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Abstract: We discuss the possibility that the distribution of relic wormholes may possess fractal
properties. Relic wormholes and their fractal distributions are predicted in a natural way by lattice
quantum gravity models. This provides a new approach to some long standing problems. That is
the nature of dark matter phenomena, the origin of Faber-Jackson and Tully-Fisher relations and the
observed deficit of baryons. We derive corrections to the Newton’s potential caused by the presence
of relic wormholes and show that the analysis of dark matter distribution in galaxies allows us to fix
the parameters of the fractal distribution of wormholes.
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1. Introduction

The nature of dark matter represents one of the most challenging problems of modern
astrophysics. Particle physics suggests many possible candidates. The most promising are
WIMPs (weakly interacting massive particles), which can be both new particles beyond
the standard model, or particles composed from already known, for example complexes,
composed from neutrons (and even primordial neutron stars). However, such particles
can hardly solve the problem. Indeed, experiments at the LHC (large hadron collider)
do not show the presence of particles beyond the standard model and, moreover, such
particles have to possess very exotic properties. One important feature is that in the early
Universe, at the moment of recombination, such particles have a rather high density but do
not interact with baryons or radiation, otherwise they would cause too strong fluctuations
of CMB temperature and such a possibility is excluded by the observed power spectrum of
∆T/T. Another important feature is that, in the modern Universe in centers of galaxies,
dark matter particles have much more modest densities (at least three orders less than at
the moment of recombination) but they should possess a sufficiently strong interaction
with baryons to form the observed cored distribution of dark matter ρDM(r) ∼ const as
r → 0, where r is the distance to the center of a galaxy [1–3]. We recall that numerical
investigations based on DM particles predict the presence of a cusp ρDM(r) ∼ 1/r [4,5] in
centers of galaxies, which is the unavoidable consequence of the potential nature of initial
velocities and the fact that DM particles interact via gravity only.

In principle, such a difficulty of DM models based on particles may be overcome
in some of the modified theories of gravity [6] that have gained popularity during the
last decade (e.g., see References [7,8] and references therein). However, any modification
should be approved first from the particle physics standpoint and most such modifications
can be rejected already at laboratory scales. In other words, most such theories have pure
academic interest and have no astrophysical applications.

One of the possible solutions to the problem pointed out was suggested in Refer-
ences [9,10]. It is based on the fact that local topology of space may possess a rather
complex or fractal structure. It has two important features. First, it does not require any
modification of general relativity or the presence of an additional dark matter component.
Secondly, it provides a natural explanation of the empirical Tully-Fisher and Faber-Jackson
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relations [11,12] for rotation curves in galaxies. We point out that, except for the exotic
scheme suggested by Milgrom [13], where such relations were incorporated from the very
beginning, the fractal topology provides the only natural explanation of such relations [14].

The origin of fractal topological structure comes directly from predictions of lattice
quantum gravity models [15–17]. Indeed, lattice models predict that, at Planckian scales,
space-time has a foamy structure which possesses fractal properties. In particular, numeri-
cal investigations [17] show that the spectral dimension of space–time runs from the value
D = 3/2 at sub-Planckian scales to the value D = 4 on macroscopic scales. At very small
scales, the space–time foam can be described by a distribution of virtual wormholes [18].
At laboratory scales, the vacuum is stable, which means that all virtual wormholes appear
and disappear permanently. However, if we believe that the early Universe underwent an
inflationary phase, we should expect that the exponential expansion very rapidly stretches
all scales and some virtual wormholes do not decay. They temper and form the initial con-
ditions for the topological structure of space. The subsequent evolution of wormholes is the
pure classical process. Spherically symmetric wormholes rapidly collapse, while toroidal
or more complex wormholes may survive until the present day [19,20]. In other words, the
present topological structure of space represents an instant print of the space–time foam pic-
ture existing on Planck scales. Since the vacuum state possesses homogeneity and isotropy
properties, it inherits the same properties upon the freezing out at the inflationary stage.

The fractal structure of space can be described as follows: Consider an arbitrary
point x in space and fix the geodesic distance R. Then, the volume Vx(R) of space ,which
gets inside the geodesic ball, that is, all points y which obey the inequality `(y, x) < R
(where `(y, x) is the geodesic distance between x and y), scales with R as Vx ∼ Rd, where
d = D− 1. The homogeneity and isotropy of space requires that the function Vx(R) and
the dimension D do not depend on the initial point x.

