter system while the red and blue dashed curves correspond to the EOSs
obtained employing the nΛ potential alone and the full nΛ+nnΛ (I) interaction respectively.
The onset of the Λ hyperon is shown in the left panel of the same figure for both the
calculations. Blue lines in the left panel of Fig. 4 refer to the case where the full nΛ+nnΛ
(I) interaction was adopted. Using parametrization II (black dots in the right panel of
Fig. 4) the authors found that the effect of the hyperonic three-body force is so large that
Λ-hyperons do not appear in neutron matter up to a density corresponding to the central
one of a two solar mass neutron star. According to such calculation, this rather simplified
version of the hyperon puzzle is solved by the fact that hyperons are not formed in the core
of neutron stars due to the very strong repulsive effect of three-baryon forces. According to
parametrization I (blue line in Fig. 5), hyperons appear around 2 n0 giving rise to a very
soft EOS and to a quite low maximum mass of the order ∼ 1.34M�, not consistent with
observations. A similar result was also obtained using of the sole nΛ potential where the
resulting maximum neutron star mass turned out to be below 1 M� (red line in Fig. 5).

Some years later in Ref. [216] was performed a new calculation in the framework
of non-relativistic BHF approach using realistic NN, NNN interactions derived in chiral
effective field theory (χEFT), supplemented by NΛ and NNΛ interactions. Specifically, for
the two-body NN interaction was used the local chiral potential presented in Ref. [217] at
next-to-next-to-next-to-leading order (N3LO) of ChEFT which includes the ∆(1232) isobar
in the intermediate states of the NN scattering. Regarding the NNN force, the authors
made use of the potential derived in Ref. [218] at the next-to-next-to-leading-order (N2LO)
in the local version reported in Ref. [219,220]. I note that this NNN force takes into account
also of the possibility of the ∆-excitation at the Nπ vertex. The low energy constants of

Figure 5. Mass-radius relations according to the AFDMC calculations proposed (adapt from
Ref. [215]). The observed pulsars PSR J0348+0432 [103] and PSR J0740+6620 citecro19, which are
represented by yellow and purple bands, respectively, indicate the uncertainty on the measurement.
See text for details.

Some years later in Ref. [216], they performed a new calculation in the framework of
non-relativistic BHF approaches using realistic NN and NNN interactions derived in chiral
effective field theory (χEFT), supplemented by NΛ and NNΛ interactions. Specifically, the
two-body NN interaction was used for the local chiral potential presented in Ref. [217] at
the next-to-next-to-next-to-leading order (N3LO) of ChEFT, which includes the ∆(1232)
isobar in the intermediate states of the NN scattering. Regarding the NNN force, the
authors made use of the potential derived in Ref. [210] at the next-to-next-to-leading-order
(N2LO) in the local version reported in Ref. [218,219]. Note that this NNN force takes into
account the possibility of the ∆-excitation at the Nπ vertex. The low energy constants
of the NNN interaction were fixed as discussed in Ref. [219], where it was shown that a
good description of nuclear matter can be achieved using that setting. These interactions



Universe 2021, 7, 408 19 of 33

have been employed in Ref. [220] to calculate the β-stable EOS of nuclear matter and the
structure of neutron stars. It was found that a neutron star maximum mass of 2.07M�,
in agreement with the largest measured neutron star masses. The resulting EOS has also
been recently used in Ref. [221] to simulate the merging of two equal mass neutron stars.
This EOS has been extended to finite temperatures in Ref. [222]; the finite temperature
version of this EOS has been employed in Ref. [223] for the study of several asymmetric
mass simulations of BNSs.

Concerning the NY interaction, the authors of Ref. [216], employed two versions (a
and e) of the NΛ NSC97 meson-exchange interaction. Finally, for the NNΛ force, the
authors adopted the NNΛ three-baryon force recently derived by the Jülich–Bonn–Munich
group in the framework of χEFT [208]. In Ref. [216], they provided two parametrizations
of this NNΛ interaction: NNΛ1 and NNΛ2; set to reproduce the depth of the Λ single
particle potential in symmetric nuclear matter at saturation density, varying the value of
the only low energy constant present at this order in the so called decuplet saturation
approximation. According to Ref. [42], the authors adopted: UΛ = −28, −30 MeV.

