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Abstract: We discuss the possibility that gravitational fluctuations (“gravitational-waves”) are
trapped in space by gravitational interactions in two dimensional Jackiw–Teitelboim gravity. In
the standard geon (gravitational electromagnetic entity) approach, the effective energy is entirely
deposited in a thin layer, the active region, that achieves spatial self-confinement and raises doubts
about the geon’s stability. In this paper we relinquish the “active region” approach and obtain
self-confinement of “gravitational waves” that are trapped by the vacuum geometry and can be
stable against the backreaction due to metric fluctuations.

Keywords: gravitational waves; geons; Jackiw-Teitelboim gravity

1. Introduction

In 1916, Einstein predicted that gravitational sources could produce waves of space-
time from his theory of general relativity [1]. In 1955, Wheeler introduced a particle-like
object, geon (gravitational electromagnetic entity), where gravitational perturbations are
confined in space because of electromagnetic interaction [2]. He hoped to construct the geon
as an elementary particle but that did not seem fruitful. Brill and Hartle elaborated this idea
by considering gravitational waves (GW) trapped by gravitational interactions [3], i.e., that
GW are somewhat localized in space by their self-interaction. Given the dispersive nature
of radiation, it seems such objects are metastable at best. Analyses in general relativity have
devoted much effort to the discussion of whether such a solution is self-consistent and
metastable [4–8]. These analyses assumed an empty asymptotic Minkowski background.
Needless to stress the importance of considering stable self-confining gravitational config-
urations having as the background geometry the Friedman-Lemaitre–Robertson–Walker
(FLRW) Universe or at least, asymptotically de Sitter (dS). Significant works have been
done on asymptotic Anti-de Sitter in [9] and references therein.

In this paper, we study fluctuations of the gravitational field (“gravitational waves”)
trapped in space by the vacuum geometry in the framework of classical two-dimensional
(2D) Jackiw–Teitelboim (JT) gravity [10,11]. We prefer to use the term “trapped gravitational
waves” instead of “geon” because in the classical geon solution the effective energy-
momentum that corrects the unperturbed solution is entirely deposited in a thin shell
enclosing the geon (active region). Our motivation is to point towards a different kind of
self-gravitating clump, a different paradigm that circumvents the need for an active region.
Clearly, the choice of 2D gravity stems from the tremendous simplification of calculations.
However, in 2D, the Einstein tensor vanishes identically and Einstein’s equations are trivial.
We therefore choose JT gravity as an alternative for a simple gravity theory in 2D that has a
cosmological constant (CC) and dynamical solutions.

Generally speaking, in the vacuum, there is a competition between the gravitational
perturbations that travel at the speed of light and disperse, and their self-gravitational
pull. The motivation of a non-vanishing CC comes from the intuitive fact that it further
generates a potential such that our solution sits in the vicinity of the potential minimum.
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This result corresponds to trapped “gravitational waves”. To fully understand the structure
of the theory, we thoroughly discuss different gauges and independent degrees of freedom
in the theory. More specifically, we study perturbations in the traceful gauge that is volume
changing, and perturbations in traceless gauges, that better mimic GW gauges. Our analysis
yields that perturbations can be trapped in some region of space. Furthermore, we discuss
possible gauge issues, the connection between solutions in various coordinate systems and
provide several examples.

The paper is organized as follows. In Section 2, we apply the method of [7] for finding
gravitational geons to JT gravity. In Section 3 we discuss possible gauge transformations
and what degrees of freedom remain after using up the gauge freedom. In Section 4,
and Section 5 we find analytic and numerical trapped solutions in various gauges. In
Section 6, we display the exact solution in the synchronous, conformal and spatially flat
frame of references that exhibit a wave behavior and sketch similar trapped solutions.
In Section 7, we summarize our results and discuss future directions.

2. Finding a Geon in Jackiw-Teitelboim Gravity

Our starting point is 2D gravity introduced by Jackiw and Teitelboim [10,11], where
the equation of motion is given by

R−Λ = 8πGT, (1)

where R is the curvature scalar, Λ is the CC, T is the energy-momentum and c = 1.
Notice that in 2D Newton’s constant is dimensionless and can always be absorbed into the
gravitational field. As in [12,13], we take the following metric ansatz:

gab = γab + hab, (2)

where γab is the unperturbed metric with signature (−,+) and hab represents the perturba-
tions.