The initial point x and omnidirectional geodesic lines, issued from point x, define the
extrapolated reference system, which is used in astrophysics. The coordinate volume of
such a system always has the dimension D = 4, which reflects the fact that locally space is
Euclidean with the dimension d = 3 (i.e., R3). We point out that the dependence on the
redshift (cosmological evolution) and the choice of the background metric (open, flat, or
closed model) somewhat changes the behavior of V(R) and the definition of the dimension
d, but rough features and the value d = 3 remains valid.

The situation changes when the space is filled with a distribution of wormholes. A
part of geodesics go through wormhole throats and return to the same physical region
of space or get into a remote region. Therefore, the behavior of V(R) and the dimension
d may change essentially. From the pure mathematical standpoint this signals the fact
that the extrapolated coordinate system stops working (the same point may have multiple
images), which requires the introduction of additional atlases. In general, the dimension
evaluated in such a manner may either exceed or be less than the coordinate dimension
d = 3. What kind of dimension is realized for physical space depends on the properties
and the distribution of wormholes.

It is curious that the distribution of galaxies provides roughly the analogous picture.
In a homogeneous space, the number of galaxies reflects sufficiently well the behavior of
the physical volume of space. The galaxy counts show the fractal behavior N(R) ∼ Rd

with the dimension d ≈ 2 up to the distances R ∼ 200Mpc [21,22], where N(R) is the
number of galaxies within the distance R. The maximal scale changes with the increase of
the precision. In Reference [23], the scale upon which the distribution of galaxies switches
to the homogeneity had the order ∼ 200Mpc. However, more recent observations of SDSS
(Sloan Digital Sky Survey) [24] have found the existence of wall-type structures (Sloan Great
Wall, etc.) on scales up to 0.1RH , where RH is the Hubble radius, see also [25]. Such super-
large structures have posed a serious problem for the standard scenario of the structure
formation. Recall that, according to latter, the largest scale on which inhomogeneities may
develop is 300Mpc. Moreover, it is even discussed that such structures are inconsistent
with the cosmological principle. We consider such data to be indirect evidence of the fractal
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(or at least complex) topological structure of space and the existence of relic wormholes.
The development of perturbations and the formation of structures in the presence of relic
wormholes is a rather complex problem which requires further investigation.

We point out that, in the flat space, the light when passing through a wormhole throat
is too scattered and may contribute only to the diffuse background radiation [26]. Most
likely, the scattered signal is too dim to observe a separate galaxy through wormhole
throats. The exception may be only gigantic throats compared to the void and larger size.
This means that the observed dimension counted by galaxies is always less than three
d < 3. In particular, this may also explain the observed deficit of baryons [27].

The fractal topological structure can be easily obtained in open Friedmann models
by means of a specific factorization of the negative curvature (Lobachevsky) space over
a discrete subgroup of the group of motion of space [19,20]. We point out that the fractal
distribution of baryonic matter does not necessarily indicate the existence of a fractal
topological structure. However, such a distribution requires specific initial conditions and,
to be consistent with the observed homogeneity of the background, it requires the presence
of dark matter, which is dually distributed in space. The fractal topological structure, in
turn, is the direct prediction of Lattice quantum gravity models and, therefore, it has the
most rigorous theoretical ground.

The advantage of such a factorization is that it completely agrees with the observed
homogeneity and isotropy of the Universe. Moreover, such a model easily reproduces dark
matter phenomena without any modification of general relativity or the presence of actual
dark matter particles. Due to the factorization, every source of gravity (or radiation) has
multiple images in the covering of total Lobachevsky space, which automatically restores
the homogeneity and isotropy of the background but produces dark matter effects in local
inhomogeneous structures (e.g., in galaxies). The absence of particles beyond the standard
model in experiments at LHC lets us think that the dark matter phenomenon indeed has
the origin from a non-trivial topological structure of space, that is, in the first place, from
relic wormholes and black holes.

Fractal structure means that the space contains a distribution of stable torus-shaped
or more complex wormholes of different sizes, which may reach gigantic scales. Moreover,
in the general case, the factorization may even produce wormholes whose throats are not
closed surfaces. The latter should be formally excluded in lattice quantum gravity models.
Indeed, before the inflationary stage virtual wormholes do exist at Planck scales and they
should be restricted in size. Nevertheless, if the inflationary epoch lasts for a sufficiently
long period of time, one may expect the existence of wormholes whose throat size exceeds
the Hubble radius, which are indistinguishable from non restricted throats.

