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Abstract: A generally covariant U(1)3 gauge theory describing the GN → 0 limit of Euclidean
general relativity is an interesting test laboratory for general relativity, specially because the algebra
of the Hamiltonian and diffeomorphism constraints of this limit is isomorphic to the algebra of
the corresponding constraints in general relativity. In the present work, we the study boundary
conditions and asymptotic symmetries of the U(1)3 model and show that while asymptotic spacetime
translations admit well-defined generators, boosts and rotations do not. Comparing with Euclidean
general relativity, one finds that the non-Abelian part of the SU(2) Gauss constraint, which is absent
in the U(1)3 model, plays a crucial role in obtaining boost and rotation generators.

Keywords: asymptotically flat boundary conditions; classical and quantum gravity; U(1)3 model;
asymptotic charges

1. Introduction

In the framework of the Ashtekar variables in terms of which General Relativity (GR)
is formulated as a SU(2) gauge theory [1–3], attempts to find an operator corresponding to
the Hamiltonian constraint of the Lorentzian vacuum canonical GR led to the result [4] that
the Lorentzian Hamiltonian constraint can be written in terms of the Euclidean Hamiltonian
constraint and the volume operator. Since the latter is under much control in the context of
Loop Quantum Gravity (LQG) [5–8], an essential step towards quantising the Lorentzian
Hamiltonian constraint is the quantisation of the Euclidean Hamiltonian constraint. An
important consistency check for a successful quantisation of the Hamiltonian constraint
is the anomaly free implementation of the hypersurface deformation algebra [9]. In its
current form, the algebra of Hamiltonian and spatial diffeomorphism constraints does
close, but with wrong structure “constants”, and in that sense it suffers from an anomaly.

In order to improve the situation, we are motivated to study structurally similar but
simpler theories and see what lessons can be learned from the outcome. The GN → 0
limit of Euclidean gravity introduced by Smolin [10] is one of these models which is
described by a U(1)3 gauge theory. This model contains three Gauss constraints, three
spatial diffeomorphism constraints and a Hamiltonian constraint whose constraint algebra
for the Hamiltonian and diffeomorphism constraints is isomorphic to that of general
relativity. This property, in addition to the Abelian nature of its gauge group, make the
U(1)3 theory an interesting toy model to scrutinise, and there has been interesting recent
work on it [11–15].

There exist two different approaches to work out the quantum theory for constrained
theories. The first one, known as Dirac quantisation [16], quantises the entire kinemat-
ical phase space producing a kinematical Hilbert space. Then, physical states are those
which are annihilated by all constraints operators acting on the kinematical Hilbert space.
Therefore, the physical sector of the theory in this approach is constructed in quantum
theory. In the second approach, called “reduced phase space quantisation”, one solves the
constraints at the classical level and obtains a physical phase space whose variables are

Universe 2021, 7, 68. https://doi.org/10.3390/universe7030068 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-1926-7712
https://orcid.org/0000-0002-7596-8433
https://doi.org/10.3390/universe7030068
https://doi.org/10.3390/universe7030068
https://doi.org/10.3390/universe7030068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7030068
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7030068?type=check_update&version=2


Universe 2021, 7, 68 2 of 12

called observables, which are gauge invariant quantities, and then quantises the physical
phase space, yielding the physical Hilbert space. For the U(1)3 model, there has been much
recent progress [11–15] along the Dirac quantisation approach, and the analysis of the
reduced phase space track was begun in [17,18]. In that work and also the present one, for
simplicity we restrict to the spatial topology of R3 with the asymptotically flat boundary
conditions. As asymptotically flat spacetimes are of great importance in GR, this paper is
devoted to investigating their properties in the U(1)3 model. The results of the present
paper were used in [17,18], which was in fact the main motivation for the present study.

To achieve asymptotic symmetry generators [19–29], we seek for boundary terms
to the constraints that produce well-defined phase space functions and Poisson brackets,
while lapse function and shift vector obey decay behaviours corresponding to asymptotic
symmetry transformations. When we are working in the context of Lorenzian or Euclidean
GR, one expects these well-defined functions to generate the Poincaré or ISO(4) group,
respectively, depending on the signature. Regarding U(1)3 theory, we therefore examine to
what extent we can recover ISO(4) transformations. In fact, the question is whether there
are well-defined generators for all generators of ISO(4) in this model or not, and what the
main reason for answering yes/no to this question is.