If we consider no matter, i.e., T = 0, Equation (1) becomes

R(γab, hab) = Λ (3)

Following [3,7], we expand it perturbatively as

R(0)(γab) +R(1)(γab, hab) +R(2)(γab, hab) ' Λ (4)

where (0), (1), (2), . . . imply the orders in |hab| � 1. We then solve this equation in three
steps: First, the background geometry for the vacuum state comes from

R(0)(γab) = Λ . (5)

Second, the first order perturbation equation in hab

R(1)(γab, hab) = 0 , (6)

is a wave-type equation. Hence, the gravitational waves hab trapped in space are deter-
mined by (6). Third, we test the stability of the solution by considering the backreaction on
the metric through

R(0)( ˜γab) + 〈R(2)( ˜γab, hab)〉 = Λ (7)

where the original metric γab changes into γ̃ab due to the backreaction and 〈· · · 〉 means
time average.
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3. Extraction of Physical Degrees of Freedom

When considering perturbations off some background metric, it is important to prop-
erly count the correct number of physical degrees of freedom that should be gauge invariant.
Considering the general perturbed metric gab = γab + hab, the wave Equation (6) can be
written as:

R(1)(γab, hab) = hab
;ab −�h̃− 1

2
h̃R(0)(γab) = 0, (8)

for any choice of coordinate system or gauge, where a semicolon denotes a covariant deriva-
tive, � is the covariant D’Alambertian, and h̃ ≡ γabhab is the trace. This expression seems
to suggest that for the purpose of calculations there are two preferred gauges, traceless
and Lorentz. This is a proper time for pausing the calculations and discussing the gauge
freedom in 2D. Coordinate transformations can be represented by gauge transformations

h′ab = hab − ξa;b − ξb;a (9)

for any vector ξa, being of the same order of magnitude of hab itself. As a side remark,
solving the field equations for

h
′
ab = hab −

1
2

gab h̃ (10)

as it is usually done in 4D, is pointless as this relation cannot be inverted to obtain hab since
in 2D the trace h ≡ h

a
a vanishes identically. This is somewhat reminiscent of the fact that

the Einstein tensor is trivial in 2D. Consequently, all the discussion of gauge invariance
must be done in terms of hab. In 2D we can always express any vector as

ξa = φ,a + εabψ,b (11)

for two different scalar fields φ, ψ and εab stands for the Levi–Civitta in 2D

εab =
√
(−g)[a, b], (12)

where
[0, 1] ≡ 1; [0, 0] = [1, 1] ≡ 0; [1, 0] ≡ −1 (13)

3.1. Lorentz Gauge

It is always possible to make a gauge transformation which brings a general perturba-
tion hab to the Lorentz gauge. Consider the divergence of a desired gauge transformation,

h
′b

a;b = h b
a ;b − ξ ;b

a ;b − ξb
; ab = 0. (14)

The commutation of covariant derivatives satisfies

ξb
;ba − ξb

;ab = −Radξd. (15)

Furthermore, recall that in 2D

Rab =
1
2
Rgab. (16)

In order to bring a generic perturbation to the Lorentz gauge we have to solve:

ξ ;b
a ;b + ξb

;ba +
1
2
Rξa = h b

a ;b, (17)
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and in terms of the aforementioned scalar fields,

ξa = φ,a + εadψ,d ⇒ ξb
;b = �φ ⇒ ξb

;ba = (�φ),a (18)

ξ ;b
a ;b = gbcξa;bc = gbc(φ;abc + ε d

a ψ;dbc) = gbc(φ;bac + εd
a ψ;bdc) (19)

Recalling that for any vector λa

λb;ac − λb;ca = Rd
bacλd, (20)

then
ξ ;b

a ;b = (�φ),a +Rd
aφ,d + εd

a(�ψ),d + εd
aRl

dψ,l . (21)

In view of (6) and the fact that the curvature is constant,[
2�φ +

R
2

φ

]
,a
+ εd

a

[
(�ψ) +

R
2

ψ

]
,d
= va, (22)

where va = h ;b
a ;b. Denoting, Φ = 2�φ + R

2 φ, Ψ = �ψ + R
2 ψ results in

Φ,a + εb
aΨ,b = va. (23)

Since this is a general decomposition of a vector va in two dimensions, we can always
solve for Φ, Ψ and take these two functions as source terms in their above definitions.
Making a long story short, it is always possible to implement the Lorentz gauge, and the
wave equation simplifies to

R(1)(γab, hab) = �h̃ +
1
2

h̃R(0)(γab) = 0. (24)

Solving the perturbation and backreaction equations in the Lorentz gauge in a back-
ground metric we will be interested in γab = Diag{−p(r), 1/p(r)}, turns out to be quite
cumbersome and we shall not pursue it further.