At first glance, the basic disadvantage of the factorization is the presence of multiple
images. Why do we not see images of the same galaxy? To find the answer is not difficult.
First, our Universe has flat space. For small throats of wormholes (of the galaxy size or
less), the additional images are very small and cannot be directly observed. Indeed,
as demonstrated in Reference [28], in the flat model the intensity of an image I has the
order I ∼ R2

L2 I0, where R is the characteristic radius of the throat and L is the distance

between the throat center and the original source and the ratio R2

L2 ≤ 1. It reaches the

order of R2

L2 ∼ 1 only for very large throats. Moreover, the position of the image will be
seen only in the second entrance into the wormhole and, therefore, the image may have
an arbitrary distance from the original. We point out that, for fractal distribution over
distances between entrances into the same wormhole the mean distance between entrances
diverges. Therefore, different images contribute only to the scattered background radiation.
While for gigantic wormholes, all such images are too far from each other and we may see
the same galaxy at different stages of its evolution. Therefore, it is impossible to recognize
that we indeed see the same galaxy.

Thus, the basic disadvantage is that the factorization requires the negative curvature
space only, while the position of Doppler picks in the CMB spectrum favor the flat space.
In flat space, such a factorization is impossible, while a fractal structure can be obtained
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by inserting fractal distribution of wormholes or by means of deforming the metric of the
factorized Lobachevsky space. We point out that such a deformation is not an unusual
phenomenon. For example, if the inflation starts in an open model, then the factorization
actually takes place at sub-Planck scales, while the subsequent particle production may
change the value of the mean spatial curvature and produce flat or even closed space, which
depends on the rate of particle production. In general, this causes many problems that
require further and more deep investigation. For example, whether the particle production
may indeed essentially change the mean curvature. Moreover, if in open models relic
torus-shaped wormholes are stable, in flat or closed models their stability and the rate of
evolution are not properly investigated yet. These problems can be somewhat weakened
as is discussed in the next section.

In the flat space, the presence of wormholes was shown to produce a specific modifica-
tion of the standard Newton’s law [29,30]. If we interpret this as a dark matter phenomenon,
then we find the rigid relation between the distribution of visible and dark components
in a galaxy in the form ρDM(k) = b(k)ρvis(k), where ρ(k) is the Fourier components for
dark and visible matter densities and b(k) corresponds to the correction, which depends
on the distribution of wormholes around the galaxy. This provides the direct method for
determining the correction b(k) from observations and the subsequent modeling of the
distribution of relic wormholes.

If our Universe is filled with relic wormholes, then how can we recognize this? To
provide an answer to such a question is not so easy. Besides the effects of dark matter
discussed in the present paper, we should look for some independent tests. The investi-
gation of possible independent effects related to the scattering of radiation on wormholes
has revealed that almost all effects are well hidden under analogous effects related to the
ordinary matter [28]. Here, we see the two most promising possibilities. The first possibility
relates to recently observed unexpected circular radio objects [31] and the possible role
of torus-shaped wormholes in their origin [32]. The second relates to gravitational wave
Astronomy. In particular, several groups have claimed evidence for repeating echoes in
the LIGO/Virgo observations of binary black hole mergers [33–36]. Such echoes can
be generated by the near-horizon or other strong field effects related to black holes or
wormholes [37–39]. We stress that the scattering of GWs by wormholes produces much
stronger effects as compared to the scattering by ordinary matter objects, for example, see
discussions in [40], which allows us to disentangle such effects and detect wormholes in
the near future.

There is a vast literature on the possible effects of wormholes, for example, see the
review [39]. However, the basic effects, considered so far, relate to effects produced by a
single wormhole that depends on the exact structure of the wormhole. In our study, we
focus on collective effects, which appear due to the presence of a collection of wormholes.
In addition to the repeating echoes, the scattering on wormholes produces an essential
increase of the background GW radiation. Moreover, the accretion disks around small
throats should produce gamma ray bursts distinguishable from the ones from black holes.
The absence of such may suggest a constraint on the form of the distribution of these
wormholes in general (e.g., low distribution of certain sizes).