The architecture of this paper is as follows:
In Section 2, we briefly review the background material needed for the subsequent

analysis. In Section 2.1, first we express the constraints of GR in terms of both ADM
and SU(2) variables. Then observing that they are not well-defined and functionally
differentiable, we revisit the results and reasoning, presented in [30] and in [31,32], to
improve the constraints using suitable boundary terms to well-defined generators of
Poincaré and ISO(4) group for Lorentzian and Euclidean GR respectively. In Section 2.2,
the U(1)3 model will be concisely introduced with a focus on the boundary conditions
(fall-off behaviour) of the canonical fields and the constraints which are functions of those.

In Section 3, we try to make the constraints well-defined. To do this, we follow
the usual approach and first extract boundary term variations which a priori violate
differentiability of the constraints and then, if possible, subtract corresponding boundary
terms from the constraints themselves, rendering them functionally differentiable. As usual,
we also require the constraints to be integrable. It is well known that there is a delicate
interplay between the correspondingly allowed fall-off behaviour of the test functions
smearing the constraints and whether the associated constraint functional including the
boundary term generates local gauge transformations or global symmetries. Surprisingly,
we show that in contrast to the SU(2) model, in the U(1)3 model, there are no well-defined
generators for (Euclidean) boosts and rotations. On the other hand, spacetime translations
are still allowed asymptotic symmetries.

In Section 4, we compare the results of Sections 2.1 and 3 and exhibit the reason for
why (Euclidean) boost and rotation generators in the U(1)3 model cannot be defined.

In the last section we conclude with a brief summary.

2. Background
2.1. Review of Asymptotically Flat Boundary Conditions for the SU(2) Case

In general, consistent boundary conditions are supposed to provide a well-defined
symplectic structure as well as finite (integrable) and differentiable constraints. Both
features generically require to include boundary terms into the constraints which are
vanishing when the constraint generates gauge and non-vanishing when it generates
symmetries, depending on the fall-off behaviour of the test functions of the constraint
functional. In the ADM formulation of asymptotically flat spacetimes, it is assumed that on
spatial slices asymptotic spheres are equipped with asymptotically cartesian coordinates
xa at spatial infinity—i.e., r → ∞, where r2 = xaxa. Taking this as the starting point and
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seeking appropriate boundary conditions, one sees that on any hypersurface, the fall-off
behaviours of the spatial metric qab and i ts conjugate momentum πab have to be:

qab =δab +
hab
r

+O(r−2),

πab =
pab

r2 +O(r−3),
(1)

where hab and pab are smooth tensor fields on the asymptotic 2-sphere. In (1), the first
condition follows directly from the form of the spacetime metric for the asymptotically
flat case, while the second one is a consequence of demanding a non-vanishing ADM
momentum. In order to eliminate the logarithmic singularity existing in the symplectic
structure, the leading terms in (1) need to admit additional certain parity conditions,
such as:

hab

(
− x

r

)
= hab

( x
r

)
, pab

(
− x

r

)
= −pab

( x
r

)
. (2)

Indeed, the integral of pab ḣab over the sphere, which is the coefficient of the singularity,
vanishes owing to (2). The parity conditions also give rise to the finite and integrable
Poincaré or ISO(4) charges.

Furthermore, aiming to retain the boundary conditions (1) invariant under the hyper-
surface deformations:

δqab =
−2sN
√

q
(πab −

1
2

πqab) + L~Nqab,

δπab =− N
√

q((3)R
ab
− 1

2
qab(3)R)− sN

2
√

q
(πcdπcd − 1

2
π2)qab

+
2sN
√

q
(πacπc

b − 1
2

πabπ) +
√

q(DaDbN − qabDaDbN) + L~Nπab,

(3)