3.2. Traceless Gauge

The traceless gauge is the second gauge that naturally emerges from Equation (8). Can
we implement it? The trace transforms as

h̃′ = h̃− 2ξ ′a;a . (25)

Starting from a general perturbation, one can reach the traceless gauge by solving (see
Equation (11))

�φ =
h̃
2

(26)

for any ψ in terms of the two scalar decomposition fields. The wave equation simplifies to

R(1)(γab, hab) = hab
;ab = 0, (27)

and hab is traceless. Can we implement the Lorentz and traceless gauges simultaneously?
Suppose we first bring the perturbation to the traceless gauge and then try to implement
a Lorentz gauge. The former should not be disrupted by any further transformation.
Accordingly from the previous discussion, the traceless condition constrains �φ = 0. Then,
implementing the Lorentz condition requires

R
2

φ,a + εb
aΨ,b = va, (28)
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with Ψ as before but φ satisfies
�φ = 0. (29)

Clearly these two conditions cannot be met simultaneously. Fulfillment of both gauge
conditions would mean that all degrees of freedom can be gauged away. The traceless
condition by itself leaves two degrees of freedom. 1 We can still remove another one. We
require h′01 = 0, while keeping the perturbation traceless, i.e., �φ = 0 again,

h′01 = h01 − ξ0,1 − ξ1,0 + 2Γa
01ξa = 0. (30)

Using (11), the fact that Γb
cb = ∂c log

√−g and some manipulations yields h′01 = 0, and
a traceless perturbation provided that:

�φ = 0,

�ψ =
h01 − 2φ;01√−g

. (31)

Hence, we can always solve the equation for φ and use it together with h01 as a
source for the equation for ψ. To summarize, a general perturbation can always be brought
to a traceless diagonal form. In Section 5 we shall analyze the waves and backreaction
generated in the traceless gauge.

3.3. Traceful Gauge

As our next section shows, trapping is very natural and intuitive in a special traceful
gauge. The full curved spacetime analysis is rather cumbersome, so we limit our gauge
discussion here to the flat spacetime case. We expect the gauge to be well-posed and
completely fixed also in curved spacetime. Consider the Minkowski background met-
ric. Starting from a generic perturbation, we would like to work in a gauge where the
perturbed metric can be written as gab = Diag{−1 + h, 1− h}. In such a case, the gauge
transformations we need to solve are:

h = h00 − 2ξ0,0 (32)

−h = h11 − 2ξ1,1 (33)

0 = h01 − ξ0,1 − ξ1,0 (34)

From the last equation we have

ξ1 =
∫

dt(h01 − ξ0,1) + f1(x) (35)

By construction h = −h11 + 2ξ1,1. Substituting into (32) gives:

h00 − 2ξ0,0 = −h11 + 2ξ1,1 = −h11 + 2
[∫

dt(h01 − ξ0,1) + f1(x)
]

,1
(36)

This is an inhomogeneous partial integro-differential equation. Let us differentiate the
equation w.r.t. time:

h00,0 − 2ξ0,00 = −h11,0 + 2(h01,1 − ξ0,11) ⇒ �ξ0 = −h00,0 + h11,0 − 2h01,1

2
(37)

1 For example, schematically, the perturbed part can still be written as

hab =

(
h(t, r) h01(t, r)

h01(t, r) h(t, r)

)
,

that has two independent entries.
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This is again the standard wave equation in 2D with a source term, that always has a
solution. Since we have used up all the gauge freedom, it is a physical choice and not a
gauge artefact. The perturbed part of the metric is hab = Diag{h,−h}. We shall use this
gauge in the upcoming section.

4. Gravitational Waves Trapped in Space—Traceful Gauge
4.1. Background Geometry of the Vacuum Solution

Consider the unperturbed metric

γab =

(
− p(r) 0

0 1
p(r)

)
. (38)

The equation of motion, Equation (1), is then

R(0) = − p′′(r) = Λ (39)

and the solution of Equation (5) is given by

p(r) = A + Br− Λ
2

r2, (40)

where A and B are constants.2 This is similar to the dS solution in static coordinates in 4D
if we suppress the angular part.

4.2. Trace Wave Perturbations

Let us now consider the perturbed metric

gµν =

(
− p(r) + h(t, r) 0

0 1
p(r) − h(t, r)

)
(41)

as in [12].
A geon would have the form of

h(t, r) = T(t) R(r) , (42)

where the time part would be T(t) ∝ e−iωt and the spatial part R(r) should be confined in
space. Equation (6), then reads:

R′′ −
(

p′

2p
+

pp′

2

)
R′ −

(
p′2

2
+ pp′′ +

p′′

p
− p′2

2p2 −ω2
)

R = 0, (43)

where prime denotes a derivative with respect to r. We expect that the possibility of trapped
waves would be checked by exploring the form of asymptotic behavior of Equation (43)
with a given p(r). We find two asymptotic behaviors as follows.

