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Abstract: The standard Lense–Thirring metric is a century-old slow-rotation large-distance approximation
to the gravitational field outside a rotating massive body, depending only on the total mass and
angular momentum of the source. Although it is not an exact solution to the vacuum Einstein
equations, asymptotically the Lense–Thirring metric approaches the Kerr metric at large distances.
Herein we shall discuss a specific variant of the standard Lense–Thirring metric, carefully chosen
for simplicity, clarity, and various forms of improved mathematical and physical behaviour, (to be
more carefully defined in the body of the article). We shall see that this Lense–Thirring variant
can be viewed as arising from the linearization of a suitably chosen tetrad representing the Kerr
spacetime. In particular, we shall construct an explicit unit-lapse Painlevé–Gullstrand variant of
the Lense–Thirring spacetime, one that has flat spatial slices, a very simple and physically intuitive
tetrad, and extremely simple curvature tensors. We shall verify that this variant of the Lense–
Thirring spacetime is Petrov type I, (so it is not algebraically special), but nevertheless possesses
some very straightforward timelike geodesics, (the “rain” geodesics). We shall also discuss on-axis
and equatorial geodesics, ISCOs (innermost stable circular orbits) and circular photon orbits. Finally,
we wrap up by discussing some astrophysically relevant estimates, and analyze what happens if
we extrapolate down to small values of r; verifying that for sufficiently slow rotation we explicitly
recover slowly rotating Schwarzschild geometry. This Lense–Thirring variant can be viewed, in its
own right, as a “black hole mimic”, of direct interest to the observational astronomy community.

Keywords: general relativity; rotation; Kerr spacetime; Lense–Thirring spacetime

PACS: 04.20.-q; 04.20.Cv; 04.25.-g; 04.25.Nx; 04.90.+e

1. Introduction

Only two years after the discovery of the original Schwarzschild solution in 1916 [1],
in 1918 Lense and Thirring found an approximate solution to the vacuum Einstein equations
at large distances from a stationary isolated body of mass m and angular momentum J [2].
In suitable coordinates, at asymptotically large distances one has [2–10]:

ds2 = −
[

1− 2m
r

+O
(

1
r2

)]
dt2 −

[
4J sin2 θ

r
+O

(
1
r2

)]
dφ dt

+

[
1 +

2m
r

+O
(

1
r2

)] [
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (1)

Here the sign conventions are compatible with MTW [5] (33.6), and Hartle [7] (14.22)
(trying to explicitly calculate approximate curvature components for this approximate
metric is quite slow, and the results are quite horrid). It took another 45 years before Roy
Kerr found the corresponding exact solution in 1963 [11,12]. Some books explicitly focussed
on the Kerr spacetime include [10,13,14].
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Nevertheless the Lense–Thirring metric continues to be of interest for two main
reasons: (1) Lense–Thirring is much easier to work with than the full Kerr solution; and (2)
For a real rotating planet or star, generically possessing non-trivial mass multipole moments,
the vacuum solution outside the surface is not exactly Kerr; it is only asymptotically Kerr [9]
(there is no Birkhoff theorem for rotating bodies in 3 + 1 dimensions [15–19]). Consequently,
the only region where one should trust the Kerr solution (as applied to a real rotating star
or planet) is in the asymptotic regime, where in any case it reduces to the Lense–Thirring
metric (note in particular that Chandrasekhar’s book [13] does not include any weak-
field analysis, and is focussed primarily on the exact Kerr spacetime. See also relevant
observational details in references [20–22]).

Below we shall, by suitably adjusting the sub-dominant O(r−2) terms, recast a variant
of the standard Lense–Thirring metric of Equation (1) into Painlevé–Gullstrand form—in
this form of the metric (up to coordinate transformations) one has

ds2 = −dt2 + δij(dxi − vidt)(dxj − vjdt). (2)

That is, the constant-t spatial 3-slices of the metric are all flat, and the lapse function
is unity (gtt = −1). See the early references [23–25], and more recently [26–30] (note
that the vector vi, representing the “flow” of space, is minus the shift vector in the ADM
formalism). Two of the virtues of putting the metric into Painlevé–Gullstrand form is
that mathematically it is particularly easy to work with, and physically it is very easy to
interpret—in particular, the analogue spacetimes built from excitations in moving fluids are
typically (conformally) of Painlevé–Gullstrand form [31–42], and so give a very concrete
and physically intuitive visualization of such spacetimes.

2. Variants on the Theme of the Lense–Thirring Metric

Let us now take the original Lense–Thirring metric (1) and seek to modify and
simplify it in various ways, while retaining the good features of the asymptotic large-
distance behaviour.

• First, we note that at J = 0, for a non-rotating source we do have the Birkhoff theorem,
so it makes sense to consider the modified metric

ds2 = −
(

1− 2m
r

)
dt2 −

[
4J sin2 θ

r
+O

(
1
r2

)]
dφ dt

+
dr2

1− 2m/r
+ r2(dθ2 + sin2 θ dφ2). (3)

This modified metric asymptotically approaches standard Lense–Thirring (1) at large
distances, but has the very strong advantage that for J = 0 it is an exact solution of
the vacuum Einstein equations (trying to explicitly calculate approximate curvature
components for this approximate metric is slightly faster, and the results are somewhat
less horrid).

• Second, “complete the square”. Consider the modified metric

ds2 = −
(

1− 2m
r

)
dt2 +

dr2

1− 2m/r

+r2

(
dθ2 + sin2 θ

(
dφ−

[
2J
r3 +O

(
1
r4

)]
dt
)2
)

. (4)

This modified metric again asymptotically approaches standard Lense–Thirring (1) at
large distances, but now has the two very strong advantages that (i) for J = 0 it is an
exact solution of the vacuum Einstein equations and (ii) that the azimuthal dependence
is now in partial Painlevé–Gullstrand form: gφφ(dφ− vφ dt)2 = gφφ(dφ−ωdt)2. See
the early references [23–25], and more recently references [26–30]. We shall soon see
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that “completing the square” in the Lense–Thirring metric is equivalent to linearizing a
suitably chosen tetrad in the Kerr spacetime (trying to explicitly calculate approximate
curvature components for this approximate metric is again slightly faster, and the
results are again somewhat less horrid).

• Third, put the r–t plane into standard Painlevé–Gullstrand form [23–30] (we note that
the shift function is vr = −

√
2m/r for a Schwarzschild black hole). We then have the

modified metric

ds2 = −dt2 +
(

dr +
√

2m/r dt
)2

+r2

(
dθ2 + sin2 θ

(
dφ−

[
2J
r3 +O

(
1
r4

)]
dt
)2
)

. (5)

This modified metric again asymptotically approaches standard Lense–Thirring (1) at
large distances, but has the three very strong advantages that (i) for J = 0 it is an exact
solution of the vacuum Einstein equations, (ii) that the azimuthal dependence is now
in partial Painlevé–Gullstrand form, with gφφ(dφ− vφ dt)2 = gφφ(dφ−ωdt)2, and (iii)
that all the spatial dependence is in exact Painlevé–Gullstrand type form, in the sense
that the constant-t spatial 3-slices are now flat, and so very easy to interpret (trying to
explicitly calculate approximate curvature components for this approximate metric is
again slightly faster, and the results are again somewhat less horrid).