One is required to restrict the fall-off behaviours of the lapse function, N, and the
shift vector, Na. In (3), q := det(qab), (3)Rab is the Ricci tensor of the spatial hypersurface;
Da is the torsion free metric compatible connection with respect to qab; and s denotes the
signature of the spacetime metric—i.e., s = +1 and s = −1 for Euclidean and Lorentzian
spacetimes, respectively. It turns out that the most general fall-off behaviours of lapse
and shift which also give rise to the generators of the asymptotic Poincaré and ISO(4)
groups are:

N = βaxa + α + S +O(r−1),

Na = βa
bxb + αa + Sa +O(r−1),

(4)

where βa and βab(= −βba) are arbitrary constants representing (Euclidean) boosts and
rotations. Here, if va denotes the velocity, then the boost parameter is βa = va

√
1+sv2 =: γva,

which satisfies the identity γ2 + sγ2v2 = 1. This identity indicates that for a Euclidean boost,
when s = 1 the sine and cosine appear in the transformation matrix, which says that the
Euclidean boost is nothing but a rotation in the x0,~x plane. In turn, the arbitrary function
α and arbitrary vector αa represent time and spatial translations, respectively, and S , Sa,
which are odd functions on the asymptotic S2, correspond to the so called supertranslations.

On the other hand, in vacuum GR the Hamiltonian and diffeomorphism
constraints are:

H[N] :=
∫

d3x N
(
−s
√

q

[
(qacqbd −

1
2

qabqcd)π
abπcd

]
−√q (3)R

)
,

Ha[Na] := −2
∫

d3x NaDbπb
a ,

(5)
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These are the generators of gauge transformations, and they have to be finite and
functionally differentiable so that their Poisson bracket with any function on the phase
space can be computed. With regard to (1) and (4), it is easy to check that the constraints (5)
are neither finite nor differentiable. To remedy this situation, a surface integral should be
subtracted from the constraint functionals. More in detail, with appropriate boundary con-
ditions the result of the ill-defined contribution to the variation in the constraint should be
the variation in a surface term, and thus one can define new expressions for the constraints
by subtracting the boundary terms so that they become functionally differentiable. Finally,
one examines the convergence (integrability) of the improved expressions. Having carried
out this procedure, the authors of [30] obtained the following well-defined constraints:

J[N] := H[N] + 2
∮

dSd
√

qqa[bqc]d[N∂bqca − ∂bN(qca − δca)],

Ja[Na] := Ha[Na] + 2
∮

dSa Nbπab,
(6)

where
∮

is the integration over the asymptotic 2-sphere.
This analysis in terms of the ADM variables language can be translated to the Ashtekar

variables (Ai
a, Ea

i ), where the connection, Ai
a, is an su(2)-valued one form and its momen-

tum conjugate, Ea
i , is a densitised 3-Bein. However, achieving this is challenging, since

there is an internal su(2) frame whose asymptotic behaviour has to be determined.
Accordingly, the boundary conditions (1) and (2) in terms of the Ashtekar variables

can be written as:

Ea
i = δa

i +
f a
i
r
+O(r−2),

Ai
a =

gi
a

r2 +O(r−3),
(7)

where:

δa
i =

{
1 if (a, i) = (x, 1), (y, 2), (z, 3)
0 otherwise.

Additionally, f a
i and gi

a are tensor fields defined on the asymptotic 2-sphere with the
following definite parity conditions:

f a
i

(
− x

r

)
= f a

i

( x
r

)
, gi

a

(
− x

r

)
= −gi

a

( x
r

)
. (8)

By the decay conditions (7) and (8), it is assured that the symplectic structure is
well-defined.

In Euclidean GR, the constraint surface in the (A, E)-phase space is defined by the
vanishing of the following functionals called Gauss, Hamiltonian and diffeomorphism
constraints, respectively

Gi[Λi] =
∫

d3x Λi
(

∂aEa
i + εijk Aj

aEa
k

)
,

H[N] =
∫

d3x NεijkFi
abEa

j Eb
k ,

Ha[Na] =
∫

d3x Na
(

Fj
abEb

j − Aj
aGj

)
.