[AB1]: The first asymptotic behavior is that the waves can be trapped in the region where
p→ 0. For p→ 0, Equation (43) becomes

R′′ − p′

2p
R′ −

(
p′′

p
− p′2

2p2

)
R = 0 (44)

We may put

p(r) = −Λ
2
(r− α)(r− β) (45)

2 If Λ = 0 then the Riemann tensor vanishes, and one can rewrite the metric in the standard Minkowski form.
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and Equation (44) bcomes

R′′ − 1
2

(
1

r− α
+

1
r− β

)
R′ +

[
1

2(r− α)2 +
1

2(r− β)2 −
1

(r− α)(r− β)

]
R = 0. (46)

Without loss of generality, we can consider the asymptotic behavior of the solutions
around r = α. The solution is

R(r) = (r− α)
1
2

{
C1 exp

[
2
(

r− α

α− β

) 1
2
]
+ C2 exp

[
−2
(

r− α

α− β

) 1
2
]}

(47)

which means the solution R(r) becomes zero as p→ 0 for r → α . 3

[AB2]: The second asymptotic behavior is that the waves cannot be trapped in the region
where p→ ±∞. For p→ ±∞, Equation (43) becomes

R′′ − pp′

2
R′ −

(
p′2

2
+ pp′′

)
R = 0 (48)

In this case, when p(r) = A + Br− Λ
2 r2, the solution is given by

R(r) = C1 p′(r) F(r) + C2 p′(r) F(r)
∫ 1

p′(x)2 F(x)
dx, (49)

where

F(r) = exp

[
p(r)2

4

]
(50)

In Equation (49), C1 term is definitely divergent. The C2 term diverges or goes to zero
as r → ∞ on very particular cases such as a single degenerate root. Nevertheless, waves
extending from some root of p(r) to infinity cannot be considered as finite and localized.

These two conditions seem simple but predict where the waves can be confined in
space. If R(r) has some finite support, then we get trapping. If not, then we cannot say that
the waves are confined. We will turn back to this point in Section 4.4.

4.3. Backreaction Analysis

The backreaction of waves on the vacuum metric is calculated by Equation (7) which
reduces to

2p̃3( p̃′′ + Λ
)
=
〈

2h2 p̃′2 − 2h2 p̃4 p̃′2 − 2h2 p̃ p̃′′ − 2h2 p̃3 p̃′′ − 2h2 p̃5 p̃′′ − p̃2ḣ2 − p̃4ḣ2

−2hp̃2ḧ− 2hp̃4ḧ− 3hp̃p̃′h′ − hp̃3 p̃′h′ − 2hp̃5 p̃′h′ + p̃2h′2 + p̃4h′2 + 2hp̃2h′′ + 2hp̃4h′′
〉 (51)

where p(r) is modified into p̃(r) and a dot dentoes a derivative with respect to time. After
considering 〈(eiωt)2〉 = 1

2 , Eqaution (51) becomes

2p̃3( p̃′′ + Λ
)
=

(
p̃′2 − p̃4 p̃′2 − p̃ p̃′′ − p̃3 p̃′′ − p̃5 p̃′′ +

3ω2

2
p̃2 +

3ω2

2
p̃4
)

R2

−
(

3
2

p̃ p̃′ +
1
2

p̃3 p̃′ + p̃5 p̃′
)

RR′ +
(

1
2

p̃2 +
1
2

p̃4
)

R′2 +
(

p̃2 + p̃4
)

RR′′ .
(52)

3 An interesting situation occurs if there is a single root, i.e., α = β in region AB1. In such case, the lowest order approximation becomes a Bessel-type

equation: R′′ − p′
2p R′ + ω2R = 0, with the solution (r− α)[c1 J1(−ω(r− α))− c2Y1(−ω(r− α))]. In such a case, the limit r → α can actually be finite

with limr→α R = 2c2
πω .
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It is difficult to find analytic solutions for Equation (52) and we will try to solve it
by numerical simulations. However, we can mention two main features that would be
reflected in the numerical results: First, when R � 1 and R′ � 1, Equation (52) gives
p̃′′ + Λ ' 0 reproducing Equation (39). Hence, the background geometry will not change
and p is nearly the same as p̃. Second, when ω � 1, ω terms get important in the right
hand side of Equation (52). One may expect that the mode of large ω cause substantial
backreaction to the background metric.

4.4. Numerical Results

In JT gravity, the metric component p(r) is presented by quadratic curves, as given
in Equation (40). The global structure of spacetime represented by the signs of Λ is not
crucial to decide whether there are trapping regions. Rather, the existence and positions of
zeros of p(r) are critical in predicting the trapping regions from the asymptotic behaviors
of the analytic solutions of Equation (43), AB1 and AB2. Note that the physically proper
range should be r > 0 from our metric ansatz. The waves would be trapped between
points where the metric component p(r) goes to zero but not in regions where it becomes
divergent. Borrowing from a 4D language, they are trapped between “horizons”—either
inside the inner horizon, or between the inner and outer horizons. This condition applies
to all the cases regardless of the values of Λ. It looks straightforward but is useful to clarify
the cases. It is valid for p̃(r) even after considering the backreaction to the background
through Equation (52). This general statement is schematically summarized in Figure 1.