The composition of β-stable neutron star matter according to this model is shown
in the left panel of Figure 6 for the models NSC97a and NSC97a+ NNΛ1. Qualitatively
similar results were obtained by employing the other NY and NNY interactions. The
continuous lines show the results when only NΛ, in addition to NN and NNN forces, are
taken into account, whereas the dashed ones also include the contribution of the NNΛ
force. The effect of the latter is twofold. First, it shifts the onset of the Λ-hyperon to
slightly larger baryonic densities. The second effect, may be the most important one, is that
the NNΛ force strongly reduces the abundance of Λ particles at large baryonic densities
leading to a stiffening of the EOS comparing to the case in which the NNΛ force is not
included. This can be appreciated in the right panel of Figure 6, where the total pressure
P is reported as a function of the total energy density ε. Consequently, the mass of the
neutron star, and in particular its maximum value, increases. This is shown in Figure 7,
where the mass-radius relation is reported for the models NSC97a and NSC97e, with
and without the inclusion of the NNΛ force. The black line corresponds to the case of
pure nucleonic matter included as reference. It is remarkable that the maximum masses
obtained, including the NNΛ force are compatible with the largest measured masses
of ∼2M� [103,104,106]. An additional interesting feature found in Ref. [216] is that the
overbiding of the Λ separation energies in heavy hypernuclei found using the sole NΛ
interaction in microscopic calculations [224,225], is strongly reduced, adding the NNΛ1 or
the NNΛ2 interactions. These results are consistent with the findings of Refs. [149,215].
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The only calculations employing chiral NY interactions in infinite hyperonic matter
have been reported in Refs. [226,227], using the BHF approach, and considering the case
of nonvanishing Λ particle concentrations in symmetric nuclear matter and pure neutron
matter. These works agree with the conclusion of Refs. [215,216] that the NNΛ interac-
tion becomes very repulsive at large baryonic densities, and that this effect provides an
important stiffening on the EOS of hyperonic matter at least in the restricted scenario con-
sidered. The single particle potentials of Λ and Σ−,0,+ hyperons have also been evaluated
in Refs. [228,229] using the chiral NLO NY interaction derived in Ref. [178], and including
the effect of a NNY interaction fixed using the decuplet saturation. In Ref. [229], they
pointed out the importance of including NNΛ-NNΣ transition channels in order to get a
good description of Λ-single particle potential in symmetric nuclear matter. Comparing to
NSC97 and Ju04 NY potentials, the interactions derived at NLO in ChEFT have a unique
feature to predict a repulsive value of the potential depth in symmetric nuclear matter
for the Σ− hyperon. This result is more consistent with the present experimental scenario.
Note, however, that the most recent versions of the NY potential of the Nijmegen group,
namely the ESC08 and ESC16, show a similar feature.

In the framework of microscopic approaches, it should be mentioned that the results
of Ref. [230], again based on the BHF approach, and employing the NSC08 NN and
NY interactions supplemented by a phenomenological gaussian repulsive three-baryon
force arising from a model of multi-pomeron-exchange (MPP). Such force was included
universally in all BB channels keeping the same form and strength. The strengths of MPPs
were adjusted in order to reproduce the experimental data in 17O +17 O scattering [230].
At a microscopic level, this mechanism mimics a multi-gluon interaction. The authors of
Ref. [230] found that the inclusion of this repulsion provides the required stiffness to the
EOS necessary to get a maximum neutron star mass compatible with two solar masses.
The same conclusion was also obtained in Ref. [231], where it has been reported that a
variational calculation of the hyperonic matter EOS employing the same phenomenological
three-body force adopted in Ref. [230]. Concerning the nucleonic sector, the authors used
the AV18+UIX interaction. Note that in the calculations reported in Refs. [230,231], besides
the Λ-hyperon, the Σ− hyperon was also included.

According to these calculations, hyperons appear at a density around 2n0 when the
universal baryonic three-body force is taken into account; however, the total hyperon
fraction remains low enough to keep the EOS stiff. This result is consistent with the
findings of Ref. [216]. According to Ref. [215], the hyperon puzzle can be solved in a
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microscopic framework only if hyperons never appear in neutron star matter. Other
calculations, together with a deeper understanding of BB and hyperonic three-body-forces
are clearly needed to better outline this scenario.

