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Abstract: The theoretical approach to a sequential heavy ion double charge exchange reaction is
presented. A brief introduction into the formal theory of second-order nuclear reactions and their
application to Double Single Charge Exchange (DSCE) reactions by distorted wave theory is given,
thereby completing the theoretical background to our recent work. Formally, the DSCE reaction
amplitudes are shown to be separable into superpositions of distortion factors, accounting for initial
and final state ion–ion interactions, and nuclear matrix elements. A broad space is given to the
construction of nuclear DSCE response functions on the basis of polarization propagator theory.
The nuclear response tensors resemble the nuclear matrix elements of 2νββ decay in structure but
contain in general a considerable more complex multipole and spin structure. The QRPA theory is
used to derive explicit expressions for nuclear matrix elements (NMEs). The differences between
the NME of the first and the second interaction vertexes in a DSCE reaction is elucidated. Reduction
schemes for the transition form factors are discussed by investigating the closure approximation and
the momentum structure of form factors. DSCE unit strength cross sections are derived.

Keywords: reaction theory; nuclear many-body theory; double charge exchange reactions; double
beta decay; nuclear matrix elements

1. Introduction

The study of higher-order nuclear processes is a very demanding field of research,
especially when they are driven by hadronic interactions. The complexities are introduced
by the equal importance of nuclear many-body aspects and the effective nature of in-
medium low-energy nuclear interactions. Since both sectors are intimately intertwined,
a clear separation of effects is hardly possible, thus inhibiting a straightforward perturbative
approach. Still, over the years, nuclear reactions and structure theory have developed a
tool box of methods allowing now systematic investigations of rare nuclear processes and
their spectroscopy. Phenomenological approaches and the meanwhile rather successful
many-body approaches based on effective nuclear field theory have reached a level of
accuracy that fine details of nuclear spectroscopy are now accessible—and predictable—by
theory. Our recent work on a first-time quantitative description of heavy ion double charge
exchange (DCE) data on microscopic grounds [1] is a prominent example for that kind
of achievement.

Although there is a general consensus on the importance of studying higher-order
nuclear processes, detailed studies are rare. Recent examples are the multi-phonon descrip-
tion of the extremely rare nuclear double-gamma emission [2] and, using similar nuclear
structure methods, the study of the quenching of low-energy Gamow–Teller strength [3].
On the experimental side of nuclear reactions, the NUMEN project [4] is the trend-setting
case of a research project fully devoted to a higher-order nuclear reaction, namely to inves-
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tigate nuclear DCE reactions with heavy ion beams, aiming to make an independent probe
for the nuclear matrix elements of nuclear double beta decay (DBD) available.

Higher-order reactions are of interest for nuclear reaction physics. They have a high
potential to reveal rare reaction mechanisms hitherto undiscovered because they are not
present or suppressed in first-order processes. Heavy ion second-order reactions have rarely
to never been used as spectroscopic tools. An exception is statistical multi-step reactions in
the pre-equilibrium region of nuclear spectra, which have been studied in the past for light
and heavy ion reactions using Multi-step Direct Reaction (MSDR) theory [5–7]. In [8,9], the
MSDR scheme was used to study neutron-induced single charge exchange (SCE) reactions
in the continuum region of the spectra in a two-step approach. In the present context, we are
interested in a much more selective case, namely on A(N, Z)→ A(N ± 2, Z∓ 2) reactions
leading to the discrete part of the spectrum. These reactions take place in a complementary
manner in the projectile and the target system. Hence, for a complete description, both
nuclear systems must be described and understood simultaneously. From a general point
of view, however, that apparent complication can be considered an advantage because it
allows us to probe two DBD processes simultaneously in a single reaction, namely a 2β+

transition in one nucleus by a complementary 2β− transition in the other nucleus. Thus,
DCE reactions pose a double challenge to nuclear theory.

The reaction mechanism of a DCE reaction with composite nuclei is by no means
obvious. In principle, DCE reactions can proceed either by mutual nucleon transfer pro-
cesses or by acting twice with the isovector nucleon–nucleon (NN) interaction. A first
detailed discussion on that important issue is found in our recent review [10]. Historically,
after first heavy ion DCE data were measured, a pair transfer scenario was favored, by
which DCE reactions are assumed to proceed as a simultaneous mutual exchange of a
proton pair in one direction and of a neutron pair in the other direction [11,12]. The transfer
mechanism is a soft process driven by mean-field dynamics. The minimal scenario is a se-
quence of two pair transfer reactions, e.g., a(n, z)+ A(N, Z)→ c(n− 2, z)+C(N + 2, Z)→
b(n− 2, z + 2) + B(N + 2, Z− 2), interfering with a second reaction path where the proton
pair is exchanged first. Hence, in leading order, the pair transfer scenario is at least of
fourth order in the nucleon binding potentials. Single nucleon exchange processes are of
even higher order. Transfer reaction mechanisms are most important in general at low
incident energies where the kinematical conditions are favorable for probing mean-field
dynamics. We will not consider further transfer DCEs which, in fact, have been found to
be negligible for the reactions considered here, as confirmed by recent experimental and
theoretical investigations [13,14].

For a long time, pair transfer was thought to be the dominant heavy ion DCE re-
action mechanism. After the impressive successful use of heavy ion SCE reactions for
spectroscopic studies (see, e.g., [10]), a first attempt to use heavy ion DCE reactions for
spectroscopic purposes was made by Blomgren et al. [15], intending to measure the ex-
citation of the spin-flip double Gamow–Teller resonance (DGTR). However, at that time,
the results were disappointing, which led the authors to rather pessimistic conclusions
on the usefulness of heavy ion reaction for DCE studies. About a decade later, the situa-
tion changed when the feasibility of DCE reactions and their potential for spectroscopic
investigations was shown for the reaction 18O + 40Ca→18 Ne + 40 Ar at Tlab = 270 MeV by
Cappuzzello et al. [16] in an experiment at LNS Catania. That experiment was important
for narrowing down the conditions under which nuclear structure information can be
extracted from data, as is now the central goal of the NUMEN project [4].