(9)

where:
Fi

ab = ∂a Ai
b − ∂b Ai

a + εi
jk Aj

a Ak
b, (10)

is the curvature 2-form of A, Λi is the Lagrange multiplier associated with Gi and N is the
densitised lapse function with weight −1. It is desired to attain a well-defined form of
these functionals with the smearing functions including ISO(4) generators (4). To do this,
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first one has to ascertain an appropriate decay behaviour for Λi. Since the leading term of
Gi is O(r−2) odd, the convergence of Gi[Λi] requires the following fall-off condition:

Λi =
λi

r
+O(r−2), (11)

where λi are even functions defined on the asymptotic 2-sphere. It is straightforward
to verify that (11) also ensures the differentiability of Gi[Λi]. Even after subtracting the
surface integral, destroying the differentiability of the Hamiltonian and diffeomorphism
constraints (9), it turns out that they are convergent only for translations and not for boosts
and rotations. This situation should be cured in such a way that (1) the generators stay
functionally differentiable and (2) the well-defined generator for translations which is
already available can be recovered up to a pure gauge. As shown in [31,32], ultimately the
well-defined forms of the symmetry generators are:

J[N] = H[N]−
∮

dSa Nεijk Ai
bEa

j Eb
k − Gi[Λi

B] +
∮

dSa Ea
i Λ̄i

B,

Ja[Na] = Ha[Na]−
∮

dSa Na Ai
bEb

i − Gi[Λi
R] +

∮
dSa Ea

i Λ̄i
R,

(12)

where Λi
R = Λi + Λ̄i

R = Λi − 1
2 εijkδ

j
aδb

k βa
b and Λi

B = Λi + Λ̄i
B = Λi + δa

i βa. The second
term appearing in either expressions in (12) is the surface term subtracted to make the
original functionals (9) differentiable. The third term is subtracted to get rid of the source of
divergence for boosts and rotations but puts them again in the status of non-differentiability,
which is modified by adding the last term. As expected, the volume terms added to the
constraints are proportional to the Gauss constraint and thus do not change the translation
generator on the constraint surface of the Gauss constraint.

2.2. Review of U(1)3 Model for Euclidean Quantum Gravity

In [10], Smolin introduced the weak field limit of the Euclidean gravity GN → 0,
where GN is the Newtonian gravitational constant, by expanding the phase space variables
(A, E) as:

E = E0 + GN E1 + G2
N E2 + ...,

A = A0 + GN A1 + G2
N A2 + ...,

(13)

at the level of the action. The resulting theory is not to be confused with standard perturba-
tion theory. More precisely, consider the Hamiltonian for Euclidean gravity:

H[E, A] =
1

GN

∫
d3x
(

Na Ha + NH + ΛiGi

)
. (14)

Rescaling the dimensionful quantities in (14) by GN , namely the connection Ai
a → GN Ai

a
and the Lagrange multiplier Λi → GNΛi, the Gauss constraint of (9) and (10) become

Gi =DaEa
i = ∂aEa

i + εij
kGN Aj

aEa
k ,

Fi
ab =∂a Ai

b − ∂b Ai
a + εi

jkGN Aj
a Ak

b,
(15)

respectively. From (15), it is obvious that the internal gauge symmetry is still SU(2).
However, in the limit GN → 0, the second term, which causes the self-interaction of
the connection, is switched off. The Poisson bracket of a pair of Gauss constraints then
commutes, as one has:

{Gi[Λi], Gj[∆j]} ∝ GN , (16)

and the symmetry group contracts from SU(2) to three independent Abelian internal
gauge symmetry U(1) copies—namely U(1)3, each of which corresponds to one of the
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gauge fields Ai (i = 1, 2, 3). Consequently, the constraints remain first class and have the
following simpler forms:

Cj[λ
j] =

∫
d3x Λj∂aEa

j ,

Ca[Na] =
∫

d3x Na
(

Fj
abEb

j − Aj
a∂bEb

j

)
,

C[N] =
∫

d3x NFj
abEa

k Eb
l εjkl ,

(17)

where Cj, Ca and C are the Gauss, diffeomorphism and Hamiltonian constraints for the

U(1)3 model respectively and Fj
ab = ∂a Aj

b − ∂b Aj
a is the corresponding curvature. The

Hamiltonian then reads as:

H[E, A] =
1

GN

∫
d3x
(

NaCa + NC + ΛiCi

)
, (18)

and the only non-vanishing Poisson brackets of the pair of the constraints in the algebra
will be:

{Ca[Na], Cb[Mb]} = Ca[L−→N Ma],

{Ca[Na], C[N]} = C[L−→N N],

{C[N], C[M]} = Ca[EiaEb
i (NDb M−MDbN)].