2. Stable Wormholes and Factorization of the Open Model

As discussed above, relic wormholes are the remnants of the inflationary stage. A-
priori, such wormholes may have an arbitrary form and geometric structure. In particular,
they may correspond to traversable and non traversable wormholes, which depends
on their exact geometric structure and the subsequent evolution. Here, we define the
traversable wormhole as follows. Consider some region of space in which all points are
causally connected in the framework of the background Friedman model. If in such a
region we place a wormhole, then any two points can be connected by a set of geodesic
lines. One unique geodesic does not pass through the throat and it corresponds to the direct
propagation in the Friedman model, while there is also a countable set of additional lines
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that go through the throat. We call the wormhole traversable if for almost all points at least
one of such additional geodesic lines has the length less than the horizon size. Therefore, a
non-traversable wormhole may have two kinds. The first is a wormhole that collapses and
forms a couple of black holes. The second kind is a wormhole that has too long a neck (or
whose entrances are too separated in space). In what follows, we consider the stability of
such wormholes in the context of the cosmological evolution. We call a wormhole stable if
it is not static but evolves sufficiently slowly and does survive up to the present day.

Stable spherically symmetric wormholes cannot exist without an essential modification
of general relativity. In general relativity, static spherical wormholes require the presence of
exotic matter which does not show up in physical systems and laboratory experiments. The
exotic matter can be replaced by a proper modification of theory, for example, see also recent
papers [41–43] and references therein, but any modification requires first a verification from
the particle physics point of view. Any deviation from general relativity is not yet detected.
Quantum corrections may stabilize only wormholes of a Planck size [44,45]. Therefore,
spherical wormholes collapse very soon upon the inflationary stage and form couples of
primordial black holes.

The situation changes when we consider less symmetric configurations. In Refer-
ences [19,20], we have demonstrated that in open Friedman models a collection of stable
wormholes can be constructed simply by means of a factorization of space over a discrete
subgroup of the group of motions for the Lobachevsky space. The simplest wormhole here
has a throat in the form of a torus and in such a scheme, spherical wormholes do not appear
at all. Such wormholes expand in agreement with the expansion of space and, in other
words, in the expanding co-moving reference frame they are static. This does not mean that
they cannot collapse as the spherical configurations do. In particular, the development of
density perturbations may enforce the collapse of a whole region of space which contains
such a wormhole throat. In what follows, we briefly describe the factorization scheme.

2.1. Factorization of the Open Friedman Model

Consider the open Friedman model with the metric

ds2 = dt2 − a2(t)dl2, (1)

where the space-like metic corresponds to the Lobachevsky space

dl2 = dχ2 + sinh2 χ
(

sin2 θdϕ2 + dθ2
)

. (2)

For the sake of illustration and simplicity we demonstrate the factorization for 2D
sections of the space, which correspond to a plane dϕ = 0. Such a plane corresponds to two
values of the polar angle ϕ = ϕ0 and ϕ = ϕ0 + π, which can formally be covered by the
angles θ ∈ [0, 2π], where the range θ ∈ [π, 2π] corresponds to the half-plane ϕ = ϕ0 + π.
Using the coordinate transformation as

z = x + iy = i
1− w
1 + w

, (3)

where w = tanh χ
2 eiθ , we get the realization of the section in the form of the upper complex

half-plane Im z > 0, which is the Klein model of the Lobachevsky plane dl2 = dx2+dy2

y2 .
Consider two particular geodesic lines on the plane which correspond to semicircles
|z| = 1/R and |z| = R with R > 1. Then the factorization can be determined by the map
z′ = R2z which represents one of the possible motions of the plane. The factorization
means that any two points of the plane represent the same point, if they are connected by
the relation

zn = R2nz, n = 0,±1,±2, . . . (4)
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The above factorization corresponds to the cut along those two geodesic lines and
subsequent gluing along them. The resulting space is a wormhole which connects two
independent Lobachevsky planes (regions E+ and E−, see Figure 1).

x

y

R

γγ

γ

1/R

E - E+

1

i

z

z = 0

z = i

r = 1

a)
b)

Figure 1. (a) The Lobachevsky plane. Dashed lines give the polar frame. The stripe between the two
geodesic lines r = 1/R and r = R corresponds to the wormhole region. Regions below red dashed
geodesics (semi-circles) correspond to two unrestricted Lobschevsky spaces E±. The point y = i
corresponds to the center point of the wormhole throat (χ = 0). The line y = 0 corresponds to infinity
χ→ ∞ for the plane. (b) The same plane in coordinates w = reiθ , where r = tanh χ

2 .