The observed angular distributions of Reference [16] in fact show a puzzling similarity
to SCE reactions in shape and, to a lesser extent, in magnitude. Moreover, the data cover a
surprisingly large range of linear momentum transfer, extending up to about 500 MeV/c
over the measured angular range. Thus, these properties demand a reaction mechanism
different from low momentum-centered mean-field dynamics. The appropriate candidate is
charge exchange by hard collisional interactions, as provided by the mesonic DCE scenario,
introduced for the first time in [17]. Actually, as pointed out in [10,17], there are two com-
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peting mesonic DCE reaction mechanisms. Here, we consider specifically the double single
charge exchange (DSCE) scenario. As illustrated in Figure 1, the DSCE reaction mechanism
is given by two consecutive SCE events, both occurring half off-shell. As was discussed in
detail by Bellone et al. [1], the DSCE process is of second order in the isovector NN T-matrix.
The measured angular distribution was described close to perfection in magnitude and
very satisfactorily in shape by distorted wave theory, free space NN T-matrices, and mi-
croscopic nuclear structure input. Hartree–Fock–Bogoliubov ground state densities were
used for the optical potentials and response functions, and transition form factors were
obtained by QRPA theory, as discussed before in Reference [18]. Alternative approaches
to the nuclear structure aspects of DCE reactions (as for DBD theory) are of course highly
desirable. The interacting boson model (IBM) belongs to the frequently used approaches
in DBD theory. Using both eikonal and closure approximation, the aforementioned DCE
reaction was analyzed in terms of an IBM–NME by Santopinto et al. [19].

In [1], the usual t-channel approach for calculating form factors was used, according
to the scheme displayed in Figure 1. That formulation is perfectly suited for the proper
description of DSCE cross sections if the interest is focused on the reproduction or predic-
tion of cross sections. However, that approach is not suitable for investigations and/or
extraction of DBD nuclear matrix elements (NME) from cross sections. The latter are
connecting the two SCE-type vertices within the same nucleus, while the standard reaction
theoretical approach is directed towards the description of the pair of vertices excited in
the projectile and target in the first or the second steps of the DCE reaction. Thus, a change
from the conventional t-channel formulation to an appropriate s-channel formulation is
required, not to the least as a necessary prerequisite for establishing the connection to the
NME entering DBD theory.

Figure 1. Schematic graphical representation of a Double Single Charge Exchange (DSCE) reaction
a(Na, Za) + A(NA, ZA) → b(Na ± 2, Za ∓ 2) + A(NA ∓ 2, ZA ± 2), proceeded by the sequential
twofold action of the isovector NN T-matrix, indicated by wavy lines. Each of the interaction events
acts similar to a one-body operator on the target and projectile, respectively. Note that the diagram
on the right is related to left one by a change in time order. A striking formal similarity to a 2ν2β

nuclear matrix element (NME) is apparent.

Keeping this goal in mind, the program of this paper is a purely theoretical one, namely
to recast the second-order DSCE reaction amplitude into an s-channel representation.
As seen below, this requires a demanding amount of recoupling of various kinds of angular
momenta, including the spectroscopic ones intrinsic to the involved nuclei and those
describing the multipolarities acting on the relative motion degrees of freedom. Moreover,
the total number of form factors to be considered increases to the fourth power (or stronger)
by the number of elementary NN-interaction vertices. Thus, the full account of rank-0
central, rank-1 spin orbit, and rank-2 tensor NN-vertices results in general in a total of at
least 44 = 256 form factors, distributed half by half in the projectile and target. In order
to keep the presentation at a manageable level, we therefore restrict the discussion to the
vertices of the rank-0 central interactions. As was discussed already in References [1,18],
they involve already the complete set of relevant fundamental isovector vertices, describing
non-spin flip S = 0 Fermi-type and spin-flip S = 1 Gamow–Teller-type nuclear transitions
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of any multipolarity. The algebraic rules developed below can be used in the same manner
also for more extended sets of NN-vertices. Practical calculations, e.g., those in Reference [1],
account of course for the complete set of interactions.

The paper is organized as follows: The reaction theoretical aspects of DSCE reactions
are presented in Section 2, adding additional theoretical background to our recent work [1].
The DSCE reaction amplitude is derived and discussed in Section 3, leading to a factorized
form that separates ion–ion interactions and nuclear matrix elements. A key element
of DSCE theory is discussed in Section 4. The reaction amplitude and the transition
form factors are transformed from the t-channel to the s-channel representation, thus
recasting the theory into a form compatible with and comparable to the formulations used
in DBD theory. The investigations lead also to the result that a rich spectrum of multipoles
contributes to a DSCE reaction, confirming our previous numerical results on theoretical
grounds [1]. The physics content of the form factors and accordingly of DCE cross sections
is investigated in Section 5 by considering a few limiting cases. Form factors are derived
in closure approximation. A reduction scheme that allows for a first-time derivation of
DSCE multipole unit cross sections, which account for the reaction dynamical aspects and
may serve in the future to extract DSCE–NME directly from data, is presented. A few
representative examples of unit cross sections are shown. The work is summarized and an
outlook is given in Section 6. Certain coefficients resulting from the recoupling of angular
momenta are found in Appendix A.

2. Theory of Sequential Double Charge Exchange Reactions

As depicted schematically in Figure 1, the double single charge exchange reactions
are a sequence of two consecutive single charge exchange processes. After the first SCE
event, the system propagates in a combination of ∆Z = ±1 configurations, concluded by a
follow-up second charge exchange process. Each of the single charge exchange processes is
induced by the two-body NN–isovector interaction TNN . The T-matrix is used in a form
given by one-body operators acting in the projectile and the target nucleus, respectively.
For a reaction α = a + A→ β = b + B, the reaction amplitude is written down readily as a
quantum mechanical second-order reaction matrix element [1]:

M(DSCE)
αβ (kα, kβ) = 〈χ

(−)
β , bB|TNNG

(+)
aA (ωα)TNN |aA, χ

(+)
α 〉. (1)

Initial (ISI) and final state (FSI) interactions are taken into account by the distorted
waves χ

(±)
α,β , depending on the center-of-mass (c.m.) momenta kα,β and obeying outgoing

and incoming spherical wave boundary conditions, respectively. The available c.m. energy
is ωα =

√
saA, where saA = (Tlab + Ma + MA)

2 − p2
lab.

As discussed in [18], we use an (anti-symmetrized) isovector NN T-matrix of the form

TNN = ∑
S=0,1,T=1

(
TST + δS1TTn

)(
τ
(a)
+ τ

(A)
− + τ

(a)
− τ

(A)
+

)
(2)

In non-relativistic notation, the rank-0 central and rank-2 tensor interactions are
(In our notation, the form factor of the rank-2 tensor interaction includes an additional

factor
√

24π
5 .)

TST = VST [σa · σA]
S (3)

TTn = VTnY2 · [σa ⊗ σA]2. (4)

As indicated by the dot product, the spherical harmonics Y2M has to be contracted
with the rank-2 spin tensor to a total scalar. The spin operators σa,A act in the projectile and
the target. Summation over all target and projectile nucleons is implicit. The form factors
VST and VTn are given by a superposition of meson-exchange propagators connecting
projectile and target nucleons. The strength factors are given by complex-valued coupling
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functionals in general depending on the energy in the NN center-of-momentum frame and
the nuclear densities. Other operator structures such as two-body spin-orbit interactions
will not be considered but are included easily.