Figure 1. Schematic plots showing GWs are trapped with respect to the shape of p(r). The plot does
not change qualitatively even after including the backreaction resulting in p̃(r). Subfigures (a–f)
describe the different possibilities.
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Since p(r) is dimensionless, we have two dimensionful parameters B and Λ. Except
for the B = 0 case, we present our results in units where B = 1 due to numerical limitations.
As an order of magnitude estimate, in the absence of Λ the horizon is at r = −B/A. Both
B−1 and Λ−1/2 have arbitrary units of length. Hence, all our results are presented in such
arbitrary units of length.

Let us discuss the different cases. First, if there exists no zero of p(r) for r ≥ 0, waves
cannot be trapped. We describe one of these cases in Figure 2 where p(r) = 1

20 (r− 10)2 + 1
is considered. Waves are all divergent as r → ∞ as can be seen in the top-panel of Figure 2.
In the bottom, we present as p̃(r), i.e., the modification of the background metric due to the
backreaction. The backreaction increases with ω, and it gets more challenging to confine
waves in space.

0 2 4 6 8 10 12 14 16 18 20

r

-4

-2

0

2

4
10

-3

0 2 4 6 8 10 12 14 16 18 20

r

1

2

3

4

5

6

7

Figure 2. Top: R(r) with ω = 5, 50, 100 (orange, red and cyan curves respectively) for p(r) =
(r−10)2

20 + 1, R(0.01) = 0.001, R′(0) = 0. Bottom: p̃(r) with ω = 5, 50, 100 (orange, red and cyan

curves respectively, i.e., bottom to top) considering the backreaction to p(r) = (r−10)2

20 + 1. p̃(r) is
strictly positive, so no GWs are trapped anywhere. B = −1 units are used.

Second, if there exists one zero r1 of p(r) for r ≥ 0, waves can be trapped in the
region where p(r) is finite or does not go to the infinity (i.e., 0 < r < r1). Two examples
are given: p(r) = 10− r with Λ = 0 in Figure 3 that mimics a black hole horizon, and
p(r) = − r2

25 + 16 with Λ < 0 in Figure 4, that mimics a cosmological dS horizon.
Third, if there exist two zeros of p(r) for r ≥ 0, waves can be trapped in two regions,

between the origin and the smaller zero (0 < r < r1), and between the zeros (r1 < r < r2).
The reasoning of Figures 3 and 4 applies to the trapping region 0 < r < r1, and hence
we focus on r1 < r < r2 which seems more interesting. In Figure 5, we present such an
example with p(r) = − 1

40 (r− 10)(r− 30) whose two zeros are r1 = 10, r2 = 30 and the
CC is positive Λ > 0. Waves are confined in the region of 10 < r < 30, i.e., they are trapped
between the “Schwarzschild horizon” and the “dS horizon”. Notice that the backreaction
to the vacuum metric in the case of two zeros of p(r1) = p(r2) = 0, is not as substantial
and p̃(r) does not change severely compared to the case of Figure 2 or even the single zero
case of Figures 3 and 4. What happens if p(r) = 0 has a single degenerate root? Waves are
trapped in the region between the origin and the root. It is essentially the same as the cases
of Figures 3 and 4.
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0 1 2 3 4 5 6 7 8 9 10
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0
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1
10
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4
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8
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Figure 3. Top: R(r) with ω = 5, 50, 100 (orange, red and cyan curves respectively) for p(r) =

10− r, R(0.01) = 0.01, R′(0) = 0. Bottom: p̃(r) with ω = 5, 50, 100 (orange, red and cyan curves
respectively, i.e., bottom to top) considering the backreaction to p(r) = 10− r. B = −1 units are used.

0 2 4 6 8 10 12 14 16 18 20

r

-1.5

-1

-0.5

0

0.5

1

1.5
10

-3

0 2 4 6 8 10 12 14 16 18 20

r

0

5

10

15

Figure 4. Top: R(r) with ω = 5, 50, 100 (orange, red and cyan curves respectively) for p(r) =

− r2

25 + 16, R(0.01) = 0.01, R′(0) = 0. Bottom: p̃(r) with ω = 5, 50, 100 (orange, red and cyan curves
respectively, i.e., bottom to top) considering the backreaction to p(r) = − r2

25 + 16. Arbitrary units of
length such that Λ = 0.08 a.u.−1/2.
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Figure 5. Top: R(r) with ω = 5, 50, 100 (orange, red and cyan curves respectively) for
p(r) = − 1

40 (r− 10)(r− 30), R(10.01) = 0.00001, R′(0) = 0. The GW are trapped between
the “Schwarzschild horizon” and the “dS horizon”. Bottom: p̃(r) with ω = 5, 50, 100 (orange,
red and cyan curves respectively, i.e., bottom to top) considering the backreaction to p(r) =

− 1
40 (r− 10)(r− 30). B = 1 units are used.