• Fourth, drop the O(1/r4) terms in the φ dependence. That is, consider the specific
and fully explicit metric:

ds2 = −dt2 +
(

dr +
√

2m/r dt
)2

+ r2

(
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
)

. (6)

By construction, for J = 0 this is the Painlevé–Gullstrand version of the Schwarzschild
metric [23–28]. By construction, at large distances this asymptotically approaches
the “standard" form of Lense–Thirring as given in Equation (1), and so it also asymp-
totically approaches Kerr. By construction even for J 6= 0 this metric is in exactly
Painlevé–Gullstrand form (in particular, with flat spatial 3-slices, and as we shall soon
see, unit lapse, and easily constructed timelike geodesics). These observations make
this specific form (6) of the Lense–Thirring spacetime particularly interesting (both
mathematically and physically) and worth further investigation (explicitly calculating
curvature components for this specific metric is now very much faster, and as we shall
soon see, the results are quite tractable).

We emphasize that the five spacetimes represented by these five metrics, (1)–(3)–(4)
–(5)–(6), are all physically different from each other. They may have the same asymptotic
limit at large distances, but differ in many crucial technical details. In particular, as we
shall soon see, the tetrads, curvature components, and the analysis of geodesics is much
easier for the fully explicit Painlevé–Gullstrand form of the metric (6) than it is for any of
the (1)–(3)–(4)–(5) variants.

Furthermore both the mathematics and the physics of our Painleve–Gullstrand Lense–
Thirring variant (6) is much cleaner than it is for any of the (1)–(3)–(4)–(5) variants. Among
other issues, we should emphasize that our Painleve–Gullstrand Lense–Thirring variant (6)
can be viewed as a “black hole mimic”, so it is of direct astrophysical interest to observa-
tional astronomers. The physics point here is that since Lense–Thirring is asymptotically
Kerr, it will pass all the usual weak-field observational tests of general relativity; but with
potentially different strong-field physics, the deep-field observations could differ. In this
regard it is very much like many other black hole mimics currently under theoretical
development—as long as one keeps the weak-field physics compatible with standard
general relativity one will have a viable candidate for a black hole mimic.



Universe 2021, 7, 105 4 of 23

3. Metric Components, Tetrad, and Curvature

We shall now analyze the metric, a particularly natural choice of tetrad (vierbein),
the curvature invariants, and the orthonormal tetrad components of the curvature tensors
for our Painlevé–Gullstrand variant (6) of the Lense–Thirring spacetime.

3.1. Metric Components

From (6) it is easy to read off the metric components

gab =


−1 + 2m

r + 4J2 sin2 θ
r4

√
2m
r 0 − 2J sin2 θ

r√
2m
r 1 0 0

0 0 r2 0

− 2J sin2 θ
r 0 0 r2 sin2 θ


ab

. (7)

Thence one can easily verify that for the inverse metric

gab =


−1

√
2m
r 0 − 2J

r3√
2m
r 1− 2m

r 0
√

2m
r

2J
r3

0 0 1
r2 0

− 2J
r3

√
2m
r

2J
r3 0 1

r2 sin2 θ
− 4J2

r6



ab

. (8)

Note particularly that gtt = −1, so that the lapse function is unity; this fact will be
particularly useful when we come to analyzing the geodesics.

3.2. Tetrads

There are good physics reasons (for instance, the ultimate inclusion of fermions by
formulating the general-relativistic Dirac equation) for viewing the tetrad formalism as
being more fundamental than the metric formalism. Let us see what we can do along
these lines.

Denote tetrad labels by an overhat: That is set â, b̂ ∈ {t̂, r̂, θ̂, φ̂}. Furthermore set
ηâb̂ = diag(−1, 1, 1, 1). To find a suitable covariant tetrad (co-tetrad) eâ

a, we wish to find a

particular solution of gab = ηâb̂ eâ
a eb̂

b. Then working from the line-element (6) an obvious
and straightforward choice for the co-tetrad is

et̂
a = (1; 0, 0, 0); er̂

a =

(√
2m
r

; 1, 0, 0

)
;

eθ̂
a = r(0; 0, 1, 0); eφ̂

a = r sin θ

(
−2J

r3 ; 0, 0, 1
)

. (9)

This choice of co-tetrad is of course not unique (the underlying metric is unaffected
by any arbitrary local Lorentz transformation Lâ

b̂ on the ortho-normal tetrad/co-tetrad
indices). However this co-tetrad is particularly well-adapted to the coordinate system used
in (6). Once the co-tetrad has been chosen, the contravariant tetrad (usually just called the
tetrad) is then uniquely defined by eâ

a = ηâb̂ eb̂
b gba.

The tetrad therefore will (as expected) satisfy

η âb̂ eâ
a eb̂

b = η âb̂ (ηâĉ eĉ
c gca)(ηb̂d̂ ed̂

d gda) = ηĉd̂ (eĉ
c gca)(ed̂

d gda)

= gcd gca gdb = gab. (10)
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A brief computation, or comparison with the inverse metric (8), leads to

et̂
a =

(
1;−

√
2m
r

, 0,
2J
r3

)
; er̂

a = (0; 1, 0, 0);

eθ̂
a =

1
r
(0; 0, 1, 0); eφ̂

a =
1

r sin θ
(0; 0, 0, 1). (11)

Note that the last 3 of these tetrad vectors are exactly those that would be expected for
flat Euclidean 3-space, and that for this choice of tetrad all of the nontrivial physics is tied
up in the timelike vector et̂

a. For our purposes the tetrad and co-tetrad are most usefully
employed in converting tensor coordinate components into an orthonormal basis. Observe
that the angular momentum J shows up linearly in this tetrad; and that the tetrad above is
manifestly a linear perturbation of the corresponding tetrad for the Painlevé–Gullstrand
version of Schwarzschild spacetime—it is in this precise sense that our Painleve–Gullstrand
variant of the Lense–Thirring spacetime can be thought of as a linearization, at the level of
the tetrad, of the Kerr spacetime. Furthermore, while this tetrad works very nicely for our
(6) Painlevé–Gullstrand variant of Lense–Thirring, it will at best be much messier for any
and all of the (1)–(3)–(4)–(5) variants of Lense–Thirring spacetime.

3.3. Curvature Invariants

While the specific Lense–Thirring spacetime variant we are interested in, that of
Equation (6), is not (exactly) Ricci-flat, it is easy to calculate the Ricci scalar and Ricci
invariant and verify that they are particularly simple and that asymptotically they are
suitably small. We have

R =
18J2 sin2 θ

r6 ; (12)

and

Rab Rab = 3R2. (13)

Note that all the right things happen as J → 0. Note that all the right things happen
as r → ∞. Ultimately, it is the observation that these quantities fall-off very rapidly with
distance that justifies the assertion that this is a useful “approximate” solution to the vacuum
Einstein equations.