The intermediate propagator for the evolution of the intrinsic nuclear states and
relative motion,

G(+)
aA (ω) =

1
ω−HA −Ha −HaA + iη

, (5)

is given by the nuclear Hamiltonians Ha,A and the relative motion Hamiltonian HaA.
The latter is described by an optical model Hamiltonian, Hopt = T + Uopt. With the set
of intermediate SCE-type states {|c〉} and {|C〉} in the projectile and target, respectively,
we obtain

G(+)
aA (ω) = ∑

γ={c,C}
|cC〉G(+)

γ (ω)〈cC|, (6)

where the channel propagator is

G(+)
γ (ω) =

1
ω− Ec − EC − Hopt + iη

. (7)

Ec,C = Mc,C + Tc,C is the total c.m. energies of the intermediate nuclei in states c and C,
respectively. As discussed in [1], by means of the bi-orthogonal set of distorted waves
{χ̃(±)

γ , χ
(±)
γ }, the reaction amplitude is finally obtained as

M(2)
αβ (kα, kβ) = ∑

γ={c,C}

∫ d3kγ

(2π)3 M(1)
γβ (kγ, kβ)

S̃†
γ

ωα − Ec − EC − Tγ + iη
M(1)

αγ (kα, kγ), (8)

where S̃†
γ ∼ 〈χ̃

(+)
γ |χ̃

(−)
γ 〉 is the S-matrix element from the dual states χ̃

(±)
γ , being solutions

of H†
opt. Tγ denotes the kinetic energy related to the (off-shell) momentum kγ. The half

off-shell SCE amplitudes are of the form

M(1)
αγ (kγ, kα) = 〈χ(−)

γ |Fαγ|χ(+)
α 〉, (9)

with the transition form factor Fαγ = 〈cC|TNN |aA〉.
The DSCE differential cross section (for unpolarized ions) is given as

dσ
(DSCE)
αβ =

mαmβ

(2πh̄2)2

kβ

kα

1
(2Ja + 1)(2JA + 1) ∑

Ma ,MA∈α;Mb ,MB∈β

∣∣∣M(2)
αβ (kα, kβ)

∣∣∣2dΩ, (10)

averaged over the initial nuclear spin states (Ja,A and Ma,A) and summed over the final
nuclear spin states (Jb,BandMb,B, respectively). Reduced masses in the incident and exit
channel, respectively, are denoted by mα,β.

3. The Heavy Ion DSCE Reaction Amplitude

In momentum space, the operator structure of the isovector part of the NN T-matrix is
determined in all tensorial parts by the operators [18]

RST(p) = eip·rσSτ±. (11)

With the nuclear transition form factors F(DE)
ST (p) = 〈E|RST(p)|D〉, the half off-shell

SCE amplitudes become

M(1)
αγ (kγ, kα) =

∫
d3 pDαγ(p) ∑

S=0,1,T=1
(12)(

VST(p2)F(ac)
ST (p) · F(AC)

ST (p) + δS1VTn(p2)Y2(p̂) ·
[

F(ac)
ST (p)⊗ F(AC)

ST (p)
]

2

)
,
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and accordingly for M(1)
γβ . The above—on first sight, unusual—form was chosen in virtue

of displaying the factorization of the SCE reaction amplitude into a distortion coefficient
Dαγ, containing the elastic ion–ion interactions and—in brackets—the nuclear transition
form factors, describing intranuclear SCE dynamics. The full information on elastic ion–ion
interactions is contained in the distortion coefficients:

Dαγ(p) =
1

(2π)3 〈χ
(−)
γ |eip·rα |χ(+)

α 〉. (13)

They can be considered an extension of the S-matrix concept into the off-shell region.
By contour integration, the propagator Equation (5) is separated into the intrinsic

nuclear and the relative motion propagators,

G(+)
aA =

∮
C+

dν

2iπ
G(+)

opt (ωα − ν)GaA(ν). (14)

by which a formal separation of the relative motion and intrinsic nuclear evolution is achieved.
The integration path C+ extends over the upper half of the complex ν–plane. Applying the
momentum representation, Equation (12), the DSCE reaction amplitude becomes

M(2)
βα (kβ, kα) =

∫
d3 p1d3 p2

∮
C+

dν

2iπ ∑
S1,S2

Π(S2S1)
αβ (p2, p1; ν) (15)

∫ d3kγ

(2π)3 Dβγ(p2)VS2T(p2
2)

S̃†
γ

ωα − ν− Tγ + iη
Dγα(p1)VS1T(p2

1).

where contributions of higher rank tensor operators have been left out for the reasons
discussed in the Introduction. In numerical calculations, the full spectrum of tensor
operators is, of course, taken into account.

The projectile and target sequential SCE responses are now contained in the nuclear
polarization tensor:

Π(S2S1)
αβ (p2, p1; ν) = ∑

cC

F(BC)
S2

(p2) · F
(bc)
S2

(p2)F(ca)
S1

(p1) · F
(CA)
S1

(p1)

ν− (EA − EC + Ea − Ec)
, (16)

combining, however, both projectile and target transitions. As indicated by the dot products,
a total spin-scalar tensor is obtained.

4. Multipole Structure of the Transition Form Factors and Nuclear Matrix Elements

The result of Equation (16) is in fact perfectly well suited for DCE reaction calculations,
as in [1]. The focus of this section is to clarify the relation of a DSCE reaction to nuclear
matrix elements (NMEs) of the projectile and target. Hence, we develop a formalism by
which the contributions of the two nuclei to the combined ion–ion NME can be separated.
Such a program requires decomposing and rearranging the nuclear tensor of Equation (16)
in an appropriate manner. The momentum representation provides the suitable formalism.

As seen by the results of the previous section, the polarization tensor is given by
products of Fourier–Bessel transforms of transition densities. The momentum structure of
the transition densities is probed by the operators RST (Equation (11)). By expanding the
plane waves into multipoles, we find the spin-scalar (S = 0) Fermi-like and spin-vector
(S = 1) Gamow–Teller-like isovector (T = 1) one-body operators:

T(`S)IN(r, p) = ∑
m`M

[
i` j`(pr)Y`(r̂)⊗ σS

]
IN

τ, (17)

where j`(x) denotes a spherical Bessel function of order `. The nuclear SCE form factors become
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F(DE)
ST (p) = 4π ∑

`mIN
Y∗`m(p̂)(`mSµ|IN)(JE ME JD −MD|IN)(−1)JD−MD RJD JE

`SI (p) (18)

where the Wigner–Eckardt theorem was used to derive the reduced matrix elements:

RJD JE
`SI (p) =

1
Î
〈JE||T(`S)I ||JD〉. (19)

We use the notation Î =
√

2I + 1.
In order to clarify the physics content, we emphasize that the matrix elements

(Equation (19)) are in fact momentum-dependent transition form factors. As such, they
do not follow the rules known from beta-decay on the enhancement or suppression of
multipolarities already by the operator structure alone. Only for p → 0 the transition
operators of Equation (17) approach the long–wave length limit underlying the weak and
the electromagnetic operators commonly used in nuclear structure theory. For sufficiently
large p—as easily realized in a heavy ion reaction—essentially all multipole operators are
of the same magnitude as dictated by the asymptotics of the Bessel–Riccati functions.