I will end this part of the review focused on the neutron star structure predicted by
microscopic approaches, discussing the attempt to include hyperonic degrees of freedom
in the framework of the Dirac-Brueckner-Hartree-Fock approach. The Dirac-Brueckner-
Hartree-Fock approach [232,233] is, in a way, an extension of the non-relativistic Brueckner-
Hartree-Fock one. In the relativistic framework, the self-energies and interactions of the
various particles are calculated according to the solutions of the Dirac equation in the
HF approximation. In the last ones, the bare nuclear masses are replaced by effective
masses, which can be calculated in a self-consistent way, therefore acquiring a strong
in-medium effect. One of the main advantages of this approach is that the effect of a certain
class of three-body forces is effectively included at the two-body level. This particular
class of three-body forces takes into account the nucleon-anti-nucleon pair formation in
the medium. This mechanism is able to provide good saturation properties of nuclear
matter and a stiff nucleonic EOS able to support a two solar mass neutron star [234] at the
nucleonic level. The first attempt to include hyperonic degrees of freedom in the DBHF
framework has been reported by Sammarruca in Ref. [235], considering the effect of fixed
hyperonic concentrations on the energy per particle of the system, and employing the Ju04
NY interaction. To the best of my knowledge, the only calculation of β-stable hadronic
matter, in this framework, has been carried out by the authors of Ref. [236] who, using
an effective NY interaction, showed that the repulsive mechanisms that account for the
stiffness of the EOS at the nucleonic level, act in a similar way in the hyperonic sector.
This repulsive mechanism, therefore, seems able to produce a large mass neutron star in
agreement with observations.

2.6. Possible Signatures of the Presence of Hyperons in Astrophysical Dynamical Systems

In this section, I discuss the possible signatures of the presence of hyperons in dy-
namical systems like BNSMs and SNe. The typical thermodynamical conditions predicted
by numerical simulations in full general relativity for these systems are very different to
those of cold neutron star matter. Ranges of temperature and density found in BNSMs
are about: 0 < T/MeV < 100 and 10 < ε/(g/cm3) < 3 × 1015 [237], while for SNe:
0 < T/MeV < 50 and 10 < ε/(g/cm3) < 4× 1014 [12]. Note that the precise range for
the above quantities depend on the total mass and mass ratio in the case of BNSMs and
on the progenitor star mass in the case of SNe. These physical conditions would suggest
that due to thermal effects, a relevant fraction of hyperons can be present, even around the
subnuclear densities compared to the zero temperature case. However, this consideration
is not always true and indeed, if neutrinos are trapped in neutron star matter, the opposite
scenario is realised. In neutrino-trapped matter, the electron chemical potential is dimin-
ished by the neutrino. In β-stable nuclear matter, this process leads to a softening of the
EOS and, consequently, the onset of hyperons shift to a larger density. I note, however, that
once hyperons are formed, the presence of a neutrino sea leads conversely to a stiffening of
the EOS. Neutrino diffusion strongly depends on density, temperature, and composition
of stellar matter. Such thermodynamical conditions can rapidly change in the dynamical
evolution of astrophysical systems. In order to establish if neutrinos are trapped or not, the
neutrino diffusion timescale should be confronted with the typical dynamical timescale of
the considered system [237–239]. Accurate studies of neutrino propagation in dynamical
systems are very demanding from a computational point of view and represent a very
active and still progressing research field. The impact of hyperons in BNSMs was studied
for the first time in Ref. [240], using a version of the TM1 EOS that includes the Λ hyperon.
Therefore, it was pointed out that the formation of hyperons strongly affect the dynamics
of the hypermassive neutron star formed after the merging process. In particular, the
softening of the EOS, induced by the formation of hyperons, leads to a faster collapse of BH.
A very important point stressed in Ref. [240] is that the presence of hyperons is imprinted



Universe 2021, 7, 408 22 of 33

in GWs; therefore, GW observations can, in principle, provide a chance to explore the
composition of neutron star matter. In Ref. [241], a similar analysis, based on a different
EOS, was carried out. The EOS used in this case was the BHB [132], an extension of
the nucleonic DD2 EOS that takes into account the presence of Λ-hyperon. The authors
show that physical effects introduced by the presence of hyperons change the qualitative
dynamics of the remnant evolution, but they are not identifiable as a signature in the GW
frequency, with the exception of possible black-hole formation effects. Concerning the EOS
softening, this is instead, incoded in the GW luminosity and phase, and is detectable.

Considering CCSN simulations, the role of hyperons was analysed in Ref. [242]
employing the TM1 EOS with Λ hyperons, in a 1D hydrodinamical simulation of spherical
core collapse and explosion without neutrino transport. Considering several models of
progenitor stars, the authors found that hyperons appear around the core bounce and gain
explosion energy by (3–4)% in each model. In Ref. [243], a similar analysis showed that
hyperons appear off the center of the system and later prevail at the center when the central
density becomes high enough. Compared with a pure nucleonic EOS, the authors found
small differences in the luminosity and in the average energies, while the neutrino emission
stopped, much earlier in the case of the hyperonic EOS. A better treatment of the neutrino
transport was proposed in Ref. [244], where the inclusion of pion condensation was also
taken into account. The results were in agreement with the findings of the previous works.
Similar conclusions were also obtained in Ref. [245].