A more subtle calculation is to evaluate the Weyl invariant:

Cabcd Cabcd =
48m2

r6 − 144J2(2 cos2 θ + 1)
r8 +

864mJ2 sin2 θ

r9 +
1728J4 sin4 θ

r12

=
48m2

r6 − 144J2(3− 2 sin2 θ)

r8 +
48m
r3 R +

16
3

R2

=
48m2

r6 − 432J2

r8 +
16
r2

(
1 +

3m
r

)
R +

16
3

R2. (14)

Note that this is exactly what you would expect for Schwarzschild, 48m2/r6, plus a
rapid fall-off angular-momentum-dependent term,O(J2/r8). Similarly for the Kretschmann
scalar we have

RabcdRabcd = Cabcd Cabcd +
1728J4 sin4 θ

r12 = Cabcd Cabcd +
17
3

R2. (15)

3.4. Curvature Tensors

Calculating the Ricci and Einstein tensors is (in the tetrad basis) straightforward.
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• Taking Râb̂ = eâ
a eb̂

b Rab, in terms of the Ricci scalar R we have:

Râb̂ = R


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

. (16)

Notice the perhaps somewhat unexpected pattern of zeros and minus signs.
• Taking Gâb̂ = eâ

a eb̂
b Gab, in terms of the Ricci scalar R we have:

Gâb̂ =
R
2


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

. (17)

Notice the perhaps somewhat unexpected pattern of zeros and minus signs.
• Algebraically, this implies that the Ricci and Einstein tensors are type I in the Hawking–

Ellis (Segre–Plebanski) classification [43,44].

In contrast, calculating the Weyl and Riemann tensors is somewhat tedious.

• Take Câb̂ĉd̂ = eâ
a eb̂

b eĉ
c ed̂

d Cabcd.

– The terms quadratic in J are:

Ct̂r̂t̂r̂ = −2Ct̂θ̂ t̂θ̂ = −2Ct̂φ̂t̂φ̂ = 2Cr̂θ̂r̂θ̂ = 2Cr̂φ̂r̂φ̂ = −Cθ̂φθ̂φ̂

= −2m
r3 −

12J2 sin2 θ

r6 = −2m
r3 −

2
3

R. (18)

– There are also several terms linear in J:

1
2

Ct̂r̂θ̂φ̂ = Ct̂θ̂r̂φ̂ = −Ct̂φ̂r̂θ̂ =
3J cos θ

r4 ;

Ct̂r̂r̂φ̂ = −Ct̂θ̂θ̂φ̂ = −3J sin θ

r4 ;

Ct̂r̂t̂φ̂ = −Cr̂θ̂θ̂φ̂ =
3J sin θ

√
2m/r

r4 . (19)

• Take Râb̂ĉd̂ = eâ
a eb̂

b eĉ
c ed̂

d Rabcd.

– The terms quadratic in J are:

Rt̂r̂t̂r̂ = −2m
r3 −

27J2 sin2 θ

r6 = −2m
r3 −

3
2

R.

Rt̂φ̂t̂φ̂ = −Rr̂φ̂r̂φ̂ =
m
r3 +

9J2 sin2 θ

r6 =
m
r3 +

1
2

R. (20)

– There are also several terms linear in J:

Rt̂r̂θ̂φ̂ = 2Rt̂θ̂r̂φ̂ = −2Rt̂φ̂r̂θ̂ =
6J cos θ

r4 ;

Rt̂r̂r̂φ̂ = −Rt̂θ̂θ̂φ̂ = −3J sin θ

r4 ;

Rt̂r̂t̂φ̂ = −Rr̂θ̂θ̂φ̂ =
3J sin θ

√
2m/r

r4 . (21)
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– There are now also several terms completely independent of J:

Rt̂θ̂ t̂θ̂ = −Rr̂θ̂r̂θ̂ =
1
2

Rθ̂φ̂θ̂φ̂ =
m
r3 ; (22)

Overall, the tetrad components of the Weyl and Riemann tensors are quite tractable;
the coordinate components are considerably more complicated.

4. Petrov Type I

It is straightforward (if somewhat tedious) to check that the Painlevé–Gullstrand
version of the Lense–Thirring metric is Petrov type I. (that is, the Lense–Thirirng geometry
is not algebraically special). To do this, one proceeds by first calculating the mixed Weyl
tensor Câb̂

ĉd̂. Now since this object is antisymmetric in the individual pairs [âb̂] and [ĉd̂]
this can effectively be thought of as a real 6× 6 matrix according to the scheme A←→ [âb̂]
and B←→ [ĉd̂] as follows:

1↔ [1̂2̂]; 2↔ [1̂3̂]; 3↔ [1̂4̂]; 4↔ [3̂4̂]; 5↔ [4̂2̂]; 6↔ [2̂3̂].

Note that this 6× 6 matrix CA
B is not symmetric, nor should it be symmetric.

It is particularly useful to first define the two real quantities

Ξ1 = −m
r3 −

6J2 sin2 θ

r6 ; Ξ2 =
3J cos θ

r4 . (23)

Further defining s = sin(θ) the 6× 6 matrix CA
B is:

CA
B =



−2 Ξ1 0 −3
√

2m
r

Js
r4 −2 Ξ2 − 3Js

r4 0

0 Ξ1 0 − 3Js
r4 Ξ2 0

−3
√

2m
r

Js
r4 0 Ξ1 0 0 Ξ2

2 Ξ2
3Js
r4 0 −2 Ξ1 0 −3

√
2m
r

Js
r4

3Js
r4 −Ξ2 0 0 Ξ1 0

0 0 −Ξ2 −3
√

2m
r

Js
r4 0 Ξ1


. (24)

Note that the 6× 6 matrix CA
B is traceless, CA

A = 0 (as it must be since Cab
ab = 0).

This asymmetric matrix nevertheless has the partial symmetry

CA
B =

[
SR SI
−SI SR

]
. (25)

Here SR and SI are themselves symmetric traceless 3× 3 matrices.
There are 6 distinct eigenvalues, appearing in complex conjugate pairs. Explicitly,

defining the third real quantity

Ξ3 =

(
3Js
r4

)2
−
(

3

√
2m
r

Js
r4

)2

= 9
(

1− 2m
r

)
J2 sin2 θ

r8 , (26)

the 6 eigenvalues of CA
B are

Ξ1 + i Ξ2; −1
2
(Ξ1 + i Ξ2)±

√
9
4 (Ξ1 + i Ξ2)2 − Ξ3; (27)

and

Ξ1 − i Ξ2; −1
2
(Ξ1 − i Ξ2)±

√
9
4 (Ξ1 − i Ξ2)2 − Ξ3. (28)
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Note that the sum over all six eigenvalues yields zero, as it must do since the underly-
ing matrix CA

B is traceless.
The fact that there are (generically) 6 distinct eigenvalues guarantees that the Jordan

canonical form of CA
B is trivial, and therefore that the spacetime is of Petrov type I (that is,

the Painlevé–Gullstrand from of Lense–Thirring is not algebraically special). Relevant discus-
sion can be found on pages 49 and 50 of the “Exact solutions” book by Stephani et al. [45].
Note that those authors prefer to rearrange the 6× 6 real matrix CA

B into a pair of 3× 3
complex matrices:

S± = SR ± iSI =


−2(Ξ1 ± iΞ2) ∓ 3i Js

r4 −3
√

2m
r

Js
r4

∓ 3i Js
r4 Ξ1 ± iΞ2 0

−3
√

2m
r

Js
r4 0 Ξ1 ± iΞ2

. (29)

This really makes no difference to the physics of the discussion, but does simplify the
matrix algebra. It is easy to check that the 3 eigenvalues of S+ are given by (27), and that
the 3 eigenvalues of S− are given by (28). In view of the fact that tr(S±) = 0, each set of
3 eigenvalues must independently sum to zero, as they explicitly do.