The standard ordering of transitions in a DSCE reaction follows the scheme indicated
in Figure 1, as imposed by meson exchange. However, in order to comply with the goal to
access projectile and target DSCE nuclear matrix elements, a regrouping and recoupling of
terms and correspondingly of angular momenta is required in order to follow the evolution
of the intrinsic nuclear states instead of focusing on meson exchange. In other words,
a change in representation from the t-channel to the s-channel has to be performed.

The complexities of the second-order process are reflected of course in a correspond-
ingly involved formalism. As a rule of thumb, momenta and quantities such as operators
and quantum numbers of spins and angular momenta related to the first and the sec-
ond SCE vertexes will be denoted by indices 1 and 2, respectively. Quantities related to
processes in the projectile or target nuclei are usually denoted by the index a and A, respec-
tively, occasionally complemented by indices c, b and C, B if states in the projectile-like and
the target-like intermediate and final nuclei have to be distinguished.

Considering only the central spin–scalar and spin–vector interactions by the reasons
discussed in the Introduction, the result is

S1+S2

∑
S=|S1−S2|,M

(−)S1+S2−S+M
[

F(BC)
(S2T)(p2)⊗ F(CA)

(S1T)(p1)
]

SM

[
F(bc)
(S2T)(p2)⊗ F(ca)

(S1T)(p1)
]

S−M
, (20)

thus now being in an order appropriate for the separation of projectile and target response
functions. A second contour integration is used to separate completely projectile and
target NMEs:

ΠS1S2
αβ (p2, p1; ν) =

∑
SMS

(−)S1+S2−S
∮

C+

dω

2iπ
(−)MS Π(AB)

(S1S2)SMS
(p2, p1; ω) ·Π(ab)

(S1S2)S−MS
(p2, p1; ν−ω)

(21)

where care has been taken in maintaining a total spin-scalar result. The target tensor,
for example, is

Π(AB)
(S1S2)SM(p2, p1; ω) = ∑

C

[
F(BC)

S2
(p2)⊗ F(CA)

S1
(p1)

]
SM

ω− (EA − EC)
. (22)

and the projectile tensor is defined accordingly. Replacing EA − EC ∼ MA − MC and
re-interpreting ω as the lepton energy, a striking similarity to the NME of 2ν2β decay,
e.g., [20], is immediately identified.
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By several steps of angular momentum recoupling, the nominator of Equation (22) is
finally obtained as a superposition of irreducible multipole components:[

F(BC)
S2

(p2)⊗ F(CA)
S1

(p1)
]

SM
=

(−)JA−MA ∑
IA NA ,LML

(−)IA−NA(JA MA JB MB|IANA)(LMLSMS|IANA)

× ∑
`1`2

(−)MLY(`1`2)LML
(p̂1, p̂2)RJA JC JB IA

(S1S2)S;(`1`2)L(p1, p2)

(23)

where we introduced the bi-spherical harmonics:

Y(`1`2)LM(p̂1, p̂2) =
[
Y`1(p̂1)⊗Y`2(p̂2)

]
LM. (24)

The reduced form factors themselves are defined by a superposition of multipole
contributions:

RJA JC JB IA
(S1S2)S;(`1`2)L(p1, p2) = (4π)2 ∑

I1 I2

Z JA JC JB
LSIA

(`1`2; S1S2; I1 I2)R(JB JC)
`2S2 I2

(p2)R(JC JA)
`1S1 I1

(p1), (25)

resulting from the coupling of transferred spin and orbital angular momenta to the total
angular momentum transfers I1,2 in the first and second SCE interactions, respectively.
The recoupling coefficients are defined in Appendix A.

We introduce the multipole polarization propagators

ΠJA JB IA
S1S2S,LML

(p1, p2, ω) = ∑
`1`2

Y(`1`2)LM(p̂1, p̂2)Π
JA JB IA
S1S2S,`1`2LA

(p1, p2, ω) (26)

with the reduced polarization propagators

ΠJA JB IA
S1S2S,`1`2LA

(p1, p2, ω) = ∑
C,JC

RJA JC JB IA
(S1S2)S;(`1`2)L(p1, p2)

ω− (EA − EC)
(27)

by which Equation (22) becomes

Π(AB)
(S1S2)SMS

(p2, p1; ω) =

∑
IA NA ,LML

(−)IA−NA(JA MA JB MB|IANA)(LMLSMS|IANA)Π
JA JB IA
S1S2S,LML

(p1, p2, ω)
(28)

Inserting Equation (28) into Equation (21) and the corresponding expressions for the
complementary sequence a → c → b, the summation over the magnetic spin quantum
numbers MS can be performed (see Appendix A) and we obtain the intermediate result

Π(S1S2)
αβ (p2, p1; ν) =

∑
IA NA ,Ia NA

(−)IA−NA(−)Ia−Na(JA MA JB MB|IANA)(Ja Ma Jb Mb|IaNa)

×∑
S
(−)S1+S2−S ∑

LA ,La ,λµ

U IA IaS
(LA La)λ

(
LA MLA La MLa |λµ

)
(IA MA Ia Ma|λµ)

×
∮

C+

dω

2iπ

[
ΠJA JB IA

S1S2S,LA
(p1, p2, ω)⊗ΠJa Jb Ia

S1S2S,La
(p1, p2, ω− ν)

]
λµ

(29)
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The coupling indicated in the last line of the above formula is finally exploited to
recouple the two bi-spherical harmonics into a single one, as shown in Appendix A. As a
consequence, the angular dependencies are stripped off the nuclear tensors, and we find

Π(S1S2)
αβ (p2, p1; ν) = ∑

IA NA ,Ia NA ,λµ

(−)IA−NA(−)Ia−Na

(JA MA JB MB|IANA)(Ja Ma Jb Mb|IaNa)(IANA IaNa|λµ)F JA JB IA ,Ja Jb Ia
S1S2;λµ (p2, p1; ν),

(30)

with the transition form factor of total multipolarity λ

F JA JB IA ,Ja Jb Ia
S1S2;λµ (p2, p1; ν) =

∑
L13L24

Y(L13L24)
(p̂1, p̂2) ∑

S,LA La

∑
`1`3,`2`4

AIA IaS
L13L24λ(`1`3, `2`4, LALa)

×
∮ dω

2iπ
ΠJA JB IA

S1S2S,`1`2LA
(p1, p2, ω)ΠJa Jb Ia

S1S2S,`3`4La
(p1, p2, ω− ν).

