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Abstract: We review the de Broglie–Bohm quantum theory. It is an alternative description of quantum
phenomena in accordance with all the quantum experiments already performed. Essentially, it is a
dynamical theory about objectively real trajectories in the configuration space of the physical system
under investigation. Hence, it is not necessarily probabilistic, and it dispenses with the collapse
postulate, making it suitable to be applied to cosmology. The emerging cosmological models are
usually free of singularities, with a bounce connecting a contracting era with an expanding phase,
which we are now observing. A theory of cosmological perturbations can also be constructed under
this framework, which can be successfully confronted with current observations, and can complement
inflation or even be an alternative to it.

Keywords: singularities; quantum cosmology; de Broglie–Bohm interpretation; cosmological pertur-
bations; quantum-to-classical transition; dark energy

1. Introduction

In the dawn of modern cosmology, one of the reasons Einstein first rejected the
Friedmann solution was because it contains an initial singularity. When he was forced to
accept it, he claimed that the initial singularity in the Friedmann universe was General
Relativity (GR) pointing us to its own limits of applicability. In fact, GR is generally
plagued with singularities [1–3]. New physics must take place near the singularity, where
the curvature of space-time and the energy-density of the matter fields attain immensely
high values. This new physics is not evident, because the singularities appear under very
general reasonable assumptions.

There are classical extensions to GR that can be proposed, such as non-minimal
couplings between matter gravitational degrees of freedom, the addition of curvature
squared terms in the gravitational Lagrangian, and the presence of exotic matter fields,
many of them coming from effective actions taking into account quantum effects that
can eliminate the cosmological singularity; see [4–18] for some reviews. Another route,
in analogy with the procedure adopted to treat the singularities present in the classical
description of matter (the instability of the classical model of the atom, the divergence of the
electromagnetic field near the electron), is to expect that a proper and full quantization of
GR could eliminate these singularities. However, a consensual theory of quantum gravity
is not yet available, with many proposals still under construction [19–22]. Nevertheless, in
the case of cosmology, as observations indicate that the Universe was nearly homogeneous
when it was very hot and dense, with small inhomogeneous perturbations around this very
symmetric state [23,24], one can design an effective quantum theory for cosmology, where
the complete configuration space of GR and matter fields, called superspace, is reduced to a
subset containing only the homogeneous and perturbation degrees of freedom, called midi-
superspace, where the technical problems surrounding quantum gravity are dramatically
simpler. This line of investigation is called quantum cosmology [25–38]. The rigorous
mathematical justification for this reduction is not yet known, but it is expected that, if
one is not very close to the Planck length, this approach can not only furnish the right
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corrections to the classical cosmological models in the extreme physical situations around
the singularity, but it can also teach us the sort of properties a complete theory of quantum
gravity might have. Some relevant questions are: What is a singularity in quantum space-
time? Does a classical singularity survive quantization? How can the classical limit be
reached? What is the meaning of time in quantum space-time?

Nevertheless, beyond all the problems surrounding quantum gravity, there is an extra
fundamental question concerning the application of quantum theory to cosmology. As
we know, in the usual Copenhagen interpretation [39–41], the wave function gives the
probability density amplitude for an external observer to measure one of the eigenvalues
of a Hermitian operator describing an observable of a physical system in state |Ψ〉. In
the measuring process, the system must interact with a measuring apparatus. In the
quantum description of the whole process, the total wave function describing the system
and apparatus bifurcates into many branches, each one containing one of the possible
results of the measurement. However, at the end of the measurement process, just one value
is obtained; hence, the total wave function must collapse in one of the branches. This a
non-unitary non-linear process that cannot be described by the unitary quantum evolution.
The intervention of the classical observer imposes a break on the quantum description,
bringing to actual existence the many potentialities the quantum state describes. Of
course, one cannot apply this picture to the Universe as whole, as, by the definition of
Universe, there is nothing external to it that can bring to actual existence all the potentialities
described in a quantum state of the Universe. In this scenario, quantum cosmology does
not make any sense; it cannot describe the objective reality we experience in the world;
it is an empty theory. One should then abdicate to apply quantum theory to cosmology,
in order to use it to solve the classical cosmological problems. This is a good example
that corroborates an important criticism of Einstein’s concerning quantum theory in the
Copenhagen framework [42]: ‘Contemporary quantum theory . . . constitutes an optimum
formulation of [certain] connections . . . [but] offers no useful point of departure for future
developments.’.

Fortunately, there are alternative quantum theories. One can cite the Many Worlds
Interpretation (MWI) [43], where the wave function does not collapse, and all potentialities
take place in each branch, but the branches are not aware of each other, or the Spontaneous
Collapse approach, where the unitary Schrödinger evolution is supplemented with a non-
linear evolution where the collapse of the wave function takes place physically [44,45],
among others. In both approaches, there is no need for an external agent to turn the
quantum potentialities into actual facts. These alternative quantum theories have been
used in quantum cosmology; for some examples, see [27,46–50].

The framework we will use here is de Broglie–Bohm quantum theory [51–53]. In
this approach, the point in configuration space describing the degrees of freedom of the
physical system and the measuring apparatus is supposed to exist, independently of any
observations. This point refers to either particle positions and/or field configurations. In
the splitting of the total wave function, the point in configuration space will enter into one
of the branches, depending on the initial positions before the measurement interaction,
which are unknown. The other branches will be empty, and it can be shown [51–53] that
the empty waves can never interact with the actual degrees of freedom describing the
physical system, measuring apparatus, or any other external agent. Hence, no observer
can be aware of these empty branches. We thus have an effective but not real collapse,
as the empty waves continue to exist, but now, contrary to MWI, with no multiplication
of actual worlds. There is only one actual world and a profusion of empty innocuous
empty waves. As in the MWI and Spontaneous Collapse approaches, the presence of
an external agent is not necessary for understanding quantum measurements, and the
quantum dynamics are always valid. In these frameworks, quantum theory can be viewed
as the fundamental theory of Nature, applicable to all physical systems, including the
Universe itself, from which classical mechanics is a by-product, under certain physical
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conditions. Hence, in these formulations of quantum theory, quantum cosmology makes
sense, and it can be studied.

In this paper, I will summarize the results that were obtained with the application
of the dBB quantum theory to quantum cosmology. In fact, the assumption that particle
positions and/or field configurations are actual makes quantum cosmology conceptually
simpler. The concepts of quantum singularities, how they can be removed, and the classical
limit can be easily obtained. The notion of time emerges naturally from timeless quantum
dynamics, and the Schrödinger equation for quantum inhomogeneous perturbations in
quantum homogeneous backgrounds is dramatically simplified under the dBB assump-
tions, allowing the calculation of many cosmological observable quantities. Finally, a
sound interpretation of the wave function of the Universe emerges in this framework; see
Section 3. In technical terms, however, the dBB quantum theory adds further compu-
tational difficulties, as it may require the calculation of the quantum trajectories of the
quantum degrees of freedom, which can be extremely hard in general. However, in the
framework of cosmology, the necessary computations to be performed are not difficult,
and they help the construction of simple extensions of the quantum equations for quantum
cosmological perturbations, as we will see in this paper.

The review will be divided as follows: In Section 2, I will summarize the main features
of the dBB quantum theory. In Section 3, I will apply it to quantum cosmology, considering
first the homogeneous background, in order to discuss the singularity problem, and then the
inhomogeneous perturbations, where a notion of time emerges. In Section 4, I will present
some important results concerning the evolution of quantum cosmological perturbations
in quantum backgrounds without singularities, and their confrontations with observations
and inflation. In Section 5, I will show that the dBB approach explains, in a quite simple way,
an old controversy: the quantum-to-classical transition of the quantum inhomogeneous
cosmological perturbations that evolved to form all the structures in the Universe, which
are, of course, classical. I finish in Section 6 with a discussion and conclusions.

2. The de Broglie–Bohm Quantum Theory

A good way to motivate the construction of the dBB quantum theory in the framework
of non-relativistic particles is through the words of John Stewart Bell [54]:

‘The kinematics of the world, in this orthodox picture, is given by a wave function for
the quantum part, and classical variables—variables which have values—for the classical
part: (Ψ(t, q...), X(t)...). The X’s are somehow macroscopic. This is not spelled out very
explicitly. The dynamics is not very precisely formulated either. It includes a Schrödinger
equation for the quantum part, and some sort of classical mechanics for the classical part,
and ‘collapse’ recipes for their interaction. It seems to me that the only hope of precision
with the dual (Ψ, x) kinematics is to omit completely the shifty split, and let both Ψ and x
refer to the world as a whole. Then the x’s must not be confined to some vague macroscopic
scale, but must extend to all scales’.

Following Bell’s proposal, particle positions must also be considered in order to
completely determine the state of a quantum system. Then, besides the Schrödinger
equation for Ψ, one must postulate an equation for x. From the Schrödinger equation for a
single non-relativistic particle in the coordinate representation,

ih̄
∂Ψ(x, t)

∂t
=

[
− h̄2

2m
∇2 + V(x)

]
Ψ(x, t), (1)

where V(x) is the classical potential, and writing Ψ = R exp(iS/h̄), one obtains the follow-
ing two real equations:

∂S
∂t

+
(∇S)2

2m
+ V − h̄2

2m
∇2R

R
= 0, (2)

∂R2

∂t
+∇.

(
R2∇S

m

)
= 0. (3)
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Equation (2) looks like a Hamilton–Jacobi equation for S, with an extra term at the
end. On the other hand, Equation (3) can be viewed as the continuity equation for a density
distribution of an ensemble of particles given by R2, with ∇S/m being the velocity field
of this ensemble (the quantum current divided by R2). Hence, both equations suggest the
following postulates [51–53]:

(i) Quantum particles follow objectively real trajectories x(t). They must satisfy the
so-called guidance equation:

p = mẋ = ∇S, (4)

or, equivalently, as first proposed by de Broglie,

v(x(t), t) ≡ ẋ =
J

R2 , (5)

where v is the velocity field, and J is the usual quantum current J = Im(h̄Ψ∗∇Ψ/m).
(ii) The particles are never separated from a quantum field Ψ, which acts on them

through Equation (4) and satisfies the Schrödinger Equation (1).
These are two first-order equations in time, which demand knowledge of initial

positions x0 and initial quantum field configurations Ψ(x, 0) to be solved uniquely. Initial
field configurations can usually be obtained through the preparation of the quantum
system, by measuring a complete set of observables in the system. The initial position of
the particle, instead, cannot be obtained without disturbing the quantum system. Hence,
one cannot exactly know the position of the particle; it is the hidden variable of the theory.

Note that solving Equation (4) can be very difficult, especially in a many-particle
system or field theory. However, as we will see below, both Equations (1) and (4) lead to
the same probabilistic results as in Copenhagen quantum theory; hence, one can use the
usual mathematical techniques to derive these probabilities. Furthermore, in quantum
cosmology, what one usually needs is the quantum trajectories (also called the Bohmian
trajectories) of the background geometry only, which are not difficult to calculate. Even
in the case of quantum inhomogeneous perturbations, as they are supposed to originate
from an adiabatic vacuum quantum state, their quantum trajectories are also simple to
calculate, as we will see in Section 5. Hence, obtaining solutions from Equation (4) will not
be problematic in the physical situations with which we are dealing in this paper.