Let us now consider some special cases:

• On the rotation axis we have θ → 0. So Ξ1 → −m
r3 , while Ξ2 → 3J

r4 and Ξ3 → 0. Then
S± are both complex diagonal and the 6 Weyl eigenvalues collapse to

{λ} →
{
−m

r3 ±
3i J
r4 , −m

r3 ±
3i J
r4 ;−2

(
−m

r3 ±
3i J
r4

)}
. (30)

So on-axis the 6 Weyl eigenvalues are degenerate.

• On the equator we have θ → π/2. So Ξ1 → −m
r3 − 6J2

r6 , while Ξ2 → 0 and finally
we have Ξ3 → 9(1− 2m

r )J2/r8. Then S+ = S− and the eigenvalues collapse to the
twice-repeated degenerate values

{λ} →
{

Ξ1,−1
2

Ξ1 ±
√

9
4 (Ξ1)2 − Ξ3

}
. (31)

• Finally note that when J → 0 we have Ξ1 → −m
r3 , while Ξ2 → 0 and Ξ3 → 0. Then S±

are both real and diagonal and the 6 Weyl eigenvalues collapse to

{λ} →
{
−m

r3 , −m
r3 , −m

r3 , −m
r3 ;

2m
r3 ,

2m
r3

}
.

This is exactly the repeated eigenvalue structure you would expect for the Schwarzschild
spacetime.

That is: While the Weyl eigenvalues are degenerate on-axis, on the equator, and in the
non-rotating J → 0 limit, the generic situation is that there are six distinct eigenvalues; our
Painlevé–Gullstrand variant of Lense–Thirring is Petrov type I. While, generally speaking,
Petrov type I is normally associated with a lack of special properties, we shall soon see that
the Painlevé–Gullstrand variant of Lense–Thirring still has many very nice features when
it comes to the analysis of geodesics.

5. “Rain” Geodesics

For our Painlevé–Gullstrand variant of Lense–Thirring spacetime at least some of
the timelike geodesics, the “rain” geodesics corresponding to a test object being dropped
from spatial infinity with zero initial velocity and zero angular momentum, are particularly
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easy to analyze (these are sometimes called ZAMOs—zero angular momentum observers).
Consider the vector field

Va = −gab∇bt = −gta =

(
1;−

√
2m
r

, 0,
2J
r3

)
. (32)

This implies

Va = −∇at = (−1; 0, 0, 0). (33)

Thence gabVaVb = VaVa = −1, so Va is a future-pointing timelike vector field with
unit norm, a 4-velocity. However, then this vector field has zero 4-acceleration:

Aa = Vb∇bVa = −Vb∇b∇at = −Vb∇a∇bt = Vb∇aVb =
1
2
∇a(VbVb) = 0. (34)

Thus, the integral curves of Va are timelike geodesics. For this construction to work it
is essential that the metric be unit-lapse—so while this works nicely for our (6) Painlevé–
Gullstrand variant of Lense–Thirring, it will fail for any and all of the (1)–(3)–(4)–(5) variants
of Lense–Thirring spacetime.

Specifically, the integral curves represented by

dxa

dτ
=

(
dt
dτ

;
dr
dτ

,
dθ

dτ
,

dφ

dτ

)
=
(

1;−
√

2m/r, 0, 2J/r3
)

(35)

are timelike geodesics. Integrating two of these equations is trivial

t(τ) = τ; θ(τ) = θ∞; (36)

so that the time coordinate t can be identified with the proper time of these particular
geodesics, and θ∞ is the original (and permanent) value of the θ coordinate for these
particular geodesics.

Furthermore, algebraically one has

1
2

(
dr
dt

)2
=

m
r

; (37)

so these particular geodesics mimic Newtonian infall from spatial infinity with initial
velocity zero.

Finally note that

dφ

dr
=

dφ/dτ

dr/dτ
= − 2J/r3
√

2m/r
= − 2J√

2m
r−5/2, (38)

which is easily integrated to yield

φ(r) = φ∞ +
4J

3
√

2m
r−3/2. (39)

Here φ∞ is the initial value of the φ coordinate (at r = ∞) for these particular geodesics.
Note the particularly clean and simple way in which rotation of the source causes these
“rain” geodesics to be deflected. These pleasant features are specific to our (6) Painlevé–
Gullstrand variant of Lense–Thirring, and fail for the (1)–(3)–(4)–(5) variants of Lense–
Thirring spacetime.

6. On-Axis Geodesics

The on-axis geodesics are particularly important for both theoretical and observational
reasons. Observationally, they are relevant when considering polar “jets” from rotating
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astrophysical sources (QSOs and AGNs; quasi-stellar objects and active galactic nuclei).
Certainly this holds at large distances well outside the source, and arguably is relevant at
medium distances as well. See references [46–51]. Theoretically, they are relevant as simple
models and consistency checks on the overall formalism. Working on-axis we have either
θ ≡ 0 or θ ≡ π, and so θ̇ = 0. Working on-axis we can, without loss of generality, also
choose φ̇ = 0. Then we need only consider the t–r plane, and the specific variant of the
Lense–Thirring metric that we are interested in effectively reduces to

ds2 → −dt2 +
(

dr +
√

2m/r dt
)2

. (40)

That is, we effectively have

gab →

 −1 + 2m
r

√
2m
r√

2m
r 1

; gab →

 −1
√

2m
r√

2m
r 1− 2m

r

. (41)

This observation is enough to guarantee that on-axis the geodesics of our specific (6)
Painlevé–Gullstrand variant of the Lense–Thirring spacetime are identical to those for the
Painlevé–Gullstrand version of the Schwarzschild spacetime (For a related discussion, see
for instance the discussion by Martel and Poisson in reference [29]). For the on-axis null
curves xa(t) = (t, r(t)) we have gab (dxa/dt) (dxb/dt) = 0 implying

−1 +
(

dr
dt

+
√

2m/r
)2

= 0. (42)

That is, for on-axis null curves (as expected for a black hole) we have

dr
dt

= −
√

2m
r
± 1. (43)

For on-axis timelike geodesics we parameterize by proper time xa(τ) = (t(τ), r(τ)).
Then we have gab (dxa/dτ) (dxb/dτ) = −1, implying(

dt
dτ

)2
(
−1 +

(
dr
dt

+
√

2m/r
)2
)

= −1. (44)

From the time translation Killing vector Ka = (1; 0, 0, 0)a → (1, 0)a we construct the
conserved quantity:

Ka (dxa/dτ) = k. (45)

Thence (
dt
dτ

)((
−1 +

2m
r

)
+

√
2m
r

dr
dt

)
= k. (46)