(31)

where AIA IaS
L13L24λ(`1`3, `2`4, LALa) is found in Appendix A. This allows us to define the

reduced reaction amplitudes

MJA JB IA
Ja Jb Ia ;λµ(kα, kβ) =

∫
d3 p1d3 p2

∮
C+

dν

2iπ ∑
S1,S2

F JA JB IA ,Ja Jb Ia
S1S2;λµ (p2, p1; ν)

×
∫ d3kγ

(2π)3 Dβγ(p2)VS2T(p2
2)

S̃†
γ

ωα − ν− Tγ + iη
Dγα(p1)VS1T(p2

1).

(32)

By comparison to Equation (16), the essence of the exercise is that we have achieved a
reduction in the a + A → b + B nuclear transition tensor to a form displaying explicitly
the target and projectile response functions and their multipole structure. In addition,
the A → B and a → b angular momentum coupling coefficients have been split off
such that, for the angular distribution (Equation (10)), the summations over the magnetic
quantum numbers can be performed, resulting in

dσ
(DSCE)
αβ =

mαmβ

(2πh̄2)2

kβ

kα

1
(2Ja + 1)(2JA + 1) ∑

Ia ,IA ;λµ

∣∣∣MJA JB IA
Ja Jb Ia ;λµ(kα, kβ)

∣∣∣2dΩ. (33)

As a closing remark to this section, we emphasize that the formulation has been kept
very general, intending to cover for future use the full multipole spectrum. For special
cases, especially for Jπ

A,a = 0+ → Jπ
B,b = 0+ transitions, the situation simplifies considerably.

The total angular momentum transfer is constrained to IA = 0, which for the total orbital
and spin angular momentum transfer implies the two combinations L = 0, S = 0 and
L = 2, S = 2, respectively. In the first case, the intermediate channels are restricted to se-
quential excitations of Fermi modes or Gamow–Teller modes where `1 = `2 and `1,2 = I1,2,
i.e., the same multipolarity is excited in each of the two SCE steps. The L = 2, S = 2 case
is accessible only by sequential Gamow–Teller-type transitions of the same total multipo-
larity, Iπ

1 = Iπ
2 . For a 0+ → 0+ reaction, the combination L = 1, S = 1 is forbidden by

parity conservation.

4.1. Nuclear Structure Aspects

In order to evaluate the polarization tensors, nuclear wave functions are required for
the involved states. Nuclear ground states are described by Hartree–Fock–Bogoliubov
(HFB) theory, as discussed in [21–23]. The SCE excited states are obtained by QRPA
calculations; see, e.g., [1,18] for recent results.

The DCE parent and daughter nuclei are connected by an isospin rotation perpendicu-
lar to the I3-axis. The rotation is such that the isospin in each nucleus is changed by two
units but the total isospin as defined by the incident projectile–target system is conserved,
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of course. Since isospin is a conserved symmetry in strong interactions, we are eligible to
expect that the ground states of the parent and the daughter nuclei are related in leading
order by a rather transformation, changing by a rotation in quasiparticle space, e.g., a pair
of protons into a pair of neutrons (or vice versa). Hence, in the HFB mean-field picture, the
final state reached by a ∆Z = −2 transition is dominantly given by an n2 p−2-configuration
in the valence shells. Thus, assuming for |JA MA〉 = |0〉 a 0+ ground state, states in the
∆Z = −2 daughter nucleus will be considered as a 4-quasi particle configuration with
respect to |0〉. Thus, we use

|JB MB〉 = NB[α
+
jn1

α+jn2
α+jp1

α+jp2
]JB MB |0〉 (34)

where α+jm is a single quasiparticle operator. The proper normalization is taken care of
by the constant NB. Typically, such two particle–two hole states are rather stable against
perturbations. Thus, good approximation admixtures of higher-order configurations,
caused by residual interactions inducing core polarization, can be neglected.

In DBD theory, the ground state of the nucleus B is usually treated as the quasiparticle
vacuum state of the daughter nucleus. However, in a DCE reaction, that point of view does
not match the sequential character of the transition. We emphasize that a DSCE reaction
probes the 4 quasiparticle (QP) content of the states in B with respect to the parent nucleus.
A clear advantage of that picture is that the whole spectrum of final states is accessible by
the same theoretical methods.

The |∆Z| = 1 intermediate states are of a more complex structure. Starting from
an even–even ground state—as is common practice—the odd–odd character of the SCE
states and collectivity have to be taken into account. Thus, residual interactions have to be
included into the theoretical description for which QRPA theory is an appropriate approach.
Hence, the intermediate states |k, JC MC〉 = Ω†

kJC MC
|0〉 of energy EkJC are described by

acting with a two-quasiparticle (2QP) QRPA operator Ω†
kJC MC

onto the ground state:

Ω†
k,JC MC

= ∑
jp jn

x JC
γ (jp jn)Q†

JC MC
(jp jn)− yJC∗

γ (jp jn)Q̃JC MC (jp jn) (35)

with the 2QP operators Q†
JC MC

(jp jn) =
[
α†

jp
⊗ α†

jn

]
JC MC

and the time-reversed state Q̃JM =

(−)J+MQJ−M. The 4QP states in B are grouped and coupled accordingly:

|JB MB〉 = ∑
J1 J2

C(J1 J2)JB
jp1 jn1 jp2 jn2

[
Q†

J1
(jp1 jn1)⊗Q†

J2
(jp2 jn2)

]
JB MB
|0〉, (36)

where the coefficient C accounts for recoupling and normalization. Hence, even in the sim-
plest case of a 4QP configuration given by 0+ pairs of protons and neutrons, a rich spectrum
of multipolarities is encountered when transformed to the particle–hole representation.