Because Equations (2) and (4) can indeed be viewed as a Hamilton–Jacobi equation
for the particle, which suffers from the influence of a new quantum potential, besides the
classical potential V, given by

Q ≡ − h̄2

2m
∇2R

R
. (6)

from both Equations (2) and (4), one can obtain the equation of motion:

m
d2x
dt2 = −∇V −∇Q. (7)

In a statistical ensemble of particles in the quantum state Ψ, if the probability density
for the unknown initial position is given by P(x0) = R2(x = x0, t = t0), Equation (3)
guarantees that R2(x, t) will give the distribution of positions at any time, and all the
statistical predictions of quantum mechanics are recovered. The distribution R2 is called
a typical distribution [53]. Note, however, that, in a fundamental theory describing the
dynamics of quantum particles, there is no logical connection between the distribution of
the unknown initial positions with R2. Nevertheless, whenever P 6= R2, Equations (3) and
(4) make P rapidly relax to R2, at least at a coarse grained level, in many circumstances.
This is an analog of the H-theorem of statistical mechanics applied to quantum mechanics;
see [55] for details. Hence, it seems that the dBB dynamics push physical systems to the
typical distribution P = R2, also called the quantum equilibrium distribution. Note that,
if one can find physical systems that have not relaxed to P = R2, then their statistical
predictions will not agree with conventional quantum mechanics, and the dBB theory
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could be tested. The possibility of the existence of such systems, such as relic gravitational
waves, is now under investigation [56]. In conclusion, probabilities are not fundamental
in this theory, and if the tendency to quantum equilibrium is really general, then it may
not be necessary to postulate the Born rule, as it could be obtained through the dynamics
themselves.

Let us make some final comments:
(a) The Ψ field guides the particle motion through Equation (4), whoseh effects can

be encoded in the quantum potential Q. In the case of a many-particle system, when
Ψ is entangled, Q can be highly non-local. This is very important, because the Bell’s
inequalities [57], together with Aspect’s experiments [58], show that, in general, a quantum
theory must be non-local, which is the case of the dBB quantum theory. Additionally, while
solving the Schrödinger equation, boundary conditions are usually imposed on it, as in
the two-slit experiment. Hence, the Ψ field contains this information, which is transmitted
to the particle motion through Equation (5). In other words, although there is no classical
potential along the route of the quantum particle towards the screen, the quantum potential
is not null; it encodes the information contained in Ψ, leading to a Bohmian trajectory that is
quite complicated. When taken together, the different Bohmian trajectories of an ensemble
of quantum particles with an initial position distribution given by R2(x, t = 0) yield the
interference pattern typical of the two-slit experiment. Contextuality is also present in the
dBB quantum theory.

(b) The classical limit is very simple: we have only to find the conditions for having
Q ≈ 0 when compared with the classical kinetic and potential energy terms.

(c) Note that, although assuming the ontology of the position of particles in space
through the new proposed guidance relation (4), the dBB theory has, at least, the same
number of postulates as the Copenhagen interpretation, as long as it dispenses with the
collapse postulate. If the Born rule can also be justified under this framework, which is
still under debate [53,55,59], then the dBB theory is logically simpler than the Copenhagen
interpretation, as it would have one postulate less.

A detailed analysis of the dBB theory in the context of quantum field theory can
be seen in Refs. [52,60–63].Generally, it is assumed that field configurations are actual.
The probabilistic predictions are in accordance with Poincaré invariance, but the hidden
Bohmian evolution of the fields may violate this symmetry.

Let us end this section in the same way it began, with some words of John Bell [54]:
‘In 1952 I saw the impossible done. It was in papers by David Bohm. . . . the subjectiv-

ity of the orthodox version, the necessary reference to the ‘observer’, could be eliminated.
... But why then had Born not told me of this ‘pilot wave’? If only to point out what was
wrong with it? Why did von Neumann not consider it? ... Why is the pilot wave picture
ignored in text books? Should it not be taught, not as the only way, but as an antidote to
the prevailing complacency? To show us that vagueness, subjectivity, and indeterminism,
are not forced on us by experimental facts, but by deliberate theoretical choice?’

3. The de Broglie–Bohm Theory Applied to Quantum Cosmology: Background
and Perturbations

The structure of the Hamiltonian describing the gravitational field and all other non-
gravitational degrees of freedom in the Universe, reads

H =
∫

d3x{N(x)H0[h(x), πh(x), ϕ(x), πϕ(x)]

+ Ni(x)Hi[h(x), πh(x), ϕ(x), πϕ(x)]}, (8)

where N and Ni are Lagrange multipliers, the so called lapse and shift functions; h are
the gravitational (geometric) degrees of freedom, usually, the space metric of the space-
like hypersurfaces; ϕ represents all non-gravitational degrees of freedom; and πh, πϕ are
their respective conjugate momenta. The quantitiesH0 andHi are the super Hamiltonian
and super momentum constraints, originated from the invariance of the full theory under
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general time and space coordinate transformations. They are constrained to vanish,H0 ≈ 0,
Hi ≈ 0, where the symbol ≈ means ‘weak equality’, in the sense that they are zero, but the
Poisson brackets between them and other canonical variables may not be zero.

The Hamilton equations in terms of the Poisson brackets arise as usual:

ḣ(x) = {h(x), H}, π̇h(x) = {πh(x), H}
ϕ̇(x) = {ϕ(x), H}, π̇ϕ(x) = {πϕ(x), H}, (9)

yielding the field evolutions in terms of an arbitrary coordinate time t. Note that the
Hamiltonian H is null due to the constraint equations, a feature of any theory that is
invariant under time reparametrizations. All the constraints are first class: the Poisson
brackets among themselves are null in the region of phase space where they are satisfied.

Following the Dirac quantization procedure for constrained systems, the first class
constraints, when turned into operators acting on a Hilbert space, must annihilate the wave
functional of the Universe Ψ (expressed in the field representation):

H0[ĥ(x), π̂h(x), ϕ̂(x), π̂ϕ(x)]Ψ[h(x), ϕ(x)] = 0, (10)

and
Hi[ĥ(x), π̂h(x), ϕ̂(x), π̂ϕ(x)]Ψ[h(x), ϕ(x)] = 0. (11)

The Schrödinger equation i∂Ψ/∂t = ĤΨ only tells us that the wave functional does not
explicitly depend on time, as long as ĤΨ = 0 due to the constraint Equations (10) and (11).
We are now using natural units h̄ = c = 1.

Equation (11) just implies that Ψ is invariant under space coordinate transformations
of the fields. Equation (10) is the so-called Wheeler–DeWitt equation [64].

These quantum equations render the interpretation of Ψ quite obscure. First, as we
have seen, time has disappeared. It is believed that it is hidden in the Wheeler–DeWitt
equation, in which one field degree of freedom will play the role of a physical clock.
However, apart from some exceptions, as we will see, this clock variable is not transparent.
In general, the Wheeler–DeWitt equation has a Klein–Gordon structure [64], which makes it
difficult to assign a probabilistic interpretation for Ψ, as is well known. Some investigations
have tried to put the Wheeler–DeWitt equation into a Schrödinger form, but, when possible,
it was achieved only in an implicit form; see [65] for a discussion on these issues.

However, when one uses the dBB quantum theory, a quite reasonable interpretation
of the wave functional of the Universe emerges. As we have seen, in the dBB theory, one
also imposes the guidance relations to the actual field configurations, which are supposed
to be objectively real. Looking at Equation (4), one can formally write

πh(x) =
δS[h, ϕ]

δh(x)
, πϕ(x) =

δS[h, ϕ]

δϕ(x)
, (12)

where πh(x), πϕ(x) are the canonical momenta of h, ϕ, which can be expressed in terms of
the time derivatives of h, ϕ, as usual. For instance, in GR, the canonical momenta conjugate
to 3-metric hij reads

πij =
δLGR

δ(ḣij)
= −h1/2(Kij − hijK), (13)

where Kij is the extrinsic curvature given by

Kij =
1

2N
(2D(i Nj) − ḣij), (14)

and Di is the three-dimensional covariant derivative.
The quantity S[h, ϕ] is the phase of the wave functional of the Universe Ψ[h, ϕ]. Hence,

Equation (12) yields the evolution of all the fields in terms of coordinate time t once one
knows Ψ. This induces the proposition of a nomological interpretation of the wave func-
tional of the Universe: it yields the laws of Nature, in the same way as a Lagrangian and/or
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a Hamiltonian do in classical mechanics, see [66]. Consequently, the wave functional
of the Universe has nothing to do with probabilities, which is quite sensible, as one is
talking about a single system, the Universe. Furthermore, it is not surprising that the wave
functional of the Universe does not depend on an explicit external time parameter and that
the equation that determines it is not generally suitable for inducing a probability measure.
However, it would be helpful, in this way of thinking, to find boundary conditions for
Equation (10) where a particular solution emerges as the wave functional of the Universe,
from which the dynamics of all fields are obtained. Some proposals are under discussion;
see, for instance, [67,68].

The next natural question to pose is how do probabilities emerge in this conceptual
framework? Of course, they should arise when one considers subsystems contained in
the Universe, where probabilities can naturally be defined. Indeed, in the dBB approach,
one can use the notion of conditional wave functions in order to describe subsystems.
Let us suppose that the Universe contains only two fields, ϕ1 and ϕ2. Hence, the wave
functional is given by Ψ[ϕ1, ϕ2]. Suppose one can calculate the Bohmian trajectory for
ϕ1 → ϕ1(t). Then, one can define the conditional wave functional Ψc[t, ϕ2] = Ψ[ϕ1(t), ϕ2],
which gives all the information about the evolution of ϕ2. Under certain conditions, the
original equation for Ψ becomes a Schrödinger equation for Ψc. In this situation, quantum
equilibrium arises [53,56,59], and one can understand |Ψc|2 as a probability measure for
subsystems discriminated only by ϕ2, in accordance with daily quantum mechanics.

The use of the dBB quantum theory was essential for constructing this whole concep-
tual framework. Let us now apply it to quantum cosmology. In this reduced framework,
most of the problems associated with the full theory, which are still unsolved, are simpler to
handle. As we mentioned in the Introduction, cosmological observations inform us that the
Universe was very homogeneous and isotropic when it was very hot and dense, with small
inhomogeneous perturbations over this very symmetric state. Hence, one restricts the
configuration space to a restricted domain in which the geometry of space-time is given by

gµν(t, x) = ḡµν(t) + hµν(t, x), (15)

where
ds2 = ḡµν(t)dxµdxν = N2(t)dt2 − a2(t)δijdxidxj, (16)

and

h00(t, x) = 2N2(t)φ(t, x)

h0i(t, x) = −N(t)a(t)B,i(t, x) (17)

hij(t, x) = 2a2(t)ψ(t, x)γij − E,ij(t, x)),

where i represents ∂/∂xi, and all the quantities in Equation (17) are assumed to be very
small when compared with the background degrees of freedom.