Eliminating dt/dτ we see

k2

(
−1 +

(
dr
dt

+
√

2m/r
)2
)

= −
((
−1 +

2m
r

)
+

√
2m
r

dr
dt

)2

. (47)

This is a quadratic for dr/dt, with explicit general solution

dr
dt

= −
√

2m
r

k2 − 1 + 2m/r
k2 + 2m/r

± k
√

k2 − 1 + 2m/r
k2 + 2m/r

. (48)
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The limit k→ ∞ reproduces the result for on-axis null geodesics given in (43).
As r → ∞ one has

lim
r→∞

(
dr
dt

)
= ±

√
1− 1

k2 , (49)

which provides a physical interpretation for the parameter k. Indeed

k =
1√

1−
(

dr
dt

)2

∞

(50)

is the asymptotic “gamma factor” of the on-axis geodesic (which may be less than unity,
and

(
dr
dt

)
∞

might formally be imaginary, if the geodesic is bound). As k→ 1 the negative
root corresponds to the “rain” geodesic falling in from spatial infinity with zero initial
velocity, so that dr/dt = −

√
2m/r, while the positive root yields

dr
dt

=

√
2m
r

(
1− 2m/r
1 + 2m/r

)
. (51)

This represents an outgoing timelike geodesic with dr
dt asymptoting to zero at large

distances. Overall, the on-axis geodesics of our variant Lense–Thirring spacetime are
quite simple to deal with. Understanding on-axis geodesics boils down to understanding
Schwarzschild geodesics.

7. Generic Non-Circular Equatorial Geodesics

For equatorial geodesics we set θ = π/2, and consequently θ̇ = 0. For generic
non-circular equatorial geodesics it proves most efficient to work directly in terms of the
conserved Killing quantities associated with the timelike and azimuthal Killing vectors
(for circular equatorial geodesics, discussed in the next section, the effective potential
proves to be a more useful tool). Working on the equator we need only consider the t–r–φ
hypersurface, and our specific (6) Painlevé–Gullstrand variant of the Lense–Thirring metric
effectively reduces to

ds2 → −dt2 +
(

dr +
√

2m/r dt
)2

+ r2
(

dφ− 2J
r3 dt

)2
. (52)

That is, we effectively have

gab →


−1 + 2m

r + 4J2

r4

√
2m
r − 2J

r√
2m
r 1 0

− 2J
r 0 r2

, (53)

and thence

gab →


−1

√
2m
r − 2J

r3√
2m
r 1− 2m

r

√
2m
r

2J
r3

− 2J
r3

√
2m
r

2J
r3

1
r2 − 4J2

r6

. (54)
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7.1. Equatorial Non-Circular Null Geodesics

For equatorial (non-circular) null geodesics let us parameterize the geodesic curve
xa(λ) = (t(λ); xi(λ)) by some arbitrary affine parameter λ. Then the null condition
gab (dxa/dt) (dxb/dt) = 0 implies

−1 +
(

dr
dt

+
√

2m/r
)2

+ r2
(

dφ

dt
− 2J

r3

)2
= 0. (55)

From the time translation and azimuthal Killing vectors, Ka = (1; 0, 0, 0)a → (1; 0, 0)a

and K̃a = (0; 0, 0, 1)a → (0, 0, 1)a, we construct the two conserved quantities:

Ka

(
dxa

dλ

)
= k; and K̃a

(
dxa

dλ

)
= k̃. (56)

Explicitly these yield

dt
dλ

(
−1 +

2m
r

+
4J2

r4 +

√
2m
r

dr
dt
− 2J

r
dφ

dt

)
= k, (57)

and

dt
dλ

(
−2J

r
+ r2 dφ

dt

)
= k̃. (58)

Eliminating dt/dλ between these two equations we see

k̃

(
−1 +

2m
r

+
4J2

r4 +

√
2m
r

dr
dt
− 2J

r
dφ

dt

)
= kr2

(
dφ

dt
− 2J

r3

)
. (59)

This can be solved, either for dφ/dt or for dr/dt, and then substituted back into the
null condition (55) to yield a quadratic, either for dr/dt or for dφ/dt. These quadratics
can be solved, exactly, for dr/dt or for dφ/dt, but the explicit results are messy. Recalling
that the Lense–Thirring spacetime is at least in its original incarnation a large-distance
approximation, it makes sense to peel off the leading terms in an expansion in terms of
inverse powers of r.

For dr/dt one then finds

dr
dt

= −
√

2m
r

P(r)±
√

Q(r), (60)

where P(r) and Q(r) are rational polynomials in r that asymptotically satisfy

P(r) = 1− k̃2

k2r2 +O(1/r5); Q(r) = 1−
(

1 +
2m
r

)
k̃2

k2r2 +O(1/r5). (61)

Fully explicit formulae for P(r) and Q(r) can easily be found but are quite messy to
write down.

Similarly for dφ/dt one finds

dφ

dt
=

(
2J
r3 −

k̃
kr2

)
P̃(r)±

√
2m
r

k̃
kr2

√
Q̃(r) . (62)

Here P̃(r) and Q̃(r) are rational polynomials in r that asymptotically satisfy

P̃(r) = 1− 2k̃(Jk + mk̃)
k2r3 +O(r−4); Q̃(r) = 1− k̃2

k2r2 −
2k̃(2Jk + mk̃)

k2r3 +O(r−5). (63)
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Fully explicit formulae for P̃(r) and Q̃(r) can easily be found but are quite messy to
write down. Overall, while equatorial null geodesics are in principle integrable, they are in
practice not entirely tractable.

7.2. Equatorial Non-Circular Timelike Geodesics

For equatorial timelike geodesics the basic principles are quite similar. First let us
parameterize the curve xa(τ) using the proper time parameter. Then the timelike normal-
ization condition gab (dxa/dτ) (dxb/dτ) = −1 implies(

dt
dτ

)2
(
−1 +

(
dr
dt

+
√

2m/r
)2

+ r2
(

dφ

dt
− 2J

r3

)2
)

= −1. (64)

By considering the time translation and azimuthal Killing vectors, Ka = (1; 0, 0, 0)a →
(1; 0, 0)a and K̃a = (0; 0, 0, 1)a → (0, 0, 1)a, we construct the two conserved quantities:

Ka

(
dxa

dτ

)
= k; and K̃a

(
dxa

dτ

)
= k̃. (65)

Explicitly these yield

dt
dτ

(
−1 +

2m
r

+
4J2

r4 +

√
2m
r

dr
dt
− 2J

r
dφ

dt

)
= k, (66)

and

dt
dτ

(
−2J

r
+ r2 dφ

dt

)
= k̃. (67)

Eliminating dt/dτ between these two equations we see

k̃

(
−1 +

2m
r

+
4J2

r4 +

√
2m
r

dr
dt
− 2J

r
dφ

dt

)
= kr2

(
dφ

dt
− 2J

r3

)
. (68)

Eliminating dt/dτ between (67) and (64) we see

k̃2

(
−1 +

(
dr
dt

+
√

2m/r
)2

+ r2
(

dφ

dt
− 2J

r3

)2
)

= −
(
−2J

r
+ r2 dφ

dt

)2
. (69)

Equation (68) can be solved, either for dφ/dt or for dr/dt, and then substituted back
into the modified timelike normalization condition (69) to yield a quadratic, either for
dr/dt or for dφ/dt. As for the null geodesics, it is useful to work perturbatively at large r.