In second quantization, the transition operators (Equation (17)) become in the pn−1-channel

T(pn)
(LS)JM = ∑

jp jn

R
jp jn
LSJ(p)

(
ujp vjn Q†

JM(jp jn) + ujn vjp Q̃JM(jp jn)
)

, (37)

while in the np−1-channel, we find

T(np)
(LS)JM = ∑

jp jn

R
jn jp
LSJ(p)

(
ujn vjp Q†

JM(jp jn) + ujp vjn Q̃JM(jp jn)
)

. (38)

where scattering terms ∼ α+q αq′ have been neglected. We use the same angular momentum
coupling scheme for the τ+ and the τ− cases and exploit the reduced matrix elements

obeying the relation R
jn jp
LSJ(p) = (−)SR

jp jn∗
LSJ (p). The Bogoliubov–Valatin QP amplitudes are

denoted by uj and vj, respectively. Within the 2QP–representation, the evaluation of the
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two sequential SCEs transition is a comparatively easy task, especially for a 0+ reference
state. For A→ C transitions of pn−1 character, the NME of Equation (19) is

RJA JC
LSJ (p) = ∑

jp jn

R
jp jn
LSJ(p)

(
x JC∗

jp jn ujp vjn + (−)SyJC
jp jn ujn vjp

)
. (39)

Since the C → B transitions start from an already excited nucleus, the form factors are
of a quite different structure: the form factors of the second pn−1 transition are superposi-
tions of contributions given by one 2QP NME times an overlap amplitude of the second
2QP pair with the previous SCE excitation.

RJC JB
LSJ (p) = ∑

J1 J2

C(J1 J2)JB
jp1 jn1 jp2 jn2

×
(

ujp1
vjn1

R
jp1 jn1
LSJ1

(p)x JC
jp2 jn2

δJ2 JC + ujp2
vjn2

R
jp2 jn2
LSJ2

(p)x JC
jp1 jn1

δJ1 JC

)
.

(40)

The quasiparticle rescattering contributions, neglected here, would lead to form
factors involving a quasiparticle from the intermediate JC phonon and a quasiparticle
from the final JB configuration. Different from the ph-type form factors, the scattering
terms are of the order O(upun) and O(vpvn), respectively. Thus, these transitions proceed
by decomposing the state vectors of the intermediate configurations into their single
quasiparticle components, thereby destroying the coherence of the transition.

4.2. Brief on Spectral Properties of DCE Transitions

As an important message from the above results, we notice that the structure of the
final B-configurations plays an essential role in selecting the admissible intermediate SCE
states. This, of course, affects also the reaction mechanism because the structure of the
final DCE state B determines the path through the pool of intermediate SCE states by
constraining the accessible multipolarities.

As an example, we consider more closely the DCE reaction 18O + 40Ca → 18Ne +
40 Ar, which was observed a few years ago [16] and studied theoretically recently in [1].
The incident channel involves only (2s, 1d)-shell nuclei. In the exit channel, the (2p, 1 f )-
nucleus 40 Ar and the (2s, 1d)–hell ejectile 18Ne are present. The HFB results predict that
40 Ar(0+, g.s.) is given with respect to 40Ca in good approximation by two hole states in the
1d3/2-proton shell and two particle states in the 1 f7/2-neutron shell. Hence, the recoupling
leads to 2QP proton–neutron states of negative parity, implying a clear preference for
negative parity intermediate states in 40K. On the projectile side, 18Ne(0+, g.s.) may
be considered in leading order as a (1d5/2(p))2(1d5/2(n))−2 relative to 18O(0+, g.s.), as
predicted by our HFB calculation. Since only positive parity 2QP-states are involved, this
implies a selectivity for a route through positive parity states in 18F (Spectral distributions
for 40K and 18F are found in [18]).

5. Approximations

The matrix elements derived in the previous sections are of a rather demanding
mathematical (and numerical) structure. Appropriately chosen approximations are of great
help to identify the leading physical quantities and to understand the essential features of
such an involved second-order reaction. The purpose of this section is to exemplify a few
interesting aspects of sequential DCE reactions by discussing approximations exploiting
the fact that the intermediate states in the projectile and target are essential but remain
unresolved, serving merely as a kind of pool of background states, resembling to some
extent a heat bath. Hence, their influence on the reaction amplitude may be treated in an
averaged manner.
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5.1. Nuclear NME in Closure Approximation

The multipole polarization tensors (Equation (27)) may be manipulated in a meaning-
ful manner by introducing a yet to be determined mean excitation energy ωC = 〈EA − EC〉.
A power series expansion results in

ΠJA JB IA
S1S2S,`1`2LA

(p1, p2, ω) =
1

ω−ωC
∑

C,JC

RJA JC JB IA
(S1S2)S;(`1`2)L(p1, p2)

(
1− ωC −ωC

ω−ωC
. . .
)

. (41)

By the first term, we recover the closure approximation, namely the unconstrained
summation over the full set of intermediate states and multipolarities {C, JC}:

RJA JB IA
S1S2S,`1`2LA

(p1, p2) = ∑
C,JC

RJA JC JB IA
(S1S2)S;(`1`2)L(p1, p2). (42)

In principle, ωC can be derived from the spectral distribution of intermediate states.
Cancellation of the second term is achieved by choosing as reference energy

ωC =
∑C,JC

ωCRJA JC JB IA
(S1S2)S;(`1`2)L(p1, p2)

∑C,JC
RJA JC JB IA
(S1S2)S;(`1`2)L(p1, p2)

(43)

which will also minimize the contributions of the higher-order terms. Dependencies on the
momenta p1,2 will be canceled in leading order. Thus, ωC is fixed by the ratio of the energy-
weighted and the non-energy-weighted sum rules of the full spectrum of intermediate
states (To a good approximation, ωC can be derived from the (observed) SCE spectrum
of the intermediate Z± 1-nuclei, provided that the range of measured excitation energy
is sufficiently large). Applying the same procedure also to the second ion, the product
of the leading order terms leads to an energy denominator ∼1/(ω − ωC)(ν− ω − ωc).
The contour integral in Equation (32) can be performed and leads to

MJA JB IA
Ja Jb Ia

(kα, kβ) =
∫

d3 p1d3 p2 ∑
S1,S2

RJA JB IA ,Ja Jb Ia
S1S2

(p2, p1)

×
∫ d3kγ

(2π)3 Nβγ(p2)VS2T(p2
2)

S̃†
γ

ωα −ωγ − Tγ + iη
Nγα(p1)VS1T(p2

1).

(44)

where ωγ = ωC + ωc. In closure approximation, the form factor (Equation (31)) trans-
forms into

RJA JB IA ,Ja Jb Ia
S1S2;λµ (p2, p1) =

∑
L13L24

Y(L13L24)λµ(p̂1, p̂2) ∑
S,LA La

∑
`1`3,`2`4

AIA IaS
L13L24λ(`1`3, `2`4, LALa)

× RJA JB IA
S1S2S,`1`2LA

(p1, p2)RJa Jb Ia
S1S2S,`3`4La

(p1, p2).