To understand how such a factorization looks in three dimensions let us return to the
initial coordinates χ, θ, and ϕ. The geodesic lines |z| = R and |z| = 1/R are determined by

tan2 θ =
cosh2 χ− cosh2 χ0

cosh2 χ sinh2 χ0
, (5)

where R = eχ0 and χ0 gives the shortest distance to the geodesic lines from the center point
χ = 0. The above equation corresponds to an arbitrary section dϕ = 0 and describes two
lines which can be seen in opposite directions θ = 0 and θ = π. Here, the point χ = 0
corresponds to the center of the throat (the point z = i on Figure 1). Using the symmetry
with respect to the change of ϕ we find that in 3D space the above equation determines
two semi-spheres (rigorously speaking they become semi-spheres in terms of the radial
variable r = tanh χ

2 in which the infinity χ → ∞ becomes the sphere r = 1), while the
factorization has the same form determined by (3) and (4). In this case, the throat is not
restricted. It is important that, from the central point χ = 0, such semi-spheres occupy the
solid angles ∆Ω = 2π∆θ where ∆θ can be found from (5) in the limit χ→ ∞ which gives
the asymptotic angles ∆θ = 2 arctan(1/ sinh χ0). To get a restricted throat we have to place
two more analogous semi-spheres e.g., in the orthogonal to θ = 0, π directions at a distance
χ1, see Figure 2.

Moreover, the distances χ0,1 should be chosen in such a way that all four semi-spheres
restrict a finite minimal section. It is also important that every semi-sphere envelopes a
non-physical space, since every point within it represents an image of a point from the
corresponding physical space.

Now let us consider how such a wormhole looks for a remote from the center of the
throat observer. To this end, we should simply shift the central point χ = 0 from the middle
of the throat. From a qualitative standpoint the picture remains the same, every semi-
sphere is determined by the same Equation (5) but the distance to it χ0 changes. Four such
semi-spheres group and if they restrict a finite solid angle they form a remote wormhole.
The angle they occupy in the sky is ∆θ ∼ 2 exp(−χ0) and the throats (minimal sections) are
seen as curved rectangles. We point out that, from the topological standpoint, throats are
tori but in the open model they will be seen in the sky as rectangles. Such wormholes restore
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the torus-like form of throats only in the case when the space is additionally deformed or
curved in such a way that the mean curvature becomes zero or positive.

Figure 2. (a) The form of a throat as it is seen on sky in the open model. It represents the colored
curved rectangle. Regions behind the circles are copies of the physical region. All additional images
lay within the circles. (b) The form of the throat as it is seen in flat models upon the deformation of
the metric from the negative curvature space. The throat has the torus-like form and only part of the
throat surface is seen. Additional images lay inside the surface of the torus.

Above, we have described the factorization that forms a wormhole that connects
two independent (connected only through the throat) Lobachevsky spaces. To obtain a
wormhole both entrances of which lay in the same region requires one more analogous map
as described in [19]. In this case, we get couples of such throats (groups of semi-spheres) on
sky. Now, to obtain a pure fractal picture we may construct a Cantor set on sky by placing
such groups of semi-spheres of smaller and smaller solid angles.

2.2. Stability of Wormholes

The factorization described previously requires the negative curvature space, which
corresponds to an open Friedman model, while the position of Doppler picks in the power
CMB spectrum favor the flat space. In flat space, such a factorization is impossible. How-
ever, a fractal structure can be obtained by inserting the fractal distribution of wormholes
or by deforming the metric of a factorized Lobachevsky space. The deformation of the
Lobachevsky space can be obtained rather naturally during the inflationary stage. Indeed,
if the space initially had a negative curvature, then during the inflation stage the produc-
tion of wormholes and particles took place. Therefore, the particle production process
could essentially change the value of spatial curvature and essentially deform the picture
described above. In this sense, we may expect to see a distribution of analogous wormholes
even in flat space. We point out that, contrary to the open model in flat space, upon the
deformation throat sections will look like torus-like shapes. This poses the problem of how
such wormholes may evolve in flat space. Spherical wormholes are unstable and collapse
very quickly. The stability of torus-like wormholes has not yet been investigated. There are
only some encouraging results. For example, the existence and stability of static cylindrical
wormholes without exotic matter was demonstrated recently in References [46,47]. We
point out that the toroidal wormhole reduces to the cylindrical one in the limit when one
of the radii tends to infinity. Though the rigorous investigation of the behavior of toroidal
wormholes during the cosmological evolution is not yet completed, we may expect that
such wormholes collapse much slower than spherical wormholes do and may survive
up to the present day. As a result, we obtain the open or flat Friedman model filled with
toroidal wormholes.