Note that I am assuming flat space-like homogeneous and isotropic hypersurfaces just
for simplicity; all the calculations can be generalized for spherical and hyperbolic cases.
Additionally, it is a good approximation, as indicated by cosmological observations.

Additionally for simplicity, I will consider just one matter degree of freedom, described
by the scalar field

ϕ(t, x) = ϕ̄(t) + δϕ(t, x), (18)

where ϕ̄(t) is the background field and δϕ(t, x) its first order perturbation.
One should also consider vector and tensor perturbations. Vector perturbations are

usually not relevant in inflation and bounce scenarios; see [69] for details. Tensor perturba-
tions, or primordial gravitational waves, are represented by the transverse-traceless spatial
tensor hTT

ij (t, x). Its treatment is technically similar but much easier than the scalar pertur-
bation case. The main results for them will be presented below. For details, see [70,71].

I will take a conservative point of view, in which the gravitational field dynamics
are described by GR, and the matter field, by a scalar field minimally coupled to gravity,
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described by the general Lagrangian density p(X, ϕ), where X = gµν∂µ ϕ ∂ν ϕ/2. When
p = Xn, it describes a perfect fluid with equation of state p = wρ, where p is the pressure,
ρ is the energy density, and w = 1/(2n− 1) is constant. This Lagrangian density can also
describe a canonical scalar field p = X − V(ϕ). In all cases, p is the pressure associated
with the scalar field; see [72]. Hence, the action reads

S = SGR + Sfluid = − 1
2l2

P

∫ √
−gRd4x−

∫ √
−gp(X, ϕ)d4x, (19)

where lP = (8πGN)
1/2 ≡

√
6κ is the Planck length in natural units.

By inserting Equations (15)–(17) into the action (19), one can construct the Hamiltonian
of the system up to second order in the perturbation expansion, through the usual Legendre
transformations. After solving the super-momentum constraint and performing suitable
canonical transformations, without ever using the background equations of motion, the
Hamiltonian can be generally written as

H = N
[

H(0) + H(2)

]
, (20)

where H(0) and H(2) are the zeroth and second order Hamiltonians, yielding the back-
ground and linear cosmological perturbation dynamics, respectively. Note that their
sum is constrained to zero, which is a consequence of the invariance of GR under time
reparametrizations. Let us now show in detail the two interesting cases of a perfect fluid
and a canonical scalar field.

3.1. Perfect Fluids

For perfect fluids, one has p = Xn. The calculations of H(0) and H(2) lead to (see [73]
for details)

H(0) ≡ −
P2

a
4a

+
PT

a3ω
, (21)

and
H(2) ≡

1
2a3

∫
d3xπ2(x) +

aω

2

∫
d3xv,i(x)v,i(x). (22)

In the background Hamiltonian, PT arises from the canonical transformation

T =
1

c(1 + w)

ϕ

pw
ϕ

, PT = cp1+w
ϕ , (23)

where pϕ is the momentum conjugate to ϕ and c = 1/(w
√

2
1+3w

n1+w) is a constant. It is
thus connected to the matter degree of freedom. Note, however, that it appears linearly in
the Hamiltonian; hence, it can be understood as being canonically conjugate to a clock time
T. Indeed, this is physically motivated from the definition of T in terms of ϕ and pϕ, and
the fact that ϕ is a velocity field potential, Vµ = ∂µ ϕ/(2X)1/2.

The second order part, H(2), yields the dynamics of the perturbation field, v(x), which
emerges as the single perturbation degree of freedom left.

When quantizing the system, as explained above, the operator version of the first class
constraints must annihilate the wave functional Ψ[T, a, v(x)],

(Ĥ(0) + Ĥ(2))Ψ = 0. (24)

This is a case where Equation (24) assumes a Schrödinger form, because a natural time
T emerges from the degrees of freedom of the fluid
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i
∂

∂T
Ψ =

1
4

{
a(3w−1)/2 ∂

∂a

[
a(3w−1)/2 ∂

∂a

]}
Ψ

−
[

a3w−1

2

∫
d3x

δ2

δv2(x)
− a3w+1w

2

∫
d3xv,i(x)v,i(x)

]
Ψ. (25)

Note that the operator P̂2
a present in Ĥ(0) is multiplied by a3w−1 in Equation (25)

(which can be understood as a particular case of the DeWitt metric [64]), yielding a factor
ordering ambiguity. When P̂a becomes a differential operator, there is one particular
factor ordering that turns a3w−1P̂2

a into a covariant one-dimensional Laplacian; hence, it
is covariant under coordinate redefinitions. As it is a one-dimensional Laplacian, and
one-dimensional manifolds are flat, there exists a special function of a that plays the role
of a Cartesian coordinate, in which this term can be written as a simple second order
derivative. It reads

χ =
2
3
(1−ω)−1a3(1−ω)/2. (26)

I chose this particular factor ordering when writing Equation (25), and I will use the
variable χ in Section 4 in order to solve Equation (25).

I will assume that the background is not entangled with the perturbations

Ψ[a, T, v(x)] = Ψ(0)(a, T)Ψ(2)[T, v(x)]. (27)

As a consequence, Equation (25) leads to the equation

i
∂

∂T
Ψ(0)(a, T) =

1
4

{
a(3w−1)/2 ∂

∂a

[
a(3w−1)/2 ∂

∂a

]}
Ψ(0)(a, T), (28)

for the zeroth order order wave function Ψ(0)(a, T). As we will see in the next section,
wave function solutions of this zeroth order equation yield, in the dBB quantum theory,
a Bohmian trajectory a(T) through the guidance equations. In this context, the second
order equation for the perturbations described by the wave functional Ψ(2)[v(x), T] can be
written as

i
∂

∂T
Ψ(2)[T, v(x)] = − a(3w−1)(T)

2

∫
d3x

δ2

δv2(x)
Ψ(2)[T, v(x)] +

wa(3w+1)(T)
2

∫
d3xv,i(x)v,i(x)Ψ(2)[T, v(x)]. (29)

Hence, Equation (29) becomes a time-dependent Schrödinger equation for Ψ(2) when
we substitute a→ a(T).

One can further perform the time-dependent unitary transformation

U = exp
{

i
∫

d3x
[

ȧ(T)v(x)
2a(T)

− (v(x)π(x) + π(x)v(x))
2

ln(a(T))
]}

, (30)

yielding the functional Schrödinger equation for the perturbations

i
∂Ψ(2)[v(x), η]

∂η
=
∫

d3x
(
−1

2
δ2

δv2(x)
+

w
2

v,i(x)v,i(x)− a′′

2a
v2(x)

)
Ψ(2)[v(x), η], (31)

written in terms of conformal time dη = a3w−1dT (the cosmic proper time τ satisfies
dτ = a3wdT; see Section 4 for details; hence, dη = dτ/a), and the new quantum variable
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v̄(x) = av(x), the usual gauge invariant Mukhanov–Sasaki variable defined in [72] (we
have omitted the bars),

v(x) =
a

1
2 (3w−1)
√

6

(
δϕ(x) +

2
√

6
√
(w + 1)PT

Pa
√

w
a2−3wψ(x)

)
, (32)

expressed in terms of the background variables, and the perturbation fields ψ(x), δϕ(x). It
is connected to the gauge invariant Bardeen potential Φ(x) (see [72]) through

Φ,i
,i(x) = −

3
√
(ω + 1)ρ̄
2
√

ω
a
(

v(x)
a

)′
, (33)

The prime denotes a derivative with respect to conformal time, and ρ̄ is the background
energy density.

Equation (31) is the usual functional Schrödinger equation for quantum linear pertur-
bations in cosmological models with a single perfect fluid satisfying p = wρ. However, the
scale factor appearing in Equation (31) is not the classical one but the Bohmian solution
a(η). This interpretation of Equation (31) is only possible within the dBB theory, in which
a Bohmian trajectory a(η) can be defined. In other frameworks, where a is a background
quantum degree of freedom, the physical understanding of the Wheeler–DeWitt Equa-
tion (25) using the ansatz (27) implying Equation (31) becomes conceptually much more
intricate, if possible.

The dynamical equation for the quantum operator v̂(x) in the Heisenberg picture reads

v̂′′(x)−ωv̂,i
,i(x)−

a′′

a
v̂(x) = 0. (34)

The Fourier modes vk,

v(x) =
∫ d3x

(2π)3/2 vkeik·x, (35)

evolve as

v′′k +

(
ωk2 − a′′

a

)
vk = 0. (36)

These equations have the same form as the equations for scalar perturbations obtained
in [72]. However, the function a(η) is no longer a classical solution of the background
equations but a quantum Bohmian trajectory of the quantized background. Hence, different
power spectra of quantum cosmological perturbations may emerge. In Section 5, we will
present the background and quantum perturbation solutions concerning this case.

3.2. The Canonical Scalar Field

In the canonical scalar field, the calculations of H(0) and H(2) now yield (without ever
using the classical background equations; see [74] for details),

H(0) =
1

e3α

[
−Π2

α

2
+

Π2
ϕ

2
+ e6αV(ϕ)

]
, (37)

and

H(2) =
1
2

∫
d3x
(

πv
2 + v,iv,i + 2

z′

z
πvv

)
, (38)

where we absorbed κ in redefinitions of the scalar field and time in order to deal with
dimensionless quantities. We set a = eα; v(x) is, again, the usual Mukhanov–Sasaki
variable [72],

v(x) = a
(

δϕ(x) +
ϕ′φ(x)
H

)
, (39)
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with primes denoting derivatives with respect to conformal time η, H = a′/a = α′, and
πv is its canonical momentum. The background quantities Πα and Πϕ are the momenta
canonically conjugate to background variables α and ϕ, respectively, and N plays the role
of a Lagrangian multiplier. Finally, z is a background function defined as z = aϕ′/H.