(19)

The algebra, except for the vanishing Poisson bracket of a pair of Gauss constraints,
Ci’s, is isomorphic to the algebra of GR, as can be easily seen.

It transpires that the U(1)3 contraction of Euclidean SU(2) GR retains much of the
essential structure of Euclidean GR while being technically simpler, and therefore provides
an ideal testing ground for Euclidean GR and even for Lorentzian GR, as explained in the
introduction. For exciting recent work on the Dirac quantisation approach of this theory,
see [11–15].

3. Generators of Asymptotic Symmetries for U(1)3 Model

As the U(1)3 model is a test laboratory for Euclidean GR, it is of interest to know
whether the boundary conditions and asymptotic symmetries of these two theories are
identical. The question to be answered in this section is whether the ISO(4) group can be
considered as the asymptotic symmetries of the U(1)3 model. In other words, is there a
way to construct well-defined functionals from the constraints (17) while the lapse and the
shift include the ISO(4) generators? Although the model being pursued is not Euclidean
GR and there is no physical reason for why the ISO(4) group is the asymptotic symmetry,
since the two theories are structurally very similar as far as their constraint algebras are
concerned, it is natural to investigate to what extent the model admits (a subgroup of)
the ISO(4) group as an asymptotic symmetry group. In what follows, we examine the
constraints (17) and try to make them well-defined.

3.1. Gauss Constraint

The action of the Gauss constraint on the phase space variables is:

δΛ Aj
a = {Ci[Λi], Aj

a} = −∂aΛj,

δΛEa
j = {Ci[Λi], Ea

j } = 0.
(20)

Thus, one sees that:

δCj[Λj] =
∫

d3x Λj∂aδEa
j =

∮
dSa ΛjδEa

j −
∫

d3x (∂aΛj)δEa
j = −

∫
d3x (∂aΛj)δEa

j

=
∫

d3x
[
(δΛ Aj

a)δEa
j − (δΛEa

j )δAj
a

]
,

(21)
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is functionally differentiable. Here, the surface term has been dropped because δEa
j = O(r−1)

is even and Λj = O(r−1) is even. As ∂aEa
j = O(r−2) is odd, the integrand of Cj[Λj] is

O(r−3) odd and hence the constraint is also finite.

3.2. Scalar Constraint

It is straightforward to see that:

δN Ai
c(x) = {C[N], Ai

c(x)} = −2NεijkFj
acEa

k ,

δN Ec
i (x) = {C[N], Ec

i (x)} = 2εikl∂b(NEc
kEb

l ),
(22)

Thus, the variation in this constraint is:

δC[N] =
∫

d3x εjkl N
(

δFj
abEa

k Eb
l + 2Fj

abEb
l δEa

k

)
=
∫

d3x εjkl N
(
(∂aδAj

b − ∂bδAj
a)Ea

k Eb
l + 2Fj

abEb
l δEa

k

)
= 2

∫
d3x εjkl

(
∂a(NEa

k Eb
l δAj

b)− δAj
b∂a(NEa

k Eb
l ) + NFj

abEb
l δEa

k

)
=
∫

d3x 2εjkl

(
NFj

abEb
l δEa

k − δAj
b∂a(NEa

k Eb
l )
)
+ 2

∫
dSa(NEa

k Eb
l δAj

b)

=
∫

d3x
(

δAj
b(δN Eb

j )− (δN Ak
a)δEa

k

)
+ 2δ

∮
dSa εjkl(NEa

k Eb
l Aj

b).

(23)

We pulled the variation out of the surface integral in (23) because the correction terms
are O(r−1) even for a translation and O(1) odd for a boost. Now, we define the new
generator as:

C′[N] := C[N]− 2
∮

dSa Nεjkl A
j
bEa

k Eb
l , (24)

which is functionally differentiable. At this step, one is supposed to check whether it
is finite.