When we consider wormhole throats as objects of a finite size (e.g., they occupy a
finite solid angle on sky) we may average out over possible random orientations of the
throats in space. We point out that there are no strong physical arguments in favor of some
particular characteristic size of wormholes; moreover, the fractal structure of space–time at
Planck scales predicts analogous fractal distribution over the throat sizes. In the case of the
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statistical averaging over possible orientations, the spherical symmetry of the wormhole
configuration restores and, therefore, estimates based on spherical wormholes should give
correct predictions, at least to the leading order. In what follows, we discuss the open
Friedman model with almost zero value of the space curvature where wormholes can be
considered simply as quasi-static objects expanding only due to the scale factor a(t). The
cosmological evolution of a(t) follows the standard Friedman equations,

H2 +
k
a2 =

8πG
3

ρ,

where H =
·
a/a is the Hubble constant, k = −1, and ρ is the matter density (baryons plus

radiation). The metric has the standard form ds2 = dt2 − a2(t)dl2, where the space-like
part dl2 corresponds to the Lobachevsky space.

The behavior of small perturbations in such a model is determined by the standard
Lifshitz theory [48], with one exception. The basic equations for perturbations have local
character and, therefore, do not depend on the topological structure of space. Possible
solutions, however, do. In particular, in comparison to the ordinary Lobachevsky space the
space with wormholes represents a space with a specific factorization. For example, in flat
space the factorization over translations in one of the directions gives the space which is
simply the cylinder and one of the coordinates becomes a periodic one. This means that
corresponding modes are classified by discrete wave numbers instead of continuous ones
and, therefore, some modes are absent. Analogously, the factorization of the open model
selects only particular solutions among all possible solutions for the unrestricted space.
Therefore, from qualitative and quantitative standpoints, the evolution of perturbations
will show essential deviations from the behavior in standard Friedman models. Analogous
deviations are indeed observed and are interpreted as the presence of dark matter, or a
modification of general relativity. According to Reference [17], the Hausdorff dimension
of space should be 1 < d ≤ 3. At laboratory scales, we see that d = 3 and no deviations
from the standard Newton’s law are observed. The number of galaxies’ counts show that,
starting from galactic scales (R ∼ 5Kpc) at least up to 200Mpc, the Hausdorff dimension is
d ≈ 2 and at those scales we observe the phenomenon of dark matter.

Indeed, the simplest estimate for Newton’s law gives F ∝ GM
S(R) , where M is the mass

within the volume V(R) (ball of the radius R) and S(R) = dV(R)
dR is the square of the sphere

surrounding the volume V(R). In the case of a fractal law V ∼ Rd and S ∼ Rd−1. The
value d ≈ 2 is in very good agreement with observations of dark matter in the range of
scales 5Kpc < R < 200Mpc. The value d ≈ 1 gives too strong a gravitational bind and
such structures should decouple the cosmological expansion very early, or it should even
be suppressed during the inflationary stage.

From one standpoint, stable toroidal wormholes do surely exist in negative curvature
spaces (in the open model), while in the flat model, their stability requires additional study.
From other points, the position of the Doppler picks in the CMB (∆T/T) spectrum points
to the fact that our Universe is very close to the flat space, which means that the matter
density is close to the critical value. Here, however, one should be especially careful in
making estimates. First, the positions of picks are evaluated on the basis of the standard
Friedman models when the possible factorization of the space is not taken into account (i.e.,
the possible presence of wormholes). Secondly, the presence of fluctuations ∆T/T ∼ 10−5

means that, at the moment of recombination, analogous fluctuations are present in the
metric and matter density ∆Ω = Ω− 1 ∼ 10−5, where Ω = ρ/ρcr and ρcr = 3H2/(8πG)
is the critical density. In other words, the space is split into regions of a positive (Ω > 1,
k/a2 ≈ 10−5H2) and negative (Ω < 1, k/a2 ≈ −10−5H2) curvature. If in regions where
Ω > 1 the presence of stable wormholes requires additional study, in the regions where
Ω < 1 stable wormholes do exist. Moreover, in the fractal Universe, the observed mean
value of the spatial curvature is somewhat different from the actual local value. It contains
the additional factor Vph(R)/Vcoor(R), where Vph(R) ∼ RD−1 is the actual physical volume
of space, while Vcoor(R) ∼ R3 is the coordinate, or extrapolated volume. In this estimate,