As before, when quantizing the system, one obtains the Wheeler–DeWitt equation

(Ĥ(0) + Ĥ(2))Ψ = 0, (40)

Supposing that the background evolution is not affected by the quantum perturbations
through some quantum entanglement, one sets

Ψ[α, ϕ, v(x)] = Ψ0(α, ϕ)Ψ2[α, ϕ, v(x)]. (41)

Note that, in this case, Ψ2 depends on both α, ϕ, as there is no explicit background
variable playing the role of time. The zeroth order part of Equation (40),

Ĥ0Ψ0 = 0, (42)

yields wave solutions that, in the dBB framework, lead to the Bohmian trajectories α(t) and
ϕ(t). They will be presented in Section 5. Having a Bohmian solution for the background,
guided by Ψ0, one can now construct the conditional wave equation to describe the
perturbations as

χ[v(x), t] = Ψ2[α(t), ϕ(t), v(x)]. (43)

Using the guidance equations naturally coming from the zeroth order Hamiltonian (37)
(in the time gauge N = e3α)

ϕ̇ = ∂ϕS, α̇ = −∂αS, (44)

one obtains

−
(

∂S0

∂α

)(
∂Ψ2

∂α

)
+

(
∂S0

∂ϕ

)(
∂Ψ2

∂ϕ

)
= α̇

(
∂Ψ2

∂α

)
+ ϕ̇

(
∂Ψ2

∂ϕ

)
=

∂χ

∂t
. (45)

Using Equation (45) in (40), implementing a time-dependent canonical transformation,
similar to what was done in the perfect fluid case (see [75]), together with one assumption
that I will describe soon, one obtains the Schrödinger equation

i
∂χ(v, η)

∂η
=

1
2

∫
d3x
[

π̂2 + v̂,i v̂,i +
z′

z
(π̂v̂ + v̂π̂)

]
Ψ(v, η), (46)

Going to the Fourier modes vk of the Mukhanov–Sasaki variable,

v(x) =
∫ d3x

(2π)3/2 vkeik·x, (47)

one obtains the mode equation

v′′k +

(
k2 − z′′

z

)
vk = 0 . (48)

As in the perfect fluid case, Equation (48) has the same form as the usual equations
for the modes in classical backgrounds, but now, the background time functions present
in it are the Bohmian trajectories. This can give rise to different effects in the region
where the quantum effects on the background are important, which can propagate to the
classical region.

Equation (94) was obtained under the hypothesis that there is never quantum en-
tanglement between background and the perturbations. When the background behaves
classically, this seems to be correct, as the semi-classical calculations, which rely on this
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hypothesis, yield the observed spectra of perturbations. When the background is quantum,
around the bounce, there is nothing imposing the absence of quantum entanglement during
this period. In this case, the assumption relies on simplicity. Note that it would be quite
interesting to relax the hypothesis of the absence of quantum entanglement around the
bounce and investigate its observational consequences.

Finally, I would like to emphasize that, in the case of the scalar fields, there is no degree
of freedom that emerges as a possible clock in the original Wheeler–DeWitt equation; see
Equations (37), (38) and (40). Nevertheless, I was able to construct a Schrödinger equation
for the perturbations using the conditional wave function (43). The assumption of the
existence of a Bohmian background quantum trajectory was essential for achieving this
goal; see Equation (45). The procedure is analogous to what is performed in semi-classical
quantum gravity [76], where a notion of time emerges from a combination of the classical
background variables (from an equation similar to (45)), yielding a background clock, and
a Schrödinger functional equation for the quantum non-gravitational degrees of freedom is
obtained. Within the dBB approach, this can also be performed for a quantum background.
Hence, this is a concrete example, with physical implications, of what was discussed
in Section 2. The original Wheeler–DeWitt equation does not have a Shrödinger form;
it has, rather, a Klein–Gordon form; hence, no notion of probability naturally emerges.
However, in the dBB approach, this difficulty is not an insurmountable obstacle to further
calculations, as the wave functional leads to the Bohmian trajectories for the background
through the guidance relations. These trajectories, which are assumed to be actual trajec-
tories, can then be used to construct the conditional wave function for the perturbations,
yielding a Schrödinger equation for them. In this case, there is a typical probability dis-
tribution [53], the Born distribution, which can also be the dynamical attractor of any
reasonable probability distribution, at a cross-grained level, which is called the quantum
equilibrium distribution (see [59]). Consequently, we get back to the standard quantum
theory of cosmological perturbations, described by a wave functional with a probabilistic
interpretation, but now, the mode perturbations evolve in a background, the Bohmian
background quantum trajectory, which does not always satisfy the background classical
GR equations. For other approaches to quantum perturbations in quantum backgrounds,
see [77–79].

4. Quantum Bouncing Backgrounds and Their Cosmological Perturbations

In this section, I will present some examples of background Bohmian solutions that
are free of singularities and the features of their cosmological perturbations. I will focus on
two matter contents: perfect fluids and a canonical field with an exponential potential.

Perfect fluids can model, quite well, the hot Universe, especially a radiation fluid with
w ≈ 1/3, which usually dominates this very hot phase, not only because of the massless
fields present but also because the massive particles have their rest energy completely
negligible at high temperatures. Another possibility is that the Universe becomes so dense
that the sound velocity of the fluid becomes close to the speed of light, the so-called stiff
matter. A canonical scalar field can represent this state if its dynamics are such that its
potential energy becomes negligible with respect to its kinetic energy, yielding p ≈ ρ. This
is the case of the exponential potential, which also has other nice properties, as we will see.

4.1. The Perfect Fluid

In Section 3, I obtained the Schrödinger equations for the background wave function
and the background wave functional:

i
∂

∂T
Ψ(0)(a, T) =

1
4

{
a(3w−1)/2 ∂

∂a

[
a(3w−1)/2 ∂

∂a

]}
Ψ(0)(a, T), (49)

and
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i
∂Ψ(2)[v(x), η]

∂η
=
∫

d3x
(
−1

2
δ2

δv2(x)
+

w
2

v,i(x)v,i(x)− a′′

2a
v2(x)

)
Ψ(2)[v(x), η], (50)

yielding the normal mode vk equation

v′′k +

(
ωk2 − a′′

a

)
vk = 0. (51)

Let us first solve the zeroth order equation. The guidance equations are

Ṫ =
N

a3w , ȧ = − N
2a

∂S
∂a

. (52)

Note that, as the resulting Bohmian trajectories have objective reality, the character-
ization of singularities is very simple and direct, as in classical cosmology: it appears
when a(T) = 0, when space shrinks to zero. Note, also, that I am treating T in the same
way as a, with its own guidance equation, and without fixing N from the beginning. The
guidance equation for T implies that dT = Ndt/a3w = dτ/a3w, where τ is proper cosmic
time. Usually, the time gauge is fixed before quantization, by choosing N = a3w, yielding
T = t and dτ = a3wdT; hence, both methods are equivalent. As we will see in the sequel,
combining both guidance equations of Equation (52) yields the same guidance equation
for a in terms of T, independently of N, as it would be obtained if we had fixed N a priori.

The dynamics can be simplified using the transformation

χ =
2
3
(1−ω)−1a3(1−ω)/2, (53)

to obtain

i
∂Ψ(χ, T)

∂T
=

1
4

∂2Ψ(χ, T)
∂χ2 . (54)

This is the time-reversed Schrödinger equation for a one-dimensional free particle
with mass 2 constrained to the positive axis. As it has a Schrödinger form, it is possible, in
this case, to obtain the Born rule for Ψ if one imposes the condition

Ψ
∣∣
χ=0= c

∂Ψ
∂χ

∣∣∣∣∣
χ=0

, (55)

with c being a real constant. For these wave functions, one can assert that |Ψ2|dχ is the
probability measure for the scale factor, as the boundary condition imposes that the total
probability is preserved in time. Another good property of condition (55) is that the
Bohmian trajectories coming from wave functions satisfying it are free of singularities [80]
because the probability flux Jχ ∼ Im

(
Ψ∗ ∂Ψ

∂χ

)
associated with these wave functions is null

at χ = 0, so no trajectories can cross a = 0. Note that, in the dBB theory, it is not necessary
to have a probabilistic interpretation for Ψ; hence, one could work with wave functions
that do not satisfy boundary condition (55). In this case, singularities may be obtained,
as in plane wave solutions, where the Bohmian trajectories are always classical, hence
containing a singularity.

A wave function that satisfies condition (55) can be obtained by imposing that, at
T = 0, it is the Gaussian

Ψ(init)(χ) =

(
8

Tbπ

)1/4

exp
(
−χ2

Tb

)
, (56)
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where Tb is the constant variance of the Gaussian. The wave solution for all times in terms
of a reads [26]:

Ψ(a, T) =

[
8Tb

π
(
T2 + T2

b
)]1/4

exp
[ −4Tba3(1−ω)

9(T2 + T2
b )(1−ω)2

]

× exp

{
−i

[
4Ta3(1−ω)

9(T2 + T2
b )(1−ω)2

+
1
2

arctan
(

Tb
T

)
− π

4

]}
. (57)

Taking the two equations in (52), one can write a guidance equation describing the
dynamics of the scale factor in terms of T,

da
dT

= − a3w−1

2
∂S
∂a

(58)

or
dχ

dT
= −1

2
∂S
∂χ

. (59)

Substituting the phase S of (57) in these guidance equations, one obtains the Bohmian
trajectories

a(T) = ab

[
1 +

(
T
Tb

)2
] 1

3(1−ω)

. (60)

This is a bounce solution without singularities for any initial value ab 6= 0. It tends to
the classical solution when T/Tb → ±∞. Hence, the constant Tb provides the time scale
of the bounce and the quantum effects. The solution (60) can be obtained for other initial
wave functions [80].

The case w = 1/3 describes a radiation fluid. Adjusting the free parameters con-
veniently, the solution (60) can reach the classical Friedmann evolution at energy scales
larger than the nucleosynthesis energy scale, when the standard cosmological model begins
to be tested by observations. Hence, it is a sensible cosmological model describing the
radiation-dominated era, which is free of singularities.

Nevertheless, a complete cosmological model must also contain a presureless compo-
nent, describing dark matter and baryons (dark energy will be treated later). This extension
was accomplished in [80], yielding

a(ηs) = a0

(
Ωm0

4
η2

s +

√
1
x2

b
+ Ωr0 η2

s

)
, (61)

where xb = a0/ab, a0 is the scale factor today, ab is the scale at the bounce, and Ωm0 and
Ωr0 are the usual dimensionless densities (Ω = ρ/ρc) of dust and radiation, respectively,
where ρc is the critical density. I have also introduced the dimensionless conformal time,
ηs = (a0/RH0)η, where RH0 = 1/H0 is the Hubble radius today. The scale factor in
Equation (61) describes a universe dominated by dust in the far past, which contracts up
to radiation domination. Near the singularity, quantum effects become relevant, and a
quantum bounce takes place, eliminating the singularity. The universe is then launched to
an expanding phase, reaching the usual standard classical radiation and dust phases. As
we will see, the presence of dust is important not only for completeness but also because it
is necessary to yield a scale invariant spectrum of scalar perturbations.