Another scenario in which hyperons may play an important role, is in the neutron
star cooling after the star birth. Neutron stars are formed in Type-II, Ib, or Ic SNe [12].
As stated before, thermal effects and neutrino trapping shift the onset of hyperons to a
larger baryonic density, leading to a softening of the EOS. A neutron star, just after birth, is
very hot in its core and the neutrino mean free path is much smaller than the star radius.
In these conditions, neutrinos are trapped and form a neutrino sea. The baryonic mass
of the neutron star with a good approximation remains constant along the neutron star
evolution and, therefore, it can be considered as an independent variable. As discussed
in Refs. [11,246–248], the presence of both hyperons and neutrinos, and the subsequent
deleptonisation process caused by neutrino escape, leads to a scenario of metastable
protoneutron stars. If only nucleons and neutrinos are present in the system, there is
a window of baryonic masses that can be stabilised after deleponisation while, in the
case of nucleons and hyperons embedded in neutrino-trapped matter, the deleptonisation
produces a window of baryonic masses unstable against gravitational collapse leading
to a faster creation of BHs [11]. These different evolution scenarios clearly affect the
neutrino emission signal from the protoneutron stars. The presence of hyperons may also
potentially influence the cooling of newborn neutron stars. Neutron stars cool according to
processes like:

n→ p + l + ν̄l p + l → n + νl (17)

N + n→ N + p + l + ν̄l N + p + l → N + n + νl . (18)

The first two processes are known as direct (or fast) Urca processes and take place only
above a certain proton fraction around 11%. The remaining two processes are known as
modified (or slow) Urca processes, and can occur according to arbitrary matter composition.
In the above equations, N stands for a generic nucleon (neutron or proton). In addition to
these processes, other mechanisms can contribute; the main ones are the bremsstrahlung:

N + N → N + N + ν + ν̄ , (19)

and the Cooper pair formation:

N + N → [NN] + ν + ν̄ . (20)

Cooper pair formation is strongly sensitive to temperature, and can occur only for
temperatures below a critical threshold. In addition, the process is strongly sensitive to
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the nucleon paring gaps. I note that several calculation of nucleon pairing gaps have
been proposed in the literature, considering different many-body approaches and nuclear
interactions [249–253]. However, if hyperons are present in neutron star matter, other direct
processes like B → B′ + l + ν̄l , or B → N + l + ν̄l , can contribute. This additional fast
cooling mechanism may give rise to temperature cooling curves not compatible with obser-
vations. It should be remarked, however, that these processes are also strongly influenced
by hyperon paring gaps and, unfortunately, not few calculations have been proposed in
the literature on this issue [254–256]. For further details on the cooling of neutron stars,
and for a proper discussion on transport problems related to it, see Refs. [257,258].

A final aspect regarding the physics of neutron stars, in which hyperons are expected
to be relevant, concerns the so-called r-mode stability. Rotating neutron stars are known
to be stable against collapse to BH if the rotational frequency is smaller than a maximum
frequency set by the so called Keplerian frequency [259]. At this frequency, the centrifugal
force would overcome gravity at the star’s equator and, as a consequence, the star starts
to eject matter from the poles. However, some mechanical instabilities affect the structure
of a neutron star; thereby, not allowing it to reach the Keplerian frequency. One of these
instabilities, known as r-mode instability, has received a lot of attention due to the fact
that hot, rapidly rotating systems (like young neutron stars) subject to this instability
are GW-emitters [260]. The r-mode is a toroidal oscillation mode, whose restoring force
is the Coriolis force. The detection of GWs produced by this mechanism may provide
important informations about the internal structure of neutron stars. The emission of GWs
acts in such a way as to amplify the r-mode, while viscous processes tend to damp it. In
order to establish which process dominates, one should compare the typical timescale of
GW emissions with the one set by viscosity. If the latter is considerably slower than the
first, the system has enough time to produce GWs; these, due to conservation of angular
momentum, will carry away the imprint of the rotational frequency of the source. For hot
systems, the main contribution to viscosity is given by the bulk viscosity, which is generated
by gradients of pressure and density in stellar matter. These perturbations tend to lead
matter out of β-equilibrium. As a consequence, a certain amount of energy is dissipated
by the system to restore the weak equilibrium. In nucleonic matter, the main channels
contributing to the bulk viscosity are the direct and modified Urca processes. However,
the presence of hyperons opens the way to several new channels, like weak non-leptonic
processes N + N → B + N, direct and modified hyperonic Urca, or even strong processes
like B + B → N + B. First, studies on the effect of hyperons on the bulk viscosity can be
found in Refs. [261–263]. In Ref. [264], the presence of antikaon condensation in regard to
the bulk viscosity was analysed. The authors of Ref. [264] concluded that the presence of
kaon condensation leads to a suppression of the bulk viscosity. A study of bulk viscosity
due to nonequilibrium weak processes in superfluid hyperonic matter was proposed in
Ref. [265], while the effects of magnetic fields were investigated in Ref. [266]. Such effects
are important only for huge values of magnetic fields (of the order of 1017 Gauss), which
are not expected to exist inside neutron stars. In conclusion, a general remark reported by
all works is that the presence of hyperons induces a smaller r-mode instability due to the
growth of the bulk viscosity.