5. Traceless Gravitational Waves Perturbations

Let us now consider the following GW perturbations, where we are manifestly in
the weak field limit h(t, r) � 1 as well as ha

a = 0. We raise and lower indices with the
background metric. We shall see that the equations simplify considerably and are amenable
to analytic solutions as well. The metric now reads:

gab =

(
− p(r) (1− h(t, r)) 0

0 1
p(r) (1 + h(t, r))

)
. (53)

Considering again, h(t, r) = T(t) R(r), with periodic time dependence, T(t) ∝ e−iωt,
the first order GW equation is

R′′ + 2
p′

p
R′ +

(
p′′

p
− ω2

p2

)
R = 0. (54)

We can rewrite the equation in a very simple form for u(r)=p(r) R(r) as

u′′ − ω2

p2 u = 0. (55)

The general solution is given by

R(r) =

√
2

p(r)

(
c1e−s/d arctan( B−Λr

d ) +
c2

2s
es/d arctan( B−Λr

d )
)

, (56)

where s =
√

B2 + 2AΛ + 4ω2, d =
√

B2 + 2AΛ. Notice that we can absorb various con-
stants into c1, c2 if we wish. To better understand the qualitative behavior, let us use the
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form p(r) = −Λ
2 (r− α)(r− β), where β > α without loss of generality. Hence the solution

is of the form

R(r) =
2√
p(r)

c̃1

(
r− α

r− β

) 1
2

√
1+
[

4ω
Λ(α−β)

]2

+ c̃2

(
r− β

r− α

) 1
2

√
1+
[

4ω
Λ(α−β)

]2
. (57)

The backreaction of gravitational waves to the vacuum metric is calculated by Equation (7)
which reduces again to a very simple form(

p̃′′ + Λ
)
= −

〈
2p̃′′h2 + p̃′hh′

〉
(58)

After averaging over time and using 〈(eiωt)2〉 = 1
2 we get:(

1 +
R2

2

)
p̃′′ +

RR′

2
p̃′ = −Λ (59)

Using the first order solution, this can actually be solved analytically:

p̃(r) = c1 +
c2√

2

∫ r dx√
1 + R2(x)/2

− Λ
2

[∫ r dx√
1 + R2(x)/2

]2

(60)

Two numerical examples are presented in Figures 6 and 7. In Figure 6 we present
trapping for the Λ = 0 case, in units of B = 1. In Figure 7 the trapping is in units of Λ = 1
with the CC being negative unity. Unlike the trace waves, here the oscillatory behavior of
the perturbation is only in time, and not in space. Worth noting is a significant backreaction
on the metric as the frequency ω increases in the Λ = 0 case, see the bottom panel of
Figure 6.
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1
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0 2 4 6 8 10 12 14 16 18 20

r
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Figure 6. Top: R(r) with ω = 1, 5, 10 (orange, red and cyan curves respectively, i.e., bottom to top)
for p(r) = 5 + r, R(0.01) = 0.01, R′(0) = 0. Bottom: p̃(r) with ω = 1, 5, 10 (orange, red and cyan
curves respectively, i.e., top to bottom) considering the backreaction to p(r) = 5 + r. Both plots are in
the traceless gauge. B = 1 units are used.
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Figure 7. Top: R(r) with ω = 1, 5, 10 (orange, red and cyan curves respectively, i.e., bottom to top)
for p(r) = 10 + r2, R(0.01) = 0.01, R′(0) = 0. Bottom: p̃(r) with ω = 1, 5, 10 (orange, red and cyan
curves respectively, i.e., bottom to top) considering the backreaction to p(r) = 10 + r2. Both plots are
in the traceless gauge. Λ = 1 units are used.

Off-Diagonal Gauge

Let us consider another traceless gauge which is off-diagonal, h00 = h11 = 0, and
h01 6= 0. This is reminiscent of the × polarization in 4D. This gauge is obtained by
direct integration of the first order PDEs that we have as a gauge transformation for our
background ansatz. Considering this gauge significantly simplifies the equation of motion
which now reads:

R(1) =
p′

p
∂th01 + 2∂t∂rh01 = 0⇒ h01 =

T(t)√
p(r)

+ f2(r). (61)

We can now consider the backreaction of the perturbation on the background metric:

R(2) =
(

p′h01∂rh01 + p′′h2
01

)
. (62)

Considering the f2(r) ≡ 0 case, we can write down the backreaction equation, denot-
ing the time average as c ≡ 〈 f (t)2〉:

R(0) + 〈R(2)〉 = − p̃′′ + c
(

p̃′h01∂rh01 + p̃′′h2
01

)
= Λ, (63)

with a well defined analytical solution:

p̃(r) = c1 + c2

∫ r du√
1− c h01(u)2

− Λ
2

(∫ r du√
1− c h01(u)2

)2

. (64)

Now substituting the h01 solution above gives:

∫ r du√
1− c h01(u)2

=

√
B2 + 2AΛ

Λ
E

(
arcsin

−B + Λr√
B2 + 2(A− c)Λ

∣∣∣ B2 + 2(A− c)Λ
B2 + 2AΛ

)
, (65)
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where E(φ|m) is the elliptic integral of the second kind. So in this gauge the solution is
fully analytic.