The curvature scale at the bounce reads

Lb ≡
1√
R

∣∣∣∣
ηs=0

=

√
a3

6a′′

∣∣∣∣∣∣
ηs=0

, (62)
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where R is the Ricci scalar. It cannot be very close to the Planck length, because near
these very small scales, a complete theory of quantum gravity [19–22] must be evoked.
The Wheeler–DeWitt quantization we are using should be understood as a good effec-
tive theory for quantum gravity only at higher length scales. Hence, using the values
H0 = 70 km s−1 Mpc−1 and Ωr0 ≈ 8× 10−5, the imposition that Lb should be a few orders
of magnitude larger than the Planck length implies that xb < 1031. Additionally, as men-
tioned above, the bounce should occur before the beginning of the nucleosynthesis era,
implying that xb � 1011. Collecting these two limits yields

1011 � xb < 1031. (63)

Let us now calculate the mode solutions characterizing the cosmological perturbations
of Equation (51)

v′′k +

(
ωk2 − a′′

a

)
vk = 0, (64)

in the quantum bounce background given in Equation (60). Far from the bounce, when
|T| � |Tb|, Equation (64) reads,

v′′k +

[
ωk2 +

2(3ω− 1)
(1 + 3ω)2η2

]
vk = 0. (65)

The solution is

vk =
√
|η|
[
c1(k)H(1)

ν (k̄|η|) + c2(k)H(2)
ν (k̄|η|)

]
, (66)

with

ν =
3(1−ω)

2(3ω + 1)
,

where H(1,2) are Hankel functions, k̄ ≡ √ωk, and we are considering the far past of the
contracting phase, η � −1. In order to obtain spectrum predictions from the above result,
one needs to select one solution from Equation (66) by fixing c1(k) and c2(k).

In the case of inflationary models, all the wavelengths of cosmological interest were
much smaller than the Hubble radius at least by 60e−folds before the end of inflation;
see Figure 1. Long before that, any perturbation around the homogeneous background
was deep inside the Hubble volume, and it would rapidly fade away, justifying that only
quantum vacuum fluctuations could survive. Hence, an adiabatic vacuum state (close
to the Bunch–Davies de Sitter vacuum state) is chosen as the initial quantum state of
quantum cosmological perturbations. During cosmic evolution, these perturbation scales
become bigger than the Hubble radius before and during re-heating, becoming smaller
than the Hubble radius again in the expanding decelerating phase. The power spectrum
is calculated, with results that remarkably agree with observations [23]. Note, however,
that the transition from the quantum description to the classical evolution giving rise to
the classical structures in the Universe is very subtle and controversial, needing a clear
explanation. This will be done in the next section in the context of the dBB quantum theory.

The cosmic evolution of the quantum Bohmian bouncing solutions obtained above
is completely different from the inflationary solution. As we have seen, they contain a
long-standing decelerating contracting phase, implying that they are naturally free of the
particle horizon and flatness issues, which are smoothly connected through a quantum
bounce to the usual radiation-dominated expanding phase of the standard cosmological
model, as can be seen from solution (61). However, the qualitative evolution of the
perturbation scales is very similar. In a decelerating contracting phase, cosmological
scales evolve as λphys ≡ λa ∝ τ2/[3(1+w)], while the sound Hubble radius evolves as
RS

H = w1/2/H ∝ τ, where τ is proper cosmic time, and H = a′/a2 is the Hubble function.
Hence, in the far past of the contracting phase, |τ|H0w−1/2 � 1, H0 being the Hubble
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function today; all the scales of cosmological interest were much smaller than the sound
Hubble radius as long as 2/[3(1 + w)] < 1, or w > −1/3, which is exactly the condition
for a deceleration. Put another way, expressing these quantities in terms of the scale
factor, one finds that the sound Hubble radius (or the Hubble radius itself) evolves as
RH ∝ a3(1+w)/2, while the physical cosmological scales are λphys = λa. For w > −1/3, the
Hubble radius grows faster with a than the cosmological scales, implying that, in the far
past of the contracting phase of such bouncing models, the cosmological scales were deep
inside the Hubble radius. The cases of cosmological interest are dust, radiation and the
cosmological constant, in which the exponents appearing in RH ∝ a3(1+w)/2 are 3/2, 2, 0,
respectively. In the course of cosmic evolution during contraction, the perturbations scales
will eventually become larger than the sound Hubble radius before the bounce. Near the
bounce, however, the Hubble radius is no longer a good geometrical scale to which to
compare the cosmological scales, as long as the Hubble radius diverges at the bounce, by
definition. Indeed, from Equation (64), one can see that the really physically important
geometrical scale to which the cosmological scales must be compared is proportional to
the curvature scale lc ≡ R−1/2 (wk2 ≈ a′′/a ⇒ λ2

phys = a2/k2 ≈ wa3/a′′ = w/R ≡ wl2
c ),

where R is the Ricci scalar of the background. The curvature scale generally coincides
with the Hubble radius during classical contraction and expansion, but they behave very
differently during the bounce. In fact, the curvature scale has a smooth behavior, without
ever diverging. Figure 2 shows a qualitative comparison between the cosmological scales
λphys ≡ λa and the curvature scale lc in a bouncing model dominated by dust and radiation,
plotting ln(lc) and ln(λphys) against ln(a). I normalized a such that the scale factor at the
bounce is 1 (ab = 1). The negative (positive) horizontal axis corresponds to the contracting
(expanding) phase, respectively. During classical evolution, the curvature scale coincides
with the Hubble radius, but it behaves differently during the quantum bounce. Note
that the cosmological scales are much smaller than the curvature scale in the far past of
the contracting phase; they become larger than the curvature scale during contraction
at different times, and they become smaller than the curvature scale again only in the
expanding phase. During the period when they are larger than the curvature scale, the
perturbations become amplified, yielding the structures in the Universe, as we will see.
Hence, one can say that decelerating contraction and the bounce play the role of the
accelerating phase and re-heating in inflationary models; compare Figure 1 with Figure 2.
Furthermore, as the sound Hubble sphere in the far past of the contracting phase contains
an immensely large space volume and a tiny matter energy density, and as the Universe
evolves very slowly because the Hubble time scale 1/H is very large, the effective physical
universe that affects such perturbation scales is very close to the flat Minkowski space-
time. Consequently, any small classical perturbation around this homogeneous, almost-flat
background would rapidly dissipate away, and, as in inflation, only quantum vacuum
fluctuations would survive (see [81]), justifying, again, the choice of an adiabatic vacuum
state as the initial quantum state of quantum cosmological perturbations, which is now
close to the Minkowski vacuum quantum state. Hence, the qualitative justification for
imposing vacuum initial conditions for the cosmological perturbations in inflation and
bouncing models is similar, although the physical ambiences justifying them are completely
different. Note, however, that the quantum perturbations in bouncing models must be
dynamically evolved through a different background, especially through the bounce, which
generally involves new physics, with possible different observational consequences, as we
will see.



Universe 2021, 7, 134 17 of 34

Figure 1. Comparison between evolution of Hubble radius and cosmological scales in inflation.
The green straight lines are the perturbation scales; the black solid line is the Hubble radius. The
horizontal axis depicts log(a).

ln (𝐥𝐜) ~ ln (RH)

ln (𝛌𝐩𝐡𝐲𝐬)

ln (a)- ln (a) 0

Figure 2. Qualitative comparison between evolution of the curvature scale, in blue, and cosmological
scales, in red, in bouncing models. During classical evolution, the curvature scale coincides with the
Hubble radius. The scale factor at the bounce is normalized to one; hence, the origin corresponds to
the bounce, where the scale factor attains its minimal value. The negative and positive horizontal axis
correspond to the contracting and expanding phases, respectively. In the plot, the transitions from
dust to radiation domination, and the bounce itself, are qualitatively depicted by sharp transitions.
In reality they are smooth, but it does not alter the physical conclusions presented in the text.

The modes characterizing a(n) (almost) Minkowski vacuum state are given by

v(ini)
k =

exp ik̄η√
k̄

. (67)

The asymptotic expansion of the Hankel functions for k|η| � 1 that fits solution (66)
with (67) implies that

c1 = 0 and c2 = lP

√
3π

2
exp−i π

2 (ν+ 1
2 ) .
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In order to propagate the solution through the bounce up to the expanding phase, one
expands the solutions of Equation (65) in powers of k2 according to the formal solution [72]

vk
a

= A1(k)
[

1−ωk2
∫ η dη̄

a2(η̄)

∫ η̄
a2( ¯̄η)d ¯̄η

]
+ A2(k)

[∫ η dη̄

a2 −ωk2
∫ η dη̄

a2

∫ η̄
a2d ¯̄η

∫ ¯̄η d ¯̄̄η
a2

]
+ ... ,

(68)

where I have omitted the terms of order O(kj≥4). The quantity v/a is the curvature
perturbation ζ [72]. This solution is adequate when wk|η| � 1. The solution (66) is also
valid in this regime, as long as the bouncing solution (60) is still in the classical regime.
This is true for all scales of cosmological interest because they cross the sound Hubble
radius, which happens when wk|η| ≈ 1, when the Universe is still very large, and quantum
effects are completely negligible. Hence, in this region, one can match the solution (68)
with solution (66), and obtain the coefficients A1(k) and A2(k) from the coefficients c1(k)
and c2(k), which were fixed by the vacuum initial condition (67). They read

A1 ∝
(

k̄
k0

) 3(1−ω)
2(3ω+1)

, (69)

A2 ∝
(

k̄
k0

) 3(ω−1)
2(3ω+1)

, (70)

where k−1
0 = T0a3ω−1

0 = Lb, and Lb is the curvature scale at the bounce. Propagating
the solution (68) up to the expanding phase, and relating it to the Bardeen potential Φ(x)
through the known formula

Φ,i
,i(x) = −

3l2
P

√
(ω + 1)ρ̄

2
√

ω
a
(

v(x)
a

)′
. (71)

one obtains, in the expanding phase for T � Tb,

Φk ∝ k
3(ω−1)
2(3ω+1)

[
const. +

1
η(5+3ω)/(1+3ω)

]
. (72)

The constant mode contains a mixing of the coefficients A1 with A2 in the expanding
phase, but the A2 coefficient is multiplied by a large constant, dominating over A1; see [82].
Hence, calculating the power spectrum of the Bardeen potential,

PΦ ≡
2k3

π2 |Φk|2, (73)

which is connected to the anisotropies of the CMBR and fixed by observations, one obtains

PΦ ∝ knS−1, (74)

where
nS = 1 +

12ω

1 + 3ω
. (75)

In the case of gravitational waves, the equation for the modes µk = ahk, where hk
is the mode related to the amplitude of the wave, can be obtained very easily, because
gravitational waves are gauge invariant; see [71] for details. It is given by

µ′′k +

(
k2 − a′′

a

)
µk = 0. (76)
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The power spectrum is

Ph ≡
2k3

π2

∣∣∣µk
a

∣∣∣2 ∝ knT , (77)

and it reads
nT =

12ω

1 + 3ω
. (78)

One can see from Equation (75) that, for ω ≈ 0 (dust), one obtains a nearly scale-
invariant spectrum for both tensor and scalar perturbations [73]. This is a general result
for bouncing models [11,83–85]: if the contracting phase of a smooth bouncing model
is dominated at large scales by a matter field satisfying w = p/ρ ≈ 0, then the power
spectrum of long wavelength scalar perturbations in the expanding phase is nearly scale
invariant. However, there is a problem if the matter field is a fluid in which w = c2

s because,
in this case, w must be positive and one cannot obtain a red-tilted spectrum, as observed.
In the case of a canonical scalar field, this is not the case because w is independent of c2

s ,
and it can be made negative, as we will see in the next subsection. Nevertheless, one can
circumvent this problem even in the fluid case. Note that it is not necessary that the dust
fluid dominates at all times. As we have seen above, the k-dependence of A1 and A2 is
obtained far from the bounce, when the modes cross the sound Hubble radius, k̄η ≈ 1,
and they do not change in a possible transition from matter to radiation domination in the
contracting phase or across a smooth bounce. The effect of the bounce is to mix the two
coefficients, and the constant mode acquires, in the expanding phase, the scale-invariant
piece. Hence, the bounce itself may be dominated by another fluid, such as radiation. In
fact, the more complete bounce solution (61) also yields an almost scale-invariant spectrum
of adiabatic cosmological perturbations. Its amplitude reads [82,86]