C′[N] =
∫

d3x εjkl

(
Fj

abEa
k Eb

l N − 2∂a(Aj
bEa

k Eb
l N)

)
=2

∫
d3x εjkl

(
1
2

Fj
abEa

k Eb
l N − Ea

k Eb
l N∂a Aj

b − Aj
bEb

l N∂aEa
k − Aj

bEa
k N∂aEb

l − Aj
bEa

k Eb
l ∂aN

)
=− 2

∫
d3x εjkl

(
Aj

bEb
l N∂aEa

k + Aj
bEa

k N∂aEb
l + Aj

bEa
k Eb

l ∂aN
)

.

(25)

Here, terms of the form AEN∂E are O(r−4) even for a translation and O(r−3) odd for
a boost. Thus, they are convergent. The last term which is of the form AEE∂N vanishes for
a translation but is divergent for a boost. Therefore, C′[N] is well-defined for a translation
and the source of its divergence for a boost is:

−2
∫

d3x εjkl(Aj
bEa

k Eb
l βa) = −

∫
d3x

1
r2 (βaεjkl g

j
bδa

k δb
l )−

∫
d3x βaεjkl A

j
bδa

k Eb
l + finite

= −
∫

d3x βaεjkl A
j
bδa

k Eb
l + finite,

(26)

where, in going from the first line to the second one, we used the parity of gj
b to drop

the linear singularity. Thus, we are left with the logarithmic singularity (26), which is
non-vanishing for a boost and also not a linear combination of constraints. Consequently,
time translations have a well-defined generator (24), but boosts do not! A more detailed
argument for this happens in the Abelian U(1)3 theory but not in the non-Abelian SU(2)
theory is given in Section 4.
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3.3. Vector Constraint

The vector constraint acts on the canonical variables as follows:

δ~N Ai
c(x) ={Ca[Na], Ai

c(x)} = −L~N Ai
c,

δ~N Ec
i (x) ={Ca[Na], Ec

i (x)} = −L~N Ec
i .

(27)

Hence, the variation in the constraint is:

δCa[Na] =
∫

d3x Na
(

δFj
abEb

j + Fj
abδEb

j − δAj
a∂bEb

j − Aj
a∂bδEb

j

)
=
∫

d3x Na
(

∂aδAj
bEb

j − ∂bδAj
aEb

j + ∂a Aj
bδEb

j − ∂b Aj
aδEb

j − δAj
a∂bEb

j − Aj
a∂bδEb

j

)
=
∫

d3x
(

δAj
a∂b(NaEb

j )− δAj
b∂a(NaEb

j ) + Na∂a Aj
bδEb

j − Na∂b Aj
aδEb

j

−NaδAj
a∂bEb

j + ∂b(Na Aj
a)δEb

j

)
+
∮

dSa (NaEb
j δAj

b − NbEa
j δAj

b − Nb Aj
bδEa

j )

=
∫

d3x
(

δAj
a

[
Eb

j ∂bNa − ∂b(NbEa
j )
]
+ δEb

j

[
Na∂a Aj

b + Aj
a∂bNa

])
+
∮

dSa (NaEb
j δAj

b − NbEa
j δAj

b)

=
∫

d3x
(

δAj
a

[
−L~N Ea

j

]
+ δEb

j

[
L~N Aj

b

])
+
∮

dSa (NaEb
j δAb

j − NbEa
j δAj

b)

=
∫

d3x
(

δAj
a

[
δ~N Ea

j

]
− δEb

j

[
δ~N Aj

b

])
+ δ

∮
dSa (NaEb

j Aj
b − NbEa

j Aj
b).

(28)

Here, the third term of the surface integral in the fourth line is O(1) odd for a rotation
and O(r−1) even for a translation and so can be dropped. Furthermore, in the last step one
can pull the variation out of the surface integral, since the correction terms areO(r−1) even
for a translation and O(1) odd for a rotation.