Now, a final remark about the transport coefficients of hyperonic matter. In this sector,
few calculations have been completed [267]. These calculations are relevant for the very
important application in astrophysical systems, like BNSM and SNe. A microscopic study
of thermal conductivity and shear viscosity of hyperonic matter have been very recently
proposed in Ref. [267], in the framework of BHF approaches using versions a and e of
the NSC97 NY and YY interactions. The effect of hyperonic three-body forces was not
included. The authors found that neutrons dominate the total thermal conductivity over
the whole range of densities explored and that, due to the onset of the Σ− hyperon, and to
the subsequent deleptonisation of the neutron star core, they dominate the shear viscosity
at high density. In the case of the pure nucleonic matter, the lepton contribution turns out
to always be dominant.
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3. Conclusions

Here, I have reviewed the role played by hyperons in neutron star matter. I have
analysed the main issues related to the formation of hyperons in neutron star matter,
considering the results provided by both phenomenological and microscopic approaches
that have been (so far) extended to include hyperonic degrees of freedom. All models agree
that the softening of the EOS of neutron star matter, caused by the formation of hyperons
in β-stable neutron star matter, require specific repulsive mechanisms to support the large
Mmax. In RMF models, these mechanisms can be realised in various ways, like taking into
account the effect of the φ-meson repulsion in the YY sector, or introducing non linear
self-interaction terms in the Lagrangian density, concerning the φ-meson and/or mixed
terms involving the other vector mesons. In microscopic approaches, to get a stiff hyperonic
EOS, it seems that a crucial role is played by the many-body forces between nucleons and
hyperons. In some works, it was shown that the inclusion of these many-body forces is
essential to provide repulsion to the hyperonic matter EOS [149,216,230,231]. In addition,
it seems that the description of medium and heavy Λ-hypernuclei strongly improve when
NNΛ forces are added to the bare NΛ interaction [149,216]. Unfortunately, due to the very
few available scattering data, strong uncertainties persist in the knowledge of the NY and
YY interactions. Clearly, these uncertainties are reflected and definitely amplified when the
same interactions are used in applications to hyperonic matter. Hopefully, this scenario
will improve in the near future.

I have also discussed the possible signatures of the presence of hyperons in dynamical
systems like BNSMs and SNe. Multimessanger physics represents, in this line, a very
powerful tool to investigate the properties of matter under extreme conditions. Future
detections of gravitational waves and electromagnetic counterparts from compact systems
will definitely improve our knowledge on the EOS and composition of neutron star matter
and will contribute to provide a deeper understanding on the physics of hyperons. In addi-
tion, the third generation of GW detectors, like the Einstein telescope will probably give
the chance to observe the post merger signal of BNSMs. Measurements of this kind would
provide precious information about the composition of the core of neutron stars.

I have finally, very briefly, discussed the consequences of the formation of hyperons
in the cooling of neutron stars and in the growth of gravitational instabilities in rapidly
rotating hot neutron stars. An important point in the present review, is that I did not
considered the possibility of a quark-phase transition in neutron star matter. This scenario
has been investigated by several authors, and represents a possible scenario, especially
in hot deleptonised matter. Such conditions are those typical of BNSMs, and it has been
shown in some works that the presence of hyperons may favour the phase transition to
quark matter [25,26,89,268,269]. I must note, however, that this very interesting scenario
should still be systematically tested in BNSMs simulations.
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