AS ≈ 10−2 l2
p

R2
H0

x2
b

Ωr0c5
s

, (79)

where cs is the value of the sound velocity characterizing the adiabatic perturbation when
the perturbation scale crosses the sound Hubble radius. Note that the amplitude becomes
bigger for small values of the sound velocity. Indeed, the perturbation modes grow faster
after they cross the sound Hubble radius, which shrinks if cs becomes small. Hence, they
cross this scale earlier for smaller cs and have more time to grow. As AS ≈ 2.09× 10−9

(see [23]), and using Equation (63), one obtains

10−16 ≤ cs < 10−10 (80)

for the sound velocity. Note, however, that there are two fluids; hence, the sound velocity
for the adiabatic perturbations reads:

c2
s =

w(ρm + pm) + (ρr + pr)/3
ρT + pT

, (81)

where w is the equation of the state parameter of the dust fluid, and the indices m, r, T
designate the dust, radiation, and total energy densities and pressures, respectively. Hence,
c2

s ≈ |w| � 1 only when dust dominates. For small scales that cross the sound Hubble
radius very late, near radiation domination, the power spectrum amplitude is highly
suppressed because cs is no longer in the range (80), as it tends to increase up to 1/

√
3

when radiation begins to be important. Hence, the spectrum must be slightly red-tilted due
to the presence of radiation, and the parameters may be fitted with CMBR observations.

Note that, as tensor perturbations have cs = 1, and as they evolve similarly to scalar
perturbations, their amplitudes must be very small in comparison with scalar perturbations,
being unobservable at large scales or very small frequencies. However, they might be
observable at larger frequencies. Indeed, we have calculated the strain spectrum of the
stochastic background of relic gravitons in such models [87], and we have shown that the
resulting amplitude is too small to be detected by any gravitational wave detector, unless
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in the frequency range 10–100 Hz, as can be seen from Figure 3. However, it is a hard
technical challenge to detect stochastic gravitational waves in such range of frequencies,
if possible.

Figure 3. The figure shows a comparison of our results, labeled by η̄b (the smaller this parameter, the
bigger the energy scale of the bounce, and the value 10−30 is only two orders of magnitude away
from the Planck scale) with experimental sensitivities of LIGO’s 5th run, Advanced LIGO, and the
forthcoming LISA and Einstein Telescope, and a prediction of the upper limits on the spectrum of
primordial gravitational waves generated in inflationary models.

Up to now, I have not considered dark energy (DE), which seems to be accelerating the
present Universe [88,89]. In the case of inflationary models, DE is irrelevant, because the
initial conditions for the perturbations and their subsequent evolution are set at very small
scales, where DE does not play any role. However, in bouncing models, vacuum initial
conditions for quantum cosmological perturbations are set in the far past of the contracting
phase of these models, when the Universe was very large and almost flat, and DE energy
may be relevant at such large scales, as it is in the expanding phase of our Universe. In
fact, in the case of the standard ΛCDM model, where DE is a cosmological constant, the
the curvature scale, or sound Hubble radius, stops evolving linearly in cosmic time and
tends to be constant at large scales. Hence, going back in time, as the large perturbation
scales grow following a time power-law, τ1/[3(1+w)], they become larger than the Hubble
radius again, and an adiabatic Minkowski vacuum prescription for their initial conditions
become problematic; see Figure 4. One possible solution to this problem is to try to define
a Minkowski adiabatic vacuum in the period of time when the cosmological constant is
not relevant, but the Universe is still very large, with a Hubble radius larger than the
scales of cosmological interest. However, these cosmological scales are not much smaller
than the length scale associated with the value of the cosmological constant given in the
ΛCDM standard cosmological model; hence, the spectrum of cosmological perturbations
at these scales can be influenced by its presence. In fact, we have shown in [90], analytically
and numerically, that, in a bouncing model containing a dust fluid (w ≈ 0) and a cos-
mological constant, an almost scale-invariant spectrum of long-wavelength perturbations
is also obtained, but it is now affected by the presence of the cosmological constant. It
induces small oscillations and a small running towards a red-tilted spectrum in these
scales; see Figure 5. Hence, small oscillations in the spectrum of temperature fluctuations
may arise in the cosmic background radiation at large scales, superimposed to the usual
acoustic oscillations.
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ln (𝐥𝐜) ~ ln (RH)

ln (𝛌𝐩𝐡𝐲𝐬)

ln (a)- ln (a) 0

_________________

Figure 4. Qualitative comparison between evolution of the curvature scale, in blue, and cosmological
scales, in red, in bouncing models with a cosmological constant. During classical evolution, the
curvature scale coincides with the Hubble radius. The scale factor at the bounce is normalized to
one; hence, the origin corresponds to the bounce, where the scale factor attains its minimal value.
The negative and positive horizontal axis correspond to the contracting and expanding phases,
respectively. In the plot, the transitions from dust to radiation domination and dust to cosmological
constant domination, and the bounce itself, are qualitatively depicted by sharp transitions. In reality,
they are smooth, but it does not alter the physical conclusions presented in the text.

Figure 5. Numerical results for nS(k) in the presence of a cosmological constant. The solid line shows
the result obtained using ΩΛ = 0.7; the dashed line, that for ΩΛ = 10−3; and the dotted line, that for
ΩΛ = 10−6. The oscillations become smaller for smaller ΩΛ, indicating that they arise because of the
presence of the cosmological constant.

In the next subsection, I will present the scalar field case. Concerning primordial
gravitational waves, as the sound velocity associated with canonical scalar field scalar
perturbations is 1, the scalar and tensor perturbations evolve approximately in the same
way in classical bouncing models, rendering the ratio of the tensor to scalar perturbations of
order 1, r = T/S ≈ 1 [91,92], which is ruled out by observations. I will show that, in the case
of a quantum bounce, the quantum effects near the bounce increase the scalar perturbations
with respect to tensor perturbations, yielding r < 0.1, as observed. Furthermore, using an
exponential potential, the problem with dark energy mentioned above is circumvented, as
we will see.
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4.2. Canonical Scalar Field

Consider a canonical scalar field p = X−V(ϕ) in which

V(ϕ) = V0e−λκ̄ϕ, (82)

where V0 and λ are constants. κ̄2 = 6κ2 = 8πG, so that λ is dimensionless.
Exponential potentials have been widely studied in cosmology, as they can model

primordial inflation, the present acceleration of the Universe, and matter bounces. Their
scalar field dynamics in expanding Friedmann backgrounds contain an attractor where
the ratio between the pressure and the energy density is constant: w = p/ρ, where
w = (λ2 − 3)/3. Hence, by adjusting V0 and λ, they can be used to describe the above
cosmological scenarios.

Restricting ourselves to matter bounces, w ≈ 0, one must set λ ≈
√

3. Note that, as
w is not related to the sound speed squared of scalar perturbations, as in the fluid case,
it is not restricted to being positive: it can have a small negative value in order to give
ns = 1 + 12w/(1 + 3w) ≈ 0.97.

Let us first present the classical dynamics of canonical scalar fields with exponential
potential. Using cosmic proper time, N = 1, one can define the variables

x =
κ̄√
6H

ϕ̇, y =
κ̄
√

VM√
3H

, (83)

where
H =

ȧ
a
= α̇ (84)

is the Hubble parameter. This choice dramatically simplifies the Friedmann equations
as follows:

dx
dα

= −3
(

x− λ√
6

)
(1− x)(1 + x) (85)

x2 + y2 = 1. (86)

The ratio w = p/ρ is given by

w = 2x2 − 1. (87)

The critical points of this system are listed in Table 1; see [93]. The critical points at
x = ±1, yielding p = ρ (the potential is negligible with respect to the kinetic term), and the
scalar field behave as stiff matter. They correspond to the space-time singularity a = 0. The
critical points x = 1/

√
2 imply that w = 0 (see Equation (87)) or p = 0, and the scalar field

behaves as dust matter. They are attractors (repellers) in the expanding (contracting) phase,
corresponding to very large, slowly expanding (contracting) universes, and the space-time
is asymptotically flat in time. Additionally, from Equation (87), one can see that, at x = 0,
the scalar field behaves like dark energy; w = −1, p = −ρ.

Table 1. Critical points of the planar system defined by (85) and (86).

x y z

−1 0 1

1 0 1

λ√
6 −

√
1− λ2

6
1
3
(
λ2 − 3

)
λ√
6

√
1− λ2

6
1
3
(
λ2 − 3

)
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The expanding solutions evolve from a Big Bang singularity, when the scalar field
behaves as stiff matter, up to an asymptotic future where the scalar field behaves as dust.
In one of the possibilities, the scalar field passes through a dark energy phase.

The contracting solutions evolve from an asymptotic past dust-dominated contraction,
ending in a Big Crunch singularity, when the scalar field behaves as stiff matter. Again, in
one of the possibilities, the scalar field passes through a dark energy phase.

These classical possibilities are shown in Figure 6. The Friedmann Equation (86)
restricts the trajectories to a circle. The upper and down semicircles are disconnected, as
the S± points are singularities, and they show the expanding and contracting solutions,
respectively. The points M± are the dust attractor and repeller points, respectively.

−1 0 1
√
2/2

x

−1

0

1

y

M+

M−

S− S+

Figure 6. Phase space for the planar system defined by (85) and (86). The critical points are indicated
by M± for a dust-type effective equation of state, and S± for a stiff-matter equation of state. Note
that the region y < 0 shows the contracting solutions, while the y > 0 region presents the expanding
solutions. Lower and upper quadrants are not physically connected, because there is a singularity
in between.

Let us now quantize this background model and perturbations around it, using the
results of Section 3.

One first has to solve the background Wheeler–DeWitt Equation (42), where Ĥ(0) is
the operator version of the classical background Hamiltonian

H(0) =
1

e3α

[
−Π2

α

2
+

Π2
ϕ

2
+ e6αV(ϕ)

]
, (88)

where V(ϕ) is the exponential potential. Exact solutions were found in [94] with their re-
spective Bohmian trajectories, which are non-singular bouncing solutions. These solutions
can also be obtained in a more simplified way by noting that, near the singularity, the
scalar field behaves as stiff matter, the potential can be neglected, and solutions to this case
were found in [31], whose trajectories around the bounce are shown in Figure 7. Note that,
for large scale factors, α� 1, the classical stiff matter behavior is recovered, x ≈ ±1, and
from there on, the Bohmian trajectories become classical. They can then be appropriately
matched with the classical solutions presented in Figure 6. This was done in [95], yielding
the same qualitative picture. In fact, both results, together with some general arguments
based on the Bohmian configuration space, where no trajectories can cross (see [94]), imply
that the only Bohmian possible bounce solutions are those that connect the region around
S± with the region around S∓. Figure 7 shows a concrete example of a quantum bounce
transiting from S+ to S−. Hence, the possible Bohmian bouncing scenarios are:
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(A) A long classical dust contraction, which traverses a dark energy phase and realizes a
stiff matter quantum bounce, directly expanding afterwards to an asymptotically dust
matter expanding phase, without passing through a dark energy phase.