So the new generator should be defined as:

C′a[N
a] := Ca[Na]−

∮
dSa

(
NaEb

j − NbEa
j

)
Aj

b, (29)

which is functionally differentiable. To check its finiteness, we rewrite (29) as a vol-
ume integral:

C′a[N
a] =

∫
d3x

[
NaFj

abEb
j − Na Aj

a∂bEb
j − ∂a(NaEb

j Aj
b − NbEa

j Aj
b)
]

=
∫

d3x
[

NaFj
abEb

j − Na Aj
a∂bEb

j − NaEb
j Fj

ab − ∂a(NaEb
j − NbEa

j )Aj
b

]
=−

∫
d3x

[
Na Aj

a∂bEb
j + ∂a(NaEb

j − NbEa
j )Aj

b

]
=−

∫
d3x Aj

b

[
Eb

j ∂aNa + Na∂aEb
j − Ea

j ∂aNb
]
= −

∫
d3x Aj

bL~N Eb
j .

(30)

In the last line of (30), the term AN∂E is O(r−4) even for a translation and O(r−3)

odd for a rotation, which means it is convergent. The term Aj
bEb

j ∂aNa vanishes for both
translation and rotation because αa is a constant and βa

b is antisymmetric. On the other
hand, the other term of the form AE∂N is O(r−2) odd for a rotation and vanishes for a
translation. Thus, C′a[Na] is well-defined for a translation and the source of its divergence
for a rotation is:
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∫
d3x Aj

bEa
j βb

a =
∫

d3x βb
a Aj

b

(
δa

j +
f a
j

r
+ . . .

)

=
∫

d3x βb
a Aj

bδa
j +

∫
d3x βb

a Aj
b

f a
j

r
+ finite

=
∫

d3x βb
a Aj

bδa
j + finite,

(31)

where the second integral in the second line is convergent since its integrand is O(r−3)
odd. Accordingly, the obstruction term (31) vanishes for spatial translations but not for
rotations and it is also not a linear combination of constraints. Hence, spatial translations
have a well-defined generator (29), but rotations do not!

4. Comparison with the SU(2) Case

In this section, we scrutinise the situation and exhibit what exactly causes the dif-
ference between the U(1)3 and SU(2) theories—i.e., why the former does not admit
generators for boosts and rotations but the latter does. First, we split Fi

ab and Gi into
its Abelian and non-Abelian parts—i.e., Fi

ab = Fi+
ab + Fi−

ab and Gi = G+
i + G−i where

Fi+
ab = ∂a Ai

b − ∂b Ai
a, Fi−

ab = εijk Aj
a Ak

b, G+
i = ∂aEa

i and G−i = εijk Aj
aEa

k . Accordingly, the
Hamiltonian and diffeomorphism constraints also split into two terms corresponding to
the plus and minus pieces of Fi

ab and Gi, respectively— namely H[N] = H+[N] + H−[N]
and Ha[Na] = H+

a [Na] + H−a [Na], where:

H+[N] =
∫

d3x Nεjkl F
j+
ab Ea

k Eb
l , H−[N] =

∫
d3x Nεjkl F

j−
ab Ea

k Eb
l (32)

H+
a [N] =

∫
d3x Na(Fj+

ab Eb
j − Aj

aG+
j ), H−a [N] =

∫
d3x Na(Fj−

ab Eb
j − Aj

aG−j ) = 0. (33)

Due to the boundary conditions, Fi−
ab = O(r−4) is even and G−i = O(r−2) is odd.

Hence, the integrand of H−[N] isO(r−4) even for a translation andO(r−3) odd for a boost.
Therefore, the minus parts of these constraints are already finite. We show that H−[N] is
also functionally differentiable. Its action on the canonical variables is:

δN−Al
c := {H−[N], Al

c(x)} = −2Nεilkεimn Am
c An

b Eb
k ,

δN−Ec
l := {H−[N], Ec

l (x)} = 2NεijkεilnEc
j Eb

k An
b .