(45)

5.2. Effective Form Factors

An important difference between hadronic and leptonic reactions is the quite different
momentum structure and strength of interactions. As found in [1], a large number of states
of high angular momenta are excited in heavy ion DCE reactions while beta decay processes
are dominated by low multipolarities, rarely larger than J = 2. Another important property
of SCE and DCE reactions is the excitation of high-lying states in the continuum region.
Hence, this quasi-statistical nature of the spectrum of intermediate states induces self–
averaging effects by which characteristics of individual transitions will be largely washed
out. These effects may be exploited to further reduce the complex structure of the reaction
amplitude. A meaningful approach is to approximate the transition form factors by average
multipole form factors D(N)

` (p) separately for each nucleus N = A, a. Thus, as the simplest
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possible approach, we demand equality of the state-dependent density form factors and a
mean density form factor at an appropriate momentum transfer p = p`

RJD JE
`SI (p`) = N JD JE

`SI D(N)
` (p`) (46)

by which the state and multipole-dependent amplitude N JD JE
`SI is defined. The choice of the

matching momentum pL is uncritical as long as the above relation is used and the effective
density form factor D(N)

` accounts realistically for the essential features of the momentum
structure. A case of practical relevance is the choice p` → 0 at which the Bessel–Riccati
functions approach the limit j`(pr)p−` → r`/(2`+ 1)!!. Thus, by this choice, the case of
the long-wave length limit of weak (and electromagnetic) multipole operators is used as a
reference point.

That kind of parametrization leads to decoupling of the state dependence, now con-
tained in the amplitudes N JD JE

`SI , from the momentum dependence, now described by the ef-

fective form factors D(N)
` (p). The reduced polarization propagators (Equation (27)) emerge

as bilinear forms of the effective form factors, and the multipole propagators become

ΠJA JB IA
S1S2S,LML

(p1, p2, ω) = ∑
`1`2

[
D(A)

`1
(p1)⊗D

(A)
`2

(p2)
]

LM
ΠJA JB IA

S1S2S,`1`2LA
(p`1 , p`2 , ω) (47)

with D(N)
`m (p) = D(N)

` (p)Y`m(p̂). The transition form factors (Equation (31)) are changed to

F JA JB IA ,Ja Jb Ia
S1S2,λµ (p2, p1; ν) ≈

∑
`1`3,`2`4

∑
L13L24

[
D`1`3L13

αγ (p1)⊗D`2`4L24
γβ (p2)

]
λµ

∑
SLA La

AIA IaS
L13L24λ(`1`3, `2`4, LALa)

×
∮ dω

2iπ
ΠJA JB IA

S1S2S,`1`2LA
(p`1 , p`2 , ω)ΠJa Jb Ia

S1S2S,`3`4La
(p`1 , p`2 , ω− ν).

(48)

The products of the projectile and target form factors have been rearranged to

D`1`3L13 M13
αγ (p1) = D(A)

`1
(p1)D(a)

`3
(p1)YL13 M13(p̂1), (49)

and D`2`4L24
γβ (p2) is defined accordingly.

A highly interesting result is found by combining the effective form factor method and
the closure approach. With that combination, we obtain a full separation of reaction and
nuclear dynamics (although still being coupled on the level of angular momenta). Integrals
over d3 p1,2 can be performed and restore the second-order DW reaction amplitude but now
describes the scattering on the effective form factors, e.g., for the first interaction

F `1`3L13 M13
ST (rα) =

∫ d3 p
(2π)3 e−ip·rα VST(p2)D`1`3L13 M13

αγ (p). (50)

Correspondingly, the second step form factor F `2`4L24 M24
ST (rβ) is obtained. The expan-

sion of the intermediate channel propagator is reversed and Equation (44) becomes

MJA JB IA
Ja Jb Ia ;λµ(kα, kβ) ≈

∑
S1,S2

∑
`1`3,`2`4

∑
L13L24

〈χ(−)
β |

[
F `2`4L24

S2T Gopt(ωα −ωγ)⊗F
`1`3L13
S1T

]
λµ
|χ(+)

α 〉

× SIA Ia ,S1S2
JA JB ,Ja Jb

(`1`3, `2`4, L13L24λ)

(51)
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with the spectroscopic DSCE amplitude

SIA Ia ,S1S2
JA JB ,Ja Jb

(`1`3, `2`4, L13L24λ) =

∑
S,LA La

∑
`1`3,`2`4

AIA IaS
L13L24λ(`1`3, `2`4, LALa)RJA JB IA

S1S2S,`1`2LA
(p`1 , p`2)RJa Jb Ia

S1S2S,`3`4La
(p`1 , p`2).

(52)

As mentioned before, these expression simplify considerably for special combinations
of nuclear states, among which reactions starting from Jπ = 0+ ground states are of
particular interest. However, in order to explore the wealth of DCE data to be expected
for the near future, the whole spectrum of final states, at least in the target, has to be
understood. In any case, the spin-scalar and the spin-vector channels have to be taken into
account, leading in general to a coherent superposition of spin-dependent form factors.

In Equation (51), the reaction amplitudes

M`2`4L24S2
`1`3L13S1;λµ(kα, kβ) = 〈χ

(−)
β |

[
F `2`4L24

S2T Gopt(ωα −ωγ)⊗F
`1`3L13
S1T

]
λµ
|χ(+)

α 〉 (53)

are within our formalism the unit strength amplitudes of second-order DW theory. In those
cases where interference terms can be neglected, they lead to unit strength cross sections:

dσ`2`4L24S2
`1`3L13S1;λ =

mαmβ

(2πh̄2)2

kβ

kα

1
(2Ja + 1)(2JA + 1) ∑

µ

∣∣∣M`2`4L24S2
`1`3L13S1;λµ(kα, kβ)

∣∣∣2dΩ, (54)

Representative results of DSCE unit strength differential cross sections are shown in
Figure 2 for the reaction 18O + 40Ca→ 18N + 40 Ar at Tlab = 270 MeV. For comparison, SCE
unit cross sections are depicted in Figure 3 The magnitudes are almost independent of the
(L13, L24) combinations of first- and second-step total angular momentum transfers, while
the shapes are strongly affected by the multipolarities.