Fot dr/dt one then finds

dr
dt

= −
√

2m
r

P(r)±
√

Q(r), (70)

where P(r) and Q(r) are rational polynomials in r that asymptotically satisfy

P(r) = 1− k−2 +
2m
k4r

+O(1/r2); Q(r) = 1− k−2 +
2m(2− k2)

k4r
+O(1/r2). (71)

Fully explicit formulae for P(r) and Q(r) can easily be found but are quite messy to
write down.

Similarly for dφ/dt one finds

dφ

dt
=

(
2J
r3 −

k̃
kr2

)
P̃(r)±

√
2m
r

k̃
kr2

√
Q̃(r) (72)
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where P̃(r) and Q̃(r) are rational polynomials in r that asymptotically satisfy

P̃(r) = 1− 2m
k2r

+O(1/r2); Q̃(r) = 1− k−2 +
2m(2− k2)

k4r
+O(1/r2). (73)

Fully explicit formulae for P̃(r) and Q̃(r) can easily be found but are quite messy
to write down. Overall, while equatorial non-circular timelike geodesics are in principle
integrable, they are in practice not entirely tractable.

8. Circular Equatorial Geodesics

For circular equatorial geodesics the use of the effective potential formalism proves
to be most efficient. Recall that the line element for our variant of the Lense–Thirring
spacetime is:

ds2 = −dt2 +

(
dr +

√
2m
r

dt

)2

+ r2

(
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
)

. (74)

Now consider the tangent vector to the worldline of a massive or massless particle,
parameterized by some arbitrary affine parameter, λ:

gab
dxa

dλ

dxb

dλ
= −

(
dt
dλ

)2
+

[(
dr
dλ

)
+

√
2m
r

(
dt
dλ

)]2

+r2

{(
dθ

dλ

)2
+ sin2 θ

[(
dφ

dλ

)
− 2J

r3

(
dt
dλ

)]2
}

. (75)

We may, without loss of generality, separate the two physically interesting cases
(timelike and null) by defining:

ε =

{
−1 massive particle, i.e., timelike worldline

0 massless particle, i.e., null worldline.
(76)

That is, ds2

dλ2 = ε. We now consider geodesics on the equatorial plane, that is, we fix
θ = π

2 (hence, dθ
dλ = 0). These geodesics now represent (not yet circular) orbits restricted to

the equatorial plane only. The timelike/null condition now reads:

−
(

dt
dλ

)2
+

[(
dr
dλ

)
+

√
2m
r

(
dt
dλ

)]2

+ r2
[(

dφ

dλ

)
− 2J

r3

(
dt
dλ

)]2
= ε . (77)

The Killing symmetries in the t and φ–coordinates yield the following expressions for
the conserved energy E and angular momentum L per unit mass:

E =

(
−1 +

2m
r

+
4J2

r4

)(
dt
dλ

)
+

√
2m
r

(
dr
dλ

)
− 2J

r

(
dφ

dλ

)
; (78)

L = r2
(

dφ

dλ

)
− 2J

r

(
dt
dλ

)
. (79)

Treating Equations (77)–(79) as a system of three equations in the three unknowns dt
dλ ,

dr
dλ , and dφ

dλ , we can rearrange and solve for dr
dλ as a function of the metric parameters, r, E,

L, and ε only. This process yields:

dr
dλ

= ±

√(
E +

2JL
r3

)2
−
(

1− 2m
r

)(
L2

r2 − ε

)
. (80)
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We can now solve for the effective potential and then use the features of this effective
potential to solve for the radial positions of the circular photon orbits and innermost stable
circular orbits of our spacetime. The potential is given by:

V(r) = E2 −
(

dr
dλ

)2
=

(
1− 2m

r

)(
L2

r2 − ε

)
+ E2 −

(
E +

2LJ
r3

)2
(81)

Notice that in the limit where J → 0, the potential is manifestly that of Schwarzschild.
We now consider two separate cases, the massless case where ε = 0 and the massive case
where ε = −1. We shall start our analysis with the massless case.

8.1. Circular Null Orbits

In the massless case where ε = 0, our potential reduces to

V0(r) =
(

1− 2m
r

)
L2

r2 −
4EJL

r3 − 4L2 J2

r6 =
L(L(r− 2m)r3 + 4J(JL + Er3))

r6 . (82)

The photon ring of our spacetime occurs where dV0(r)
dr = 0. That is, the value of r

where the following condition is met:

dV0(r)
dr

= −2L
r7

(
Lr4 − 3(Lm + 2EJ)r3 − 12J2L

)
= 0. (83)

This quartic equation has no tractable analytic solution. However, a more tractable
semi-analytic solution can be obtained if we solve the two equations V0(r) = E2 and
dV0(r)

dr = 0 simultaneously. That is, we solve the following polynomials simultaneously
for r:

Lr4 − 3(Lm + 2EJ)r3 − 12J2L = 0 ; (84)

and

E2r6 − L2r4 + 2L(Lm + 2EJ)r3 + 4J2L2 = 0. (85)

If we eliminate E from these equations, we find

r5 − 6mr4 + 9mr3 + 72J2m− 36rJ2 = 0. (86)

Notice that L has also been eliminated in this process. Now we rearrange:

r3(r− 3m)2 = 36J2(1− 2m/r)r. (87)

Thence

r = 3m± 6J
√

1− 2m/r
r

. (88)

This is still exact. To now estimate the value of r corresponding to the location of the
photon ring purely in terms of the parameters present in our spacetime, we iterate the
lowest-order estimate r = 3m +O(J) to yield

r = 3m± 6J
√

1− 2/3
3m

+O(J2). (89)

Finally

r = 3m± 2J√
3 m

+O(J2). (90)
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Notice that in the limit where J → 0, the photon ring reduces to its known location in
Schwarzschild. Furthermore, note that in the Kerr geometry, the photon ring for massless
particles occurs at [52]:

rKerr = 2m
[

1 + cos
(

2
3

cos−1
(
± J

m2

))]
. (91)

If we conduct a Taylor series expansion around J = 0, we find

rKerr(J → 0) = 2m
(

3
2
± J√

3 m2
+O(J2)

)
= 3m± 2J√

3 m
+O(J2), (92)

which is exactly the photon ring location in the Lense–Thirring spacetime. This shows that
in the slow-rotation limit, the Kerr solution does reduce to Lense–Thirring as we expect.

In terms of stability of these orbits, we analyse the second derivative of the
potential V0(r):

d2V0(r)
dr2 = −6L

r8

(
28J2L + 4(mL + 2EJ)r3 − Lr4

)
. (93)

However, here we cannot simply eliminate L as we did before. Instead we solve
dV0(r)

dr = 0 for L, which gives

L = − 6EJr3

12J2 + 3mr3 − r4 . (94)

Substituting this back into Equation (93) we find

d2V0(r)
dr2 = − 72E2 J2(r4 + 36J2)

r2(12J2 + 3mr3 − r4)2 , (95)

which is everywhere negative. Hence all equatorial circular null geodesics in our Painlevé–
Gullstrand variant of the Lense–Thirring spacetime are unstable.