(34)

Using (34), one observes:

δH−[N] =
∫

d3x Nεjkl(δFj−
ab Ea

k Eb
l + Fj−

ab δEa
k Eb

l + Fj−
ab Ea

kδEb
l )

=
∫

d3x (δAl
c(2NεijkεilnEc

j Eb
k An

b ) + δEc
l (2Nεilkεimn Am

c An
b Eb

k))

=
∫

d3x (δAl
c(δN−Ec

l )− δEc
l (δN−Al

c)),

(35)

which means H−[N] is differentiable. Consequently, what needs to be modified are
H+[N] = C[N] and H+

a [Na] = Ca[Na], thus all failure to be well-defined is rooted in
the U(1)3 part of the Hamiltonian and diffeomorphism constraints of the SU(2) theory.
Thus, as far as finding the source of divergence and non-differentiability is concerned,
calculations are the same in both theories. This brings us back to (26) and (31) for boosts
and rotations, respectively.
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For a boost, the source of divergence can be expressed as:

−
∫

d3x βaεjkl A
j
bδa

k Eb
l =

∫
d3x (βaδa

k)G
−
k =

∫
d3x Λ̄k

B(Gk − G+
k )

= Gk[Λ̄
k
B]−

∫
d3x ∂b(Λ̄

k
BEb

k)

= Gk[Λ̄
k
B]−

∮
dSbΛ̄k

BEb
k ,

(36)

where we used ∂bΛ̄k
B = 0; see (12). As expected, at the end the volume term in (36)

is proportional to Gk. Therefore, both terms can be subtracted from the Hamiltonian
constraint, resulting in J[N] in (12), which is the final well-defined generator. Thus, we
have extracted the source of the subtlety: in the U(1)3 case, the absence of the non-Abelian
piece G−k in the Gauss constraint is responsible for excluding a well-defined boost generator.

We proceed to (31) and write:∫
d3x Aj

bβb
aδa

j =
∫

d3x Aj
b(εijkδb

k Λ̄i
R)

=
∫

d3x Aj
b(εijkEb

k Λ̄i
R)−

∫
d3x Aj

b(εijk
f b
k
r

Λ̄i
R) + finite

=
∫

d3x Λ̄i
RG−i + finite

=
∫

d3x Λ̄i
R(Gi − G+

i ) + finite

= Gi[Λ̄i
R]−

∮
dSa Λ̄i

REa
i + finite,

(37)

where ∂aΛ̄i
R = 0 has been used and the second integral in the second line is dropped,

since it is O(r−3) odd. Again, the volume term is proportional to the Gauss constraint,
as desired. It is straightforward to investigate that Ja[Na] in (12), which subtracts (37), is
the well-defined generator for the spatial translations and rotations. Hence again, just like
in (36), the presence of G−i (which is zero in the U(1)3 case) plays a crucial role in obtaining
the rotation generator.

One can rephrase the above technical reasoning in intuitive terms: The SU(2) Gauss
constraint generates rotations on the internal tangent space associated with the internal
indices j, k, l, . . . while asymptotic rotations act on the spatial tangent space corresponding
to the indices a, b, c, . . . . Due to the boundary conditions Ea

j ∝ δa
j , these tangent spaces

get identified in leading order, so it is not surprising that one can “undo” an unwanted
asymptotic rotation by an internal one. This cannot work in the U(1)3 case, because the
Gauss constraint does not generate internal rotations.

5. Conclusions

Due to the fact that the GN → 0 limit of Euclidean general relativity is an interesting toy
model for Lorentzian GR, this paper is devoted to studying its boundary conditions, yield-
ing a well-defined symplectic structure and finite and integrable charges associated with
the asymptotic symmetries. We have demonstrated that in the U(1)3 model, the boundary
terms appearing in the constraint volume term variation are variations in boundary terms
and therefore all constraints can be improved to differentiable functionals. However, these
functionals are not finite for boosts and rotations and we have shown that the reason for
this is precisely the lack of the non-Abelian term, which is εijk Aj

aEa
k in the Gauss constraint

of this model as compared to that of general relativity.
Although the study of surface charges and asymptotic symmetries is interesting in

its own right for any classical field theory, our main motivation is the quantum theory
of that model. In the Abelian case, the reduced phase space approach turns out to be
technically simple enough even without reference matter [33] because the constraints are
linear polynomials in one of the canonical variables (the connection), which thus can give
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us new insights into quantum theory from a different angle than the Dirac quantisation
approach does. To compute the corresponding physical Hamiltonian [17,18], generating
the time evolution of gauge invariant observables requires a careful treatment of boundary
conditions, as one has to invert partial differential operators (Green functions).
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