Universe 2021, 7, 178 9 of 14

one should take the Hubble radius R = RH , or the radius of the sphere of last scattering. In
accordance with Reference [6], the estimate Vph(R)/Vcoor(R) ≈ 10−5 is in agreement with
observations, which means that at the moment of recombination, the local value of the
spatial curvature and the Hubble constant may have the same order (k/a2

rec ≈ H2
rec). We

point out that the same value 10−5 characterizes the portion of actually observed baryons
with respect to the value predicted by nucleosynthesis. Here, we assume estimates of the
number of baryons based only on counts of galaxies and discrete sources, while the diffuse
background (e.g., the X-ray background) provides a much higher estimate for such a ratio
∼0.4 [49–51]. In a fractal picture, the diffuse background does not rigorously reflect the
actual number of baryons. It reflects merely the mean homogeneity and isotropy of space
and the local density of baryons, while the actual number of baryons is proportional to the
physical volume of space N(R) ∼ Vph(R)� Vcoor(R). In other words, rigorous estimates
require further investigation.

3. Fractal Distribution of Wormholes and Modification of Newton’s Law

The fractality of the topological structure of space requires the analogous fractal
distribution of wormholes. At first glance, the fractality is not consistent with the observed
homogeneity and isotropy of the Universe. This, however, is not so, for example, the diffuse
background which appears due to the scattering on wormholes remains homogeneous
and isotropic [28]. The basic feature of the fractal distribution is a scale—dependence of
different mean values, such as mean density of wormhole throats n, the mean distance
between entrances 〈X〉, the mean radius of the throat 〈R〉, and so forth.

Consider the simplest model suggested by us in Reference [29], which explicitly
demonstrates that non-trivial topology can model the effects of dark matter. The model
is based on spherical wormholes, while actual stable wormholes should have torus-like
throats. We assume that throats are averaged over orientations then the spherical symmetry
restores and such wormholes can be considered in the leading order as spherical ones.

In the case of weak gravitational fields and potential perturbations, Einstein’s equa-
tions reduce to the Laplace equation for Newton’s potential (R0

0 −
1
2 R = 8πT0

0 )

1
a2 ∆φ = 4πG

(
δρ +

3
c2 δP

)
,

where a is the scale factor, δρ and δP are perturbations in density and pressure, respectively.
The behavior of perturbations is determined by the Green function (Newton’s law)

∆G
(

x, x′
)
= 4πδ

(
x− x′

)
.

In the Euclidean space, Newton’s law gives G0 = −1/r (in the Fourier representation
it gives G0 = −4π/k2). In the presence of wormholes, the Green function changes [29].
It is convenient to describe corrections which appear due to wormholes by the presence
of additional sources (fictitious sources). Then, formally, we may think that the space
remains Euclidean, while proper periodic conditions on throats are accounted for by the
bias of sources

∆G
(
x, x′

)
= 4π

[
δ
(

x− x′
)
+ b
(
x− x′

)]
.

Here, the bias function b(x) describes corrections to Newton’s law which appear due
to the non-trivial topology of space. Indeed, the presence of the bias b(x− x′) gives rise to
the transformation

1
r2 →

2
π

∫ ∞

0
[1 + b(k)]

sin(kr)− kr cos(kr)
kr2 dk.

The asymptotically flat rotation curves in galaxies require that the correction to the
Newton’s potential should have the logarithmic behavior, that is, the gravitational accelera-
tion should switch from 1/r2 to 1/r. The above expression implies that at galaxy scales the
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bias behaves as b(k) ∼ 1/kα with α ∼ 1 and b(x− x′) ∼ 1/(x− x′)2. When considering a
galaxy with surface mass density distribution ρL(x) the bias b(x− x′) forms an effective
dark matter halo in the form

ρDM(x) =
∫

b(x− x′)ρL(x′)d3x′.