In future studies, the unit cross sections (Equation (54)) may be used to extract in-
formation on nuclear form factors directly from data. However, there are a number of
caveats to keep in mind. The neglection of interference effects will lead to systematic errors,
which could be estimated from the quality of description of the angular distributions: if
interference effects are important, they will be reflected in the diffraction structures. Since
the unit cross sections are defined for specific multipolarities, their use in an empirically
analysis requires energy distributions of high resolution, e.g., available for light ion SCE
reactions. Moreover, a clear multipole decomposition of spectra requires measuring spec-
tral distributions at several scattering angles. In other words, double differential cross
sections need to be measured over a sufficiently large range of scattering angles and a
large range of excitation energies. The angular range will be decisive for access to the
momentum structures of form factors, characterizing their multipole structure. A broad
energy range is needed to explore the spectral distributions of the multipolarities. Another
point to remember is that the DCE response is always a combined response of the target
and projectile. For SCE reactions, that complication is well under control, as reviewed
in [10]. For DSCE reactions, that problem is easy to handle for theory but corresponding
experimental techniques have to be developed.
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Figure 2. Second-order DSCE unit strength cross sections for the reaction 18O + 40Ca→ 18N + 40 Ar
at Tlab = 270 MeV. From top to bottom, results are shown for total angular momentum transfer
in the first single charge exchange (SCE) interaction L1 = 0, 2 and the second SCE interaction
L2 = 0, 2, 4, respectively. The average excitation energy was chosen as ωγ = 10 MeV. The angular
range corresponds to momentum transfers up to 1000 MeV/c. Optical potentials and transition
potentials are calculated in a double folding approach by using the (newly derived) nucleon–nucleon
(NN) T-matrix at Tlab = 15 MeV, parameterized as in References [24,25]. Optical potentials are
calculated with Hartree–Fock–Bogoliubov (HFB) ground state densities according to Reference [18].
The cross sections are calculated by using average form factors derived from QRPA transition
densities as discussed in the text. For comparison, SCE unit strength cross sections are shown in
Figure 3.
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Figure 3. First-order SCE unit strength cross sections for the reaction 18O + 40Ca → 18N + 40 Ar at
Tlab = 270 MeV. The angular range corresponds to momentum transfers up to 1000 MeV/c. Optical
potentials and transition potentials are calculated in a double folding approach by using the (newly
derived) nucleon–nucleon (NN) T-matrix at Tlab = 15 MeV, parameterized as in References [24,25].
Optical potentials are calculated with Hartree–Fock–Bogoliubov (HFB) ground state densities accord-
ing to Reference [18]. The cross sections are calculated by using average form factors derived from
QRPA transition densities as discussed in the text.

6. Summary

For the first time, a consistent theoretical description of heavy ion sequential double
charge exchange reactions was presented. The theory is focused on collisional DCE re-
actions mediated by a sequence of two consecutive charge-transforming SCE events due
to the exchange of isovector mesons. Reaction dynamics is described by second-order
distorted wave theory. The main focus was on a consistent microscopic formulation of
reaction and intrinsic nuclear dynamics. A scheme was introduced for the separation of
target and projectile NMEs, which was achieved by a recoupling from the t-channel to
an s-channel formulation, presented here for the first time. A general scheme was used
to describe the nuclear transition form factors. Aspects of nuclear DSCE spectroscopy
were discussed by using description based on quasiparticle mean-field and QRPA theory.
Essential features of the form factors were investigated theoretically. The properties of the
DSCE transition form factors were investigated in detail by exploring several limiting cases.
Unit strength DSCE cross sections were derived, which under neglection of interference
effects may serve to extract nuclear matrix elements directly from data by a multipole
decomposition of spectral distributions.

The theoretical methods are of general character allowing us to describe transitions of
arbitrary combinations of multipolarities in the projectile and target. It is worth empha-
sizing that the theory presented here is constrained neither to a specific projectile–target
combination nor to specific regions of incident energies. The reaction theoretical parts do
not rely on a specific kind of nuclear structure model but is open for input of any kind of
structure model. That option will be exploited in future work, for example, to compare
systematically DSCE results for diver approaches to nuclear matrix elements and transition
for factors, thus encircling the systematic uncertainties related to the choice of structure
models. As a concrete project, a comparison of QRPA and IBM transition form factors is in
preparation. The dependence of DSCE results on optical potentials is another important
topic to be explored further. Thus, theoretical methods are at hand, ready to describe DSCE
data becoming available in the near future.
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Appendix A. Angular Momentum Couplings

The multipole decomposition of the nuclear transition form factors is

RJA JC JB IA
`1`2L;S1S2S(p1, p2) =

∑
I1 I2

(−)I1+I2 Î1 Î2W(JA I1 JB I2; JC IA)


`1 S1 I1
`2 S2 I2
L S IA

R(JB JC)
`2S2 I2

(p2)R(JC JA)
`1S1 I1

(p1),
(A1)

including a Racah-W and a 9-j symbol. By

Z JA JC JB
LSIA

(`1`2; S1S2; I1 I2) = (−)I1+I2 Î1 Î2W(JA I1 JB I2; JC IA)


`1 S1 I1
`2 S2 I2
L S IA

 (A2)

we obtain

RJA JC JB IA
`1`2L;S1S2S(p1, p2) = ∑

I1 I2

Z JA JC JB
LSIA

(`1`2; S1S2; I1 I2)R(JB JC)
`2S2 I2

(p2)R(JC JA)
`1S1 I1

(p1). (A3)

The summation over the spin-magnetic quantum numbers MS, indicated in Equation (28),
leads to

∑
MS

(−)MS
(

LA MLA SMS|IANA
)
(La MLa S−MS|IaNa) =

∑
λµ

U IA IaS
(LA La)λ

(
LA MLA La MLa |λµ

)
(IANA Ia Ma|λµ),

(A4)

thus combining the intranuclear angular momentum transfers LA,a to the total orbital
angular momentum transfer λ, as expressed by a Clebsch–Gordan coefficient, where

U IA IaS
(La La)λ

= (−)La+IA−λ ÎA ÎaW(LA IALa Ia; Sλ) (A5)

Finally, the above result is used to couple the product of bi-spherical harmonics to a
single total angular momentum transfer λ, resulting in

∑
MLA MLa

(
LA MLA La MLa |λµ

)
Y(`1`2)LA MLA

(p1, p2)⊗Y(`3`4)La MLa
(p1, p2) = (A6)

∑
L13L24

XL13L24λ(`1`3, `2`4, LALa)Y(L13L24)λµ(p1, p2), (A7)

where a recoupling coefficient is obtained

XL13L24λ(`1`3, `2`4, LALa) = A`1`3L13 A`2`4L24 L̂13 L̂24 L̂A L̂a


`1 `3 L13
`2 `4 L24
LA La λ

 (A8)
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and

A`i`j Lij
=

̂̀î̀j√
4πL̂ij

(
`i0`j0|Lij0

)
. (A9)

Finally, we define the coupling coefficients

AIA IaS
L13L24λ(`1`3, `2`4, LALa) = U IA IaS

(LA La)λ
XL13L24λ(`1`3, `2`4, LALa). (A10)
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