(B) A long classical dust contraction, without traversing a dark energy phase, which
realizes a stiff matter quantum bounce and expands to a dark energy phase, ending in
an asymptotically dust expanding phase.

−1.0 −0.5 0.0 0.5 1.0

φ

2

3

4

5
α

Figure 7. Phase space for the quantum bounce [95]. The bounces in the figure connect regions around
S+ in the contracting phase with regions around S− in the expanding phase.

Case B is the physically interesting solution. First, it contains a dark energy phase
in the expanding era, allowing the description of the present observed acceleration of
the Universe. Second, there is no dark energy phase in the contracting era. The model
has a long standing dust contraction, where space-time is almost flat in its asymptotic
past, allowing the prescription of an adiabatic Minkowski vacuum as the initial state for
quantum cosmological perturbations and avoiding the problem concerning the quantum
vacuum prescription for the initial quantum state of cosmological perturbations when dark
energy is present. Hence, the dBB quantum theory yields an example where vacuum initial
conditions for quantum cosmological perturbations can be easily imposed in bouncing
models with dark energy. Other physical effects can lead to bouncing models with a dark
energy phase [96–98], with similar properties. The relevant aspect of the present model is
that a single canonical scalar field, with a quite simple potential, was capable of modeling
not only a dark energy phase at large scales in the expanding phase of the bouncing model
but also a pressureless field that dominates the asymptotic past of the contracting phase of
the same model.

Having solved the background Wheeler–DeWitt Equation (42) and found the rel-
evant background Bohmian trajectories, let us now calculate the amplitudes of scalar
perturbations and primordial gravitational waves in this background.

As we have seen in Section 3, quantum primordial gravitational waves are described
by the variable µ, whose modes satisfy similar equations to the Mukhanov–Sasaki variable
mode vk, with the scale factor a playing the role of z:

v′′k +

(
k2 − z′′

z

)
zk = 0, (89)

µ′′k +

(
k2 − a′′

a

)
µk = 0. (90)
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Adiabatic vacuum initial conditions are set using the mode Equation (67), which
applies for both vk and µk. The calculations in the Bohmian background were performed
in [95].

In order to qualitatively understand the final results, let us discuss what happens near
the quantum bounce. Approaching the bounce in the contracting phase, the perturbation
reaches the super-Hubble behavior, where z′′/z � k2 and a′′/a � k2. As shown in
Section 3, in this regime, the solutions for the scalar and tensor perturbations at leading
order in a k2 expansion read

ζk ≡
vk
z
≈ A(1)

k + A(2)
k

1
RH

∫ dτ

x2a3 , (91)

hk ≡
µk
a
≈ B(1)

k + B(2)
k

1
RH

∫ dτ

a3 , (92)

where x was defined in Equation (83).
In the classical contracting phase of case B, one has 0 < x < 1/

√
2; hence, the evolution

of ζk and hk is very close, since they are different by the presence of x in Equation (91),
implying that r = T/S ≈ 1. This is the origin of the problem with classical bouncing models
with canonical scalar fields. In a quantum bounce, however, the classical Friedmann
equations are no longer satisfied, the evolution is no longer restricted to the circle in
Figure 6, and x can assume any value. Indeed, in Figure 8, one can see that there are
Bohmian trajectories where x = dϕ/dα is very small. Hence, in this period, the scalar
perturbation amplitudes can increase relatively to the tensor perturbation amplitudes.
Indeed, this was calculated numerically, and the results are shown in Figure 9. One can see
a sharp increase in the scalar perturbation amplitude around |α− αb| ≈ 10−1, where αb is
the value of the scale factor at the bounce.

Figure 8. Possible Bohmian trajectories associated with the canonical scalar field with exponential
potential. The trajectories yielding relevant amplification of scalar perturbations are set 1 and set 2.
The bounces are not deep, but they are steep, with very small x.

This is a remarkable result. It shows that features of quantum Bohmian trajectories
can lead to observational consequences and explain involved cosmological issues, such as
the unwanted large ratios of tensor to scalar perturbation amplitudes that plague classical
bouncing models with canonical scalar fields. Hence, it is a concrete example of how a
quantum cosmological effect can be amplified to yield sound observable consequences.



Universe 2021, 7, 134 26 of 34
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Figure 9. Evolution of scalar and tensor perturbations in the background of case B. Scalar and tensor
perturbations grow almost at the same rate during classical contraction, but at the quantum bounce,
the scalar perturbations are enormously enhanced over the tensor perturbations due to the quantum
effects (shown in the detail of the figure). After the bounce, the perturbations get frozen. The final
amplitudes of both perturbations are compatible with observations. The indices a and b refer to the
real and imaginary parts of the perturbation amplitudes.

The free parameters of the theory can be adjusted to yield the right amplitudes
and spectral indices of scalar and tensor perturbations. From Planck observations, one
obtains ns = 0.9652± 0.0042, implying that λ2 = 2.9914± 0.0010. The amplitude of scalar
perturbations, As ≈ 2.1× 10−9, can be obtained if the curvature scale at the bounce is
around 103lp. However, the bounce must be steep in order to obtain sufficient amplification
of scalar perturbations over tensor perturbations, as shown in Figure 9; see Figure 8
and [95] for details. Hence, applying the dBB quantum theory to quantum cosmology
made it possible to obtain a simple and sensible bouncing model with dark energy behavior
in the expanding phase, and correct and well-defined perturbation amplitudes of quantum
mechanical origin.

5. The Quantum-to-Classical Transition of Quantum Cosmological Perturbations

As we have seen in Section 3, in both bouncing and inflationary models, the seeds of
structure in the Universe are the quantum fluctuations of an adiabatic vacuum, which is
defined when the wavelengths of cosmological interest are deep inside the sound Hubble
radius, either in the slow contracting phase of a very large and rarefied universe in the
far past of bouncing models or in the quasi-de Sitter expansion of inflationary cosmology.
During the evolution of the Universe, these quantum vacuum fluctuations must become
classical fluctuations, as the structures present in the real universe (galaxies, cluster of
galaxies, etc.) are classical.

In the context of the Copenhagen interpretation, it is rather difficult, if not impossible,
to explain this transition. The adiabatic vacuum is a homogeneous and isotropic quantum
state. For instance, the mean value of the curvature perturbation ζ(x) squared in the
adiabatic vacuum state |0〉 is homogeneous:

〈0|ζ2(x)|0〉 = 〈0|T†ζ(x)TT†ζ(x)T|0〉 = 〈0|ζ2(x + δ)|0〉, (93)

where T is the δ translation unitary operator, and the vacuum state satisfies T|0〉 = |0〉.
From another point of view, the temperature anisotropies that are measured in the

CMBR [23] originated from the Sachs–Wolff effect are obtained from the Bardeen potential
Φ, but how should we understand Φ in this calculation: as a mean value of the quantum
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operator corresponding to Φ (which is zero in the state |0〉) or as a particular realization of
it? Which one?

The usual attempts to address these issues argue that, in inflation, the vacuum state
is squeezed, yielding a positive Wigner distribution in phase space, which looks like a
classical stochastic distribution of realizations of the Universe, with different inhomoge-
neous configurations. Decoherence avoids interference among the different realizations.
These arguments were severely criticized by many authors [72,99–101]. The quantum
state, although squeezed, is still homogeneous, so what breaks its homogeneity? What is
the environment of the perturbations in the decoherence picture? The most fundamental
question is as follows: in the Copenhagen interpretation, different potentialities are not
realities, so how does one of the potentialities become our real Universe? How does a
single outcome emerge from the many possible realizations, without a collapse of the wave
function, or what defines the role of a measurement in the early Universe? This main issue
is ultimately connected with the measurement problem in quantum mechanics, which,
as commented on in the Introduction, becomes acute when the physical system is the
Universe under the Copenhagen view. It cannot be solved by the arguments above without
a collapse postulate, which does not make sense in the physical situation we are facing: we
cannot collapse the perturbation wave function because we could not exist without stars!

The dBB quantum theory provides a simple and elegant solution to this very impor-
tant problem. First of all, remember that, besides the quantum state, there is an actual
quantum field describing the cosmological perturbations, which, depending on its initial
configuration, will distinguish one of the possible realizations of the Universe with respect
to the others, breaking the symmetry of the quantum state. As explained in Section 2, there
is no collapse, but one realization is selected by the evolution of the actual perturbation
field. Secondly, as be shown in the sequel, this quantum evolution becomes classical while
the Universe evolves, either in inflation or in bouncing models.

As we have seen in Section 3, the Schrödinger equation for the perturbations reads

i
∂Ψ(v, η)

∂η
=

1
2

∫
d3x
[

π̂2 + v̂,i v̂,i +
z′

z
(π̂v̂ + v̂π̂)

]
Ψ(v, η), (94)

where z = aϕ′/H is a background function coming from either an inflationary model or a
quantum Bohmian trajectory (which may be nonsingular with a bounce), as we will see in
the next section.

Going to the Fourier modes vk of the Mukhanov–Sasaki variable,

v(x) =
∫ d3x

(2π)3/2 vkeik·x, (95)

and because of linearity, one can set the product wave function

Ψ = Πk∈R3+Ψk(vk, v∗k, η), (96)

where each factor Ψk satisfies the Schrödinger equation

i
∂Ψk
∂η

=

[
− ∂2

∂v∗k∂vk
+ k2v∗kvk − i

z′

z

(
∂

∂v∗k
v∗k + vk

∂

∂vk

)]
Ψk. (97)

The guidance equations are

v′k =
∂Sk
∂v∗k

+
z′

z
vk. (98)

The wave function Ψk associated with the adiabatic vacuum wave functional given
by Equation (96) reads (see [102] for details)

Ψk =
1√√

2π| fk(η)|
exp

{
− 1

2| fk(η)|2
|vk|2 + i

[( | fk(η)|′
| fk(η)|

− z′

z

)
|vk|2 −

∫ η dη̃

2| fk(η̃)|2
]}

, (99)
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where fk is a solution of the classical mode equation

f ′′k +

(
k2 − z′′

z

)
fk = 0, (100)

with initial conditions fk(ηi) = exp−ikηi/
√

2k, where |ηi| is an early time in the contracting
phase where k2 � z′′/z 1. This state is homogeneous and isotropic. Note that, around ηi,
the wave function Ψk reduces to the usual harmonic oscillator ground state wave function
for the mode k, with ground state energy Ek = k

The guidance equations can be integrated to give

vk(η) = vk(ηi)
| fk(η)|
| fk(ηi)|

, (101)

independently of the particular form of fk(η).
When k2 � z′′/z, we have seen that, in either inflation or the bounce scenario in the

contracting phase, the solution of Equation (100) can usually be approximated to

fk(η) ∼ e−ikη

(
1 +

Ak
η

+ O(η−2) + . . .
)

. (102)

In the simple solutions presented in Section 3, Equation (102) comes from asymptotic
Hankel function expansions. By inserting Equation (102) into Equation (101), one obtains,
for the Bohmian modes,

vk(η) ∼
(

1 +
ReAk

η
+ . . .