6. Relation between Different Coordinate Systems

Fortunately, the two-dimensional case is amenable to an exact analytical solution.
Counting degrees of freedom, any spacetime in any dimensions can always be put into
the synchronous form, and in the case of 2D into a conformally flat form. In particular, in
such forms, we do not limit ourselves to a static ansatz plus a time-dependent perturbation.
We first consider more general background solutions in three gauges: synchronous gauge,
conformally flat gauge and spatially flat gauge. We then explicitly map our static ansatz to
the latter two. Finally, we give an example of the perturbation and averaging analysis in
the conformal gauge. Considering the synchronous gauge

ds2 = −dτ2 + F(r, τ)dr2, (66)

where F(r, τ) can be any function. The solution of the JT vacuum equation of motion
(EOM)

R = Λ (67)

is given by
F(r, τ) = f (r) cosh[g(r) + Λτ] (68)

where f (r) , g(r) are arbitrary functions.
Similarly, considering the conformal gauge,

ds2 = G(η, y)
(
−dη2 + dy2

)
. (69)

The EOM can be solved by

G(η, y) = − 2
Λ

c2
1 − c2

2

cosh2(c1η + c2y + c3)
(70)

where c1, c2, c3 are determined by the boundary conditions. Let us stress, that this is a
simple explicit solution, but does not describe all possible solutions. Finally, considering a
“spatially flat” gauge where

ds2 = −H(t̃, r∗) dt̃2 + dr2
∗ (71)

yields a solution that clearly exhibits an oscillatory propagating behavior:

H(t̃, r∗) = f1(t̃) cos2

[√
Λ
2
(r∗ − 2 f2(t̃))

]
(72)

where again f1(t̃) , f2(t̃) are arbitrary functions. Obtaining these exact solutions, let us
demonstrate several numerical examples of spatial and time dependent periodical solutions
in these gauges, i.e some form of “waves” of space-time. A propagating ‘soliton’ in the
conformal gauge is presented in Figure 8, and a wave packet that survives for a finite time
in the spatially flat gauge in Figure 9.
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Figure 8. Top: 3D Plot of G(η, y) with Λ = c1 = 1, c2 = −0.9, and c3 = 0. Bottom: 1D snapshots of
the same G(η, y) at η = 1, 2, 5, 10 from left to right. The ‘soliton’ maintains its shape in space and
propagates in time. Λ = 1 units are used.

Figure 9. 3D Plot of H(t̃, r∗) = e−0.1(t̃−5)2
cos
[√

Λ
2 (r∗ − t̃)

]
with Λ = 1. The wavepacket dies out

quickly with time. Λ = 1 units are used.

Let us explicitly show that we can move from one coordinate choice to another. The
first observation is that the background solution p(r), can be easily transformed into the
spatially flat gauge by defining the tortoise coordinate dr∗ = dr√

p(r)
. Similarly, we can

transform our ansatz to the conformally flat frame as follows. Consider first the background
solution, p(r):

ds2 = p(r)
(
−dt2 +

dr2

p(r)2

)
≡ p(y)(−dη2 + dy2), (73)

where we have used η ≡ t and again a tortoise coordinate, but this time with dy = dr
p(r) ,

giving y = −
2 tanh−1

(
−B+Λr√
B2+2AΛ

)
√

B2+2AΛ
. One can also write down p(y) explicitly:

p(y) =
B2 + 2AΛ

Λ
[
1 + cosh(

√
B2 + 2AΛy)

] . (74)

Hence we have achieved an explicit transformation between the background solution
in Schwarzschild-like coordinates to the spatially flat and conformally flat gauge. Notice
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that in the conformally flat case the “horizons” are pushed to infinity. Now let us look at
our traceless perturbation. The perturbed metric can now be written as:

gµν =

(
− p(y) (1− h̃(τ, y)) 0

0 p(y) (1 + h̃(τ, y))

)
(75)

First Order:
Let us substitute h̃(τ, y) ∝ e−iωτY(y). Using the zeroth order results yields:

Y′′ +
p′

p
Y′ −

(
Λp + ω2

)
Y = 0, (76)

with the following general solution:

Y(y) =
(

c1e−
y
2

√
4ω2+B2+2AΛ + c2e

y
2

√
4ω2+B2+2AΛ

)
cosh

(√
B2 + 2AΛ

y
2

)
(77)

Notice that now we can get all kinds of behavior depending on the sign of the various
parameters and specifically Λ. For instance, a positive CC will generally give an exponential
solution. However, Λ < 0 can give an oscillating solution. Consider 4ω2 + B2 + 2AΛ < 0
which is possible for a negative enough Λ < 0 and a small enough frequency ω. Defining
4ω2 + B2 + 2AΛ = −γ2 with suitable initial conditions gives the following result:

Y(y) = cos
(γ

2
y
)

cos
(
|B2 + 2AΛ|

2
y
)

(78)

Second order:
Considering the backreaction on the metric for 〈(e−iωt)2〉 = 1/2 gives the following

equation:

p̃3Λ = ( p̃′2 − p̃ p̃′′)
(

1 +
Y2

2

)
− 1

2
YY′ p̃ p̃′ (79)

This has to be solved numerically, with the exception of Λ = 0. In such a case, one has
an exact solution

p̃(y) = c1e
c2
∫ y du√

1+Y(u)2/2 . (80)

Hence, we have demonstrated that our analysis is not limited to a specific gauge
coordinate system, and can be done by choosing the most convenient coordinate system
and gauge. In all gauges, the perturbation cannot be removed by a coordinate or gauge
transformation, and backreacts on the geometry. Therefore, it is a true physical entity and
not an artefact.

7. Discussion

In this note, we have discussed the possibility of GW trapped in space within the
context of two-dimensional Jackiw-Teitelboim gravity. We have shown the existence of a
vacuum solution for such gravitational waves numerically and analytically and tested the
stability of the solution against its backreaction on the background metric. This is expected
on general grounds as the gravitational clump experiences dispersion on the one hand and
gravitational attraction on the other hand. The CC further induces a potential term. As a
consequence, the clump sits at the minimum of a gravitational potential which is attractive
in the vicinity of the clump and repulsive at large scales. Our gauge invariance analysis
established that the theory has a single physical degree of freedom, and we showed how to
obtain trapped solutions in different coordinate systems and different gauges. The clearest
results were achieved in the traceful gauge. In this simple example, we summarized
two guiding principles of trapping the gravitational waves in space by inspecting the
asymptotic behaviors, AB1 and AB2: The trace waves would be trapped in the region
where the metric component p(r) goes to zero but not in the region where the it becomes
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divergent. In other gauges, the principle is less clear, but we have shown that a single
degree of freedom always exists and backreacts on the metric. Specifically, the off-diagonal
choice gives very simple solutions, even at second order and allows for exact analytical
treatment.

Works [3,7], already suggested the possibility that a gravitational geon can be attained.
Although our solution is nothing but a toy model, it represents a new approach to the
self-gravitating gravitational perturbations in an expanding Universe. The notion of the
active region where all the fluctuation’s effective energy is deposited—an approach that
raises doubts about stability of the configuration—is abandoned. Instead, our solution relin-
quishes the effective region and stability is achieved by competing terms in the gravitational
potential due to the cosmological evolution.

The same general arguments discussed here are expected to hold in our expanding
Universe, since if we take a spherically symmetric perturbation it will again feel the
competing effect of its gravitational attraction and the CC. Our metric ansatz corresponds to
spaces with ‘horizons,’ which are found at the points p(r) = 0 in our representation. Should
we obtain a solution, that resembles the 2D obtained in this article (as in Figures 3 and 4),
we conjecture then that these perturbations (which are truly gravitational waves in 4D)
may be trapped behind a “black hole” horizon and hence, unobservable. Nevertheless,
they could leave traces of such trapping in the form of diffused remnants. However, by
far the most promising example would be that of Figure 5 that corresponds to a modified
Schwarzschild–de Sitter space, according to [12]. In this case, the gravitational waves are
similarly trapped between the “black hole” and the cosmological horizon in the expanding
dS-like space. Clearly, the stability should depend on the rate of expansion of the Universe:
a slowly expanding Universe does not provide enough repulsion for stability—such a
clumped solution should be meta-stable. A current work in progress for confronting the
4D case, is by considering Schwarzschild-de Sitter space in static coordinates with GW
perturbations. Expanding these in spherical harmonics and integrating over the angular
variables will yield a 2D effective theory similar to the one we have analyzed, [9]. We
further speculate that such geons may have formed in the early universe when expansion
was sufficiently fast, existed for some time, and got dispersed as the Universe expanded. If
that is the case, it might be that the fingerprints of these objects can be observable in the
form of a diffused spectrum of GWs that have propagated and undergone redshift.
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