8.2. ISCOs (Innermost Stable Circular Orbits)

In the massive case (timelike orbits) where ε = −1, our potential reduces to:

V−1(r) =
(

1− 2m
r

)(
1 +

L2

r2

)
− 4EJL

r3 − 4L2 J2

r6 . (96)

Taking the derivative of this

dV−1(r)
dr

=
2
r7

(
mr5 − L(Lr4 − 3(Lm + 2EJ)r3 − 12J2L).

)
(97)

Similarly to the null case, dV−1(r)
dr = 0, which is now a quintic, has no analytic solution.

However, we can begin to form an analytic solution if we solve both V−1(r) = E2 and
dV−1(r)

dr = 0 simultaneously. That is, we solve the following polynomials simultaneously
for r:

mr5 − L(Lr4 − 3(Lm + 2EJ)r3 − 12J2L) = 0; (98)

(E2 − 1)r6 + 2mr5 − L2r4 + 2L(Lm + 2EJ)r3 + 4J2L2 = 0. (99)
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If we extract E from the first of these equations, we find

E = −mr5 − L2r4 + 3mL2r3 + 12J2L2

6JLr3 . (100)

Substituting this back into (99) we find the following condition:

r3(3L2m− L2r + mr2)2 − 36J2L2(L2 + r2)(r− 2m) = 0. (101)

This condition shows that there exist many circular timelike orbits r(L, J, m). Unlike
the null case, L is not eliminated, hence we cannot solve for the ISCO location yet. We next
find the second derivative of the potential:

d2V−1(r)
dr2 = − 2

r8

(
2mr5 − 3L2r4 + 12L(mL + 2EJ)r3 + 84J2L2

)
. (102)

Now substituting our expression for E:

d2V−1(r)
dr2 = − 2

r8 (L2(r4 + 36J2)− 2mr5). (103)

The condition for an extremal equatorial circular orbit is d2V−1(r)
dr2 = 0, that is:

(L2(r4 + 36J2)− 2mr5) = 0. (104)

Using this condition and our condition for an equatorial circular orbit, Equation (101),
we can now eliminate L and hence find

mr6(r− 6m)2 = 72J2(r2 + mr− 10m2) + 1296J4(2r− 5m). (105)

This implicitly defines r(m, J) in terms of the mass and angular momentum of the
spacetime. Thence, rearranging

(r− 6m)2 =
72J2r3(r2 + mr− 10m2) + 1296J4(2r− 5m)

mr6 . (106)

Thence, finally

r = 6m± 6J
mr3

√
2r3(r2 + mr− 10m2) + 36J2(2r− 5m). (107)

This is still exact. However, to estimate the value of r(m, J) corresponding to the
location of the ISCO purely in terms of the parameters present in our spacetime, we iterate
the zeroth-order estimate r = 6m +O(J) to yield

r = 6m +
4
√

2√
3

J
m

+O(J2). (108)

Notice that in the limit where J → 0, the ISCO reduces to its known location in
Schwarzschild. Furthermore, note that in the Kerr geometry, the ISCO for massive particles
occurs at [52]:

rKerr = m
(

3 + Z2 ±
√
(3− Z1)((3 + Z1 + 2Z2)

)
. (109)

Here x = J/m2 and
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Z1 = 1 + 3
√
(1− x2)

(
3
√
(1 + x) + 3

√
(1− x)

)
; Z2 =

√
3x2 + Z2

1 . (110)

If we conduct a Taylor series expansion around J = 0 we find

rKerr(J → 0) = 6m +
4
√

2√
3

J
m

+O(J2). (111)

which is exactly the ISCO location in the Lense–Thirring spacetime. This shows that in the
slow-rotation limit, the Kerr solution does reduce to Lense–Thirring as we expect.

9. Astrophysically Relevant Estimates

Note that in SI units

m =
GN mphysical

c2 ; J =
GN Jphysical

c3 . (112)

So dimensionally

[m] = [length]; [J] = [length]2. (113)

It is also useful to introduce the quantities a = J/m and a/m = J/m2 so that

[a] = [J/m] = [length]; [a/m] = [J/m2] = [dimensionless]. (114)

For uncollapsed objects (stars, planets) we may proceed by approximating the source as
a constant-density rigidly rotating sphere of radius Rsource, angular velocity ω, and equato-
rial velocity vequatorial .

In the Newtonian approximation

Jphysical = I ω =
2
5

mphysical R2
source ω =

2
5

mphysical Rsource vequatorial . (115)

Thence in geometrodynamic units we have the approximations

J =
2
5

m Rsource
vequatorial

c
; a =

J
m

=
2
5

Rsource
vequatorial

c
. (116)

Furthermore, (defining rSchwarzschild = 2m in geometrodynamic units),

a
m

=
J

m2 =
4
5

Rsource

rSchwarzschild

vequatorial

c
. (117)

Another useful dimensionless parameter is

J
R2

source
=

1
5

rSchwarzschild
Rsource

vequatorial

c
. (118)

Using this discussion, and some quite standard observational results (Table 1), it is
possible to estimate the parameters m, J, a = J/m, a/m = J/m2 and J/R2

source for various
astrophysically interesting objects such as the Earth, Jupiter, Sun, Sagittarius A∗, the black
hole in M87, and our own Milky Way galaxy. See Table 2 for details.



Universe 2021, 7, 105 19 of 23

Table 1. Some observational astrophysical data.

Source m Rsource (m)2 Rotational Period References

Earth 5.97217(13)× 1024 kg 6.3781× 106 1 (sidereal) day PDG [53]
Jupiter 318 mearth 7.1492× 107 9.93 h NASA [54]

Sun 1.998841(4)× 1030 kg 6.857× 108 22 days PDG [53], NASA [54]

Sagittarius A∗ 4.154(14)× 106 msun < 6.7× 109 —(indirect)— GRAVITY [55],
Ghez-et-al. [56]

Black hole in M87∗ 6.5× 109 msun 38× 1012 —(indirect)— EHT [57],
BlackHoleCam [58]

Milky Way galaxy ≈ 7× 1011 msun > 25 kpc ≈ 3× 108 yr
Gaia [59], Disk [60],

Pattern [61]

Some of the observational data is approximate, incomplete, and indirect. Estimates of
the black hole spin in Sgr A∗ and M87∗ are best extracted from relatively recent measure-
ments and data fitting, see particularly [55–58,62–64].

To interpret the physical significance of Table 2, first note that Kerr black holes in
standard Einstein gravity must satisfy a/m < 1, that is J/m2 < 1, in order to avoid
development of naked singularities. However no such constraint applies to uncollapsed
objects. Observationally, we do seem to have J/m2 < 1 for the object Sagittarius A∗

and the central object in M87, (which are indeed believed to be Kerr black holes, at least
approximately), while J/m2 > 1 for the Earth, Jupiter, Sun, and the Milky Way galaxy.