)
. (103)

Note that vk is approximately constant, as it is the usual case of Bohmian trajectories
corresponding to the ground state of a harmonic oscillator. Hence, the Bohmian mode is
completely different from the classical mode: the first is almost static, and the second is
oscillating. The quantum perturbation field is genuinely quantum.

When the modes get deep inside the potential, k2 � z′′/z, we learned from Section 4
that the classical mode fk is a combination of power law solutions, which soon becomes
dominated by a growing mode. Hence, one has

fk(η) ∼ Akηβ, (104)

where β < 0 2. Hence, as | fk| equals fk, up to a time-independent complex factor and,
looking at Equation (101), the Bohmian modes evolve in the same way as the classical
modes in this era. The classical limit has been achieved, long before non-linear structures
begin to be formed.

One can also use the quantum potential to investigate the classical limit, constructing it
from the wave function Equation (99) in both eras. It was explicitly shown in [103,104] that,
indeed, when k2 � z′′/z, the quantum potential dominates the evolution of the perturba-
tions, while for k2 � z′′/z, it becomes negligible with respect to the classical potential.

In order to obtain the statistical prediction, one can write the Bohmian field as v(η, x; vi)
such that v(ηi, x; vi) = vi(x). If the initial field vi is distributed according to the quantum
equilibrium distribution |Ψ(vi, ηi)|2, we have seen that v(η, x; vi) will be distributed accord-
ing to |Ψ(v, η)|2. This property is called equivariance. For such an equilibrium ensemble,
we can consider the two-point correlation function

1 In this section, I will name the Mukhanov–Sasaki mode vk of Section 4 fk , reserving the name vk for the Bohmian mode that we are now discussing.
2 In inflation, this result is direct, while for bouncing models, some care must be taken with the interchange between growing and decaying modes

after the bounce, but in the end, the result is the same; see [103].
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〈v(η, x)v(η, x + r)〉B
=

∫
Dvi|Ψ(vi, ηi)|2v(η, x; vi)v(η, x + r; vi)

=
∫
Dv|Ψ(v, η)|2v(x)v(x + r). (105)

The second line expresses the integration over the ensemble of possible initial con-
figurations with distribution |Ψ(vi, ηi)|2, and the step to the third line is a consequence of
equivariance.

Using Equations (96) and (99), one obtains

〈v(x, η)v(x + r, η)〉B =
1

2π2

∫
k2dk

sin kr
kr
| fk(η)|2 ≡

1
2π2

∫
d ln k

sin kr
kr

P(k, η), (106)

where P(k, η) = k3| fk(η)|2 is the power spectrum of v. Note that

〈v(x, η)v(x + r, η)〉B = 〈v̂(x, η)v̂(x + r, η)〉, (107)

where the R.H.S is the usual two-point correlation function in the Heisenberg representation,
calculated in Section 4.

One can object that Equation (105) is an average over possible realizations of the
Universe and we just see one universe. This can be overcome with the argument that the
width of the Gaussian distribution of temperature correlations in the CMBR is small for
small angles; hence, a measurement related to these small correlation angle temperature–
temperature anisotropies must be very close to the mean value. Note that, for larger angles
(or larger cosmological scales), this is no longer the case, leading to the so-called cosmic
variance (a larger imprecision in these larger angle observations). For details, see [72].

In conclusion, the dBB approach explains, in a very simple and clear way, the quantum-
to-classical transition of quantum cosmological perturbations, conceptually and qualita-
tively, solving an ancient deep problem concerning the evolution of cosmological perturba-
tions of quantum mechanical origin. For other approaches and other quantum effects in
the CMBR, see [105–109].

6. Discussion and Conclusions

As we have seen in this review, de Broglie–Bohm (dBB) quantum theory is very
suitable for quantum cosmology. Many of the issues that plagued the subject for a long
time simply disappear:

(1) The measurement problem is naturally solved, without the necessity of invoking the
presence of an external agent outside the quantum physical system, which does not
make sense when the physical system is the whole Universe.

(2) The fact that the usual quantum equations for the wave function of the Universe that
emerge from many approaches to quantum gravity do not present a Schrödinger form
makes it difficult to physically interpret the wave function of the Universe, especially
in probabilistic terms [65,110]. In the dBB theory, however, the wave function of the
Universe Ψ yields the guidance equations, which provide the time evolution of all
the quantum particles and fields present in the Universe. Hence, one can assign a
nomological interpretation to Ψ, as giving the laws of motion for the quantum degrees
of freedom, in the same way as Hamitonians and Lagrangians do. There is no need
to talk about probabilities at this level; hence, the quantum equations for Ψ may
have any form. When dealing with subsystems in the Universe, one can construct
the conditional wave function to describe this subset of fields and particles, which
may satisfy a Schrödinger-like equation under reasonable assumptions, and a natural
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probabilistic interpretation in terms of the Born rule emerges for this conditional
wave function.

(3) There is the so-called problem of time in quantum cosmology, as it seems that the
quantum theory is timeless [110]. This issue is intimately connected with the second
one. In the dBB quantum approach, the guidance equations yield a parametric
evolution for the fields. Note, however, that the space-time structure that emerges from
orderly stacking the fields along this parameter may be very contrived, but they can
be calculated; see [111] for details. Additionally, when going to subsystems described
by the conditional wave function, where a Schrödinger-like equation emerges, a time
evolution for the subsystem quantum state emerges.

(4) As, in the dBB theory, the Bohmian trajectories emerge, the characterization of quan-
tum singularities becomes clear. For instance, in the quantum cosmological models
discussed here, the background model is said to be non-singular if the Bohmian
trajectory of the scale factor satisfies a(t) 6= 0 for all t.

(5) The classical limit is easily obtained, either by the inspection of the quantum potential
or by direct comparison between the classical and Bohmian trajectories.

The features of the dBB theory, which naturally solve the issues of quantum cosmology
presented above, have many important consequences:

(i) Feature (1) yields a clear understanding of a long standing problem, which is the
quantum-to-classical transition of quantum cosmological perturbations in inflation
and bouncing models. This was discussed in Section 5.

(ii) Feature (4) allows a simple identification of non-singular quantum models, as shown
in Section 4. All of them present a regular bounce.

(iii) All the features above yield simple equations for quantum perturbations in quantum
backgrounds, which is not an easy task under other approaches [112]. These simple
equations could be solved, providing sensible bouncing models with inhomogeneous
perturbations, in which the presence of a dust fluid (dark matter?) yields an almost
scale-invariant spectrum of perturbations, as observed, with the correct amplitudes.
Dark energy can also be included, as in the scalar field model of Section 4. In this
model, we have seen that a quantum cosmological effect becomes very relevant during
the quantum bounce, leading to observable consequences which solve a conflict with
observational results that cannot be solved in classical terms, rendering it a viable
model to be developed.

(iv) Feature (5) makes direct the evaluation of the parameter limits under which the
standard classical Friedmann solution arises from a quantum Bohmian solution.

There are many routes of investigation to be deepened, and many new to be followed.
Some of them are:

(a) The angular power spectrum of the temperature–temperature correlation function,
and the E and B polarization modes corresponding to the bouncing models described
here, and other possibilities, must be calculated in great detail, and compared with
the most recent CMB results [113], in order to differentiate these models among
themselves and with inflation. Additionally, one could try to find typical fingerprints
of a quantum cosmological effect, which cannot be found by other methods. One
promising example is the scalar field model presented in Section 4.

(b) In the analysis of more elaborate models, some new observables must be calculated.
For instance, in the two-fluid model described in Section 5, one needs to calculate the
entropy perturbations. In preliminary calculations [86], as the entropy effective sound
velocity is given by

c2
e =

w(ρr + pr) + (ρm + pm)/3
ρT + pT

, (108)

the large scale perturbations become super-Hubble in the dust-dominated era, when
c2

e = 1/3, and the short scale perturbations in the radiation-dominated era, when
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c2
e = w ≈ 0. Hence, in opposition to the adiabatic perturbations, the large scale

entropy perturbations are very small compared to adiabatic perturbations, which is in
agreement with observations, but they may be relevant at small scales. Hence, even
knowing that small scale perturbations are suppressed by Silk damping, some imprint
of this effect may be present. Furthermore, they may also slightly affect the spectrum
index of large scale adiabatic perturbations. This is work in progress.

(c) The role of dark energy in bouncing models is very important to understand. In
Section 5, I presented a possible solution to the issues raised in Section 4, but there are
many other possibilities. In the case that dark energy is a cosmological constant, the
problem becomes more contrived, with the possibility of observational consequences.
Note that bouncing models offer a unique possibility to learn about dark energy
through the primordial power spectrum of cosmological perturbations, which is not
the case for inflation.

(d) The effects of a quantum bounce on non-gaussianities are also a very relevant investi-
gation, with possible observational consequences [114,115].

(e) The dBB quantum theory, in principle, allows probability distributions that do not
obey the Born rule, that are away from quantum equilibrium. It is difficult to find
ordinary physical systems in this situation. In cosmology, this may not be the case. For
instance, long wavelength perturbations originated from a vacuum quantum state do
not relax quickly to quantum equilibrium, yielding a possible departure from quantum
mechanical predictions [116]. Additionally, one could relax the conditions imposed in
the conditional wave function explained in Section 5, which would lead to corrections
to the effective Schrödinger equation for the perturbations in the quantum background
regime and a departure from quantum equilibrium, with possible observational
consequences.

In conclusion, quantum theory can indeed help cosmology in solving the singularity
problem, which plagues all GR classical solutions. Furthermore, in a reverse way, cos-
mology can also help in understanding quantum theory more deeply. For instance, the
alternative Many Worlds Interpretation [43] was constructed because the Copenhagen
interpretation cannot be applied to quantum cosmology. Additionally, we have seen that
another alternative, the dBB quantum theory, yields possible testable predictions and new
effects that may distinguish it from other quantum approaches. These possible tests appear
only in a cosmological context. Hence, not only does quantum theory help cosmology but,
also, cosmology can improve quantum theory.

Let me end with a Louis de Broglie quote [117]:

“To try to stop all attempts to pass beyond the present viewpoint of quantum
physics could be very dangerous for the progress of science and would further-
more be contrary to the lessons we may learn from the history of science. This
teaches us, in effect, that the actual state of our knowledge is always provisional
and that there must be, beyond what is actually known, immense new regions
to discover”.
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