Table 2. Some astrophysical estimates.

Source m (m) J (m)2 a (m) J/m2 (dimensionless) J/R2
source

Earth 0.004435 0.01755 3.959 892.5 4.315× 10−16

Jupiter 1.409 1615 1415 812.9 3.304× 10−13

Sun 1477 2.741× 106 1855 1.256 5.652× 10−12

Sagittarius A∗ 6.5× 109 1.9× 1019 2.9× 109 ≈ 0.44 ≈ 0.12
Black hole in M87 3.5× 1012 1.1× 1025 3.2× 1012 ≈ 0.90 ≈ 0.44

Milky Way galaxy 1.5× 1015 2.5× 1031 1.7× 1016 ≈ 11 ≈ 10−10

The fact that for Sagittarius A* and M87* J/m2 and J/R2
source are smaller than unity

but rather close to unity indicates that these 2 objects are particularly interesting in terms of
being potential black hole mimics. The fact that Sagittarius A* and M87* might (conceivably
if somewhat unlikely) be either super-spinars [62] or carry a Taub-NUT charge [63,64] is if
anything further justification for considering our "black hole mimic" as a viable alternative
to standard Kerr spacetime. As we shall see below, when pushing Lense–Thirring into
the regime a/m > 1 we still have an event horizon. So for a/m > 1 our Lense–Thirring
based "black hole mimic" possesses both a good weak-field limit and avoids physically
unpleasant naked singularities in the strong field limit.

Secondly, observe that the Lense–Thirring metric should (at least in its original asymp-
totic form) really only be applied in the region r > Rsource, and for uncollapsed sources
we certainly have J/R2

source � 1. Even for collapsed sources we still see J/R2
source . 1. The

fact that the dimensionless number J/R2
source � 1 for the Earth, Jupiter, Sun, (and even

the Milky Way galaxy), is an indication that Lense–Thirring spacetime is a perfectly good
approximation for the gravitational field generated by these sources once one gets beyond the
surface of these objects.

These observations are potentially of interest when studying various black hole mim-
ickers [65–69]. (To include a spherically symmetric halo of dark matter in galactic sources,
simply replace m → m(r), keeping the spin parameter a fixed, so that J → J(r) = am(r).
The existence of the gravitationally dominant dark matter halo is really the only good
reason for treating spiral galaxies as approximately spherically symmetric).
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10. Singularity, Horizon, Ergo-Surface, and the Like

Now recall that the original motivation for considering the Lense–Thirring metric
really only makes sense for r > Rsource. In fact the Lense–Thirring metric is likely to be a
good approximation to the exterior spacetime geometry only for J/r2 � 1, that is r �

√
J.

However, one can nevertheless ask, (both for pedagogical purposes and with a view to
exploring potential black hole mimickers), what happens if we extrapolate our variant
of the Lense–Thirring metric down to r → 0, and investigate the possible occurrence of
horizons and ergo-surfaces. Indeed, for sufficiently slow rotation, physically one should
expect to reproduce the physics of a slowly rotating Schwarzschild black hole, and it is
useful to see that this does in fact happen.

Extrapolating our variant of the Lense–Thirring spacetime down to r = 0 one sees
that there is a point curvature singularity at r = 0. Furthermore, note that ∇ar becomes
timelike for r < 2m. That is, gab ∇ar ∇br = grr = 1− 2m

r , and this changes sign at r = 2m.
Thence for r < 2m any future-pointing timelike vector must satisfy Va ∇ar < 0. That is,
(in contrast to the Kerr spacetime), there is a single horizon at the Schwarzschild radius
r = 2m, an outer horizon with no accompanying inner horizon. Furthermore the location
and presence of this horizon is independent of the value of the spin parameter a, so one
never gets a naked singularity. Finally, note that one cannot “stand still” once gtt < 0.
That is, the time-translation Killing vector becomes spacelike once gab Ka Kb = gtt > 0
corresponding to

1− 2m
r
− 4J2 sin2 θ

r4 < 0. (119)

That is, there is an ergo-surface located at

rE(θ)
4 − 2m rE(θ)

3 − 4J2 sin2 θ = 0. (120)

That is,

rE(θ) = 2m +
4J2 sin2 θ

rE(θ)3 . (121)

On axis we have rE(θ = 0) = rE(θ = π) = 2m, so that on axis the ergo-surface touches
the horizon at rH = 2m. Near the axis, (more precisely for J sin2 θ/m2 � 1), the formula
for rE(θ) can be perturbatively solved to yield

rE(θ) = 2m

{
1 +

J2 sin2 θ

4m4 − 3J4 sin4 θ

16m8 +O
(

J6 sin6 θ

m12

)}
. (122)

At the equator we have either

rE(θ = π/2) = 2m
{

1 +
J2

4m4 −
3J4

16m8 +O
(

J6

m12

)}
, (123)

or

rE(θ = π/2) =
√

2J
{

1 +
m

2
√

2J
+

3m2

16J
+O

(
m3

J3/2

)}
, (124)

depending on whether J � m2 or J � m2.
Generally we have a quartic to deal with, while there is an exact solution it is so

complicated as to be effectively unusable, and the best we can analytically say is to place
the simple and tractable lower bounds

rE(θ) > max
{

2m,
√

2J sin θ
}

, (125)
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and

rE(θ) >
4
√
(2m)4 + 4J2 sin2 θ. (126)

For a tractable upper bound we note

rE(θ) = 2m +
4J2 sin2 θ

rE(θ)3 < 2m +
4J2 sin2 θ

(2m)3 , (127)

whence

rE(θ) < 2m

{
1 +

J2 sin2 θ

4m4

}
< 2m

{
1 +

J2

4m4

}
. (128)

Overall, if one does extrapolate our variant of the Lense–Thirring spacetime down to
r = 0, one finds a point singularity at r = 0, a horizon at the Schwarzschild radius, and an

ergo-surface at rE < 2m
{

1 + J2

4m4

}
. While such extrapolation is astrophysically inappropri-

ate for vacuum spacetime surrounding rotating uncollapsed objects in standard general
relativity, it may prove interesting for pedagogical reasons, or for exploring additional
examples of potential black-hole mimickers.

11. Conclusions

What have we learned form this discussion?
First, the specific variant of the Lense–Thirring spacetime given by the metric

ds2 = −dt2 +
(

dr +
√

2m/r dt
)2

+ r2

(
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
)

(129)

is both mathematically and physically a very tractable and quite reasonable model for the
spacetime region exterior to rotating stars and planets. Because this metric is in Painlevé–
Gullstrand form, the physical interpretation is particularly transparent. Furthermore,
with the slight generalization m→ m(r), with J → J(r) = am(r), that is,

ds2 = −dt2 +

(
dr +

√
2m(r)/r dt

)2
+ r2

(
dθ2 + sin2 θ

(
dφ− 2J(r)

r3 dt
)2
)

(130)

one can accommodate spherically symmetric dark matter halos, so one has a plausible
approximation to the gravitational fields of spiral galaxies. Best of all, this specific Painlevé–
Gullstrand variant of the Lense–Thirring spacetime is rather easy to work with.
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