In particular, for b(k) ∼ 1/kα and an infinitely thin disc ρL(x) = σe−r/RD δ(z) this
expression gives the pseudo-isothermal halo ρDM = ρ0R2

C/(R2
C + r2), where RC is the

radius of the core, for example, see [6,14].
For a homogeneous distribution of wormholes, the bias function b(x) was first con-

sidered in [29] and a more general case was constructed in [18]. The bias is expressed via
the distribution of wormholes which in the homogeneous and isotropic case is a function
F = n f (X, R), where n is the density of wormhole throats in space, X is the distance be-
tween entrances into a wormhole, and R is the throat radius. In the Fourier representation
(b(k) =

∫
b(r)e−ikrd3r) it has the form [30]

b(k) = nR(k)
4π

k2 (ν(k)− 1),

where we define

R(k) =
1
k

∫
f̃ (0, R) sin(kR)dR = −1

k
Im

∫
e−ikRw(R)dR, (6)

ν(k) =
1

kR(k)

∫
f̃ (k, R) sin(kR)dR, (7)

and f̃ (k, R) =
∫

f (X, R)e−ikXd3X is the Fourier transform for the distribution function
over distances. Here k = |k| and the dependence of the above functions only on k re-
flects the isotropy of the distribution f . The physical meaning of these two functions R(k)
and ν(k) become quite clear in the limit kR � 1, when throat radii assumed to be small
as compared to the characteristic scales. Then we may set sin(kR) ≈ kR and we find
R ≈

∫
Rw(R)dR =

∫
R f (X, R)d3XdR which is simply the mean value of the throat radius.

We point out that R(k) is proportional to the imaginary part of the characteristic func-
tion for the distribution over radii w(R) = f̃ (0, R) (6) (which is w(k) =

∫
e−ikRw(R)dR).

Analogously the function ν(k) ≈ (1/R)
∫

R f̃ (k, R)dR is the characteristic function for the
distribution over the distances between throat entrances. In the most general case the
effective radius R(k) has the dependence on scales and it admits both signs. Thus, the
presence of a distribution of wormholes gives rise to the specific modification of Newton’s
law and the true Green function becomes

G(k) = −4π

k2 (1 + b(k)).

Consider the simplest particular situation when all distances between throats have
the same value X0 and all throat radii are R0, then we find the homogeneous and isotropic
distribution in the form

f (X, R) =
1

4πX2
0

δ(|X| − X0)δ(R− R0),

and the Fourier transform is

f̃ (k, R) = δ(R− R0)
sin kX0

kX0
.
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The effective radius and the characteristic function, which correspond to such a
distribution are

R(k) = R0
sin(kR0)

kR0
, ν(k) =

sin kX0

kX0
,

and the bias is

b(k) = −4π

k2 nR0
sin(kR0)

kR0

(
1− sin kX0

kX0

)
.

We see that the bias b(k) (and, therefore, corrections to the Newton’s potential) alter-
nates the sign with the change of scales. It is completely determined by three typical scales
related to wormhole distribution, which are the density n ∼ 1/L3

w, the typical throat radius
R0, and the typical distance between entrances into throats X0.

In the general case (of the isotropic and homogeneous distributions), the above ex-
pressions can be rewritten as follows

R(k) =
〈sin(kR)〉

k
, ν(k) =

1
R(k)

〈
sin(kR)

k
sin kX

kX

〉
,

where the mean value is determined as 〈g(X, R)〉 =
∫

g(X, R) f (X, R)d3XdR. For normal
distributions, when all momenta are finite, we may expand the above expressions in series
and find

b(k) = λ
∞

∑
N=1

(−1)N(kLN)
2(N−1) ≈ −λ

(
1− (L2k)2 + (L3k)4 + . . .

)
, (8)

where λ = 4πn
6
〈

RX2〉 and the characteristic scales LN are determined via mean values
as follows

(LN)
2(N−1) =

6
〈RX2〉

N−1

∑
l=0

〈
R2l+1X2(N−l)

〉
(2l + 1)!(2(N − l) + 1)!

.

The first term here determines the re-normalization of the gravitational constant,
while the next terms determine higher order corrections. The above analysis shows that
using only normal distributions it is hardly possible to get the desirable form of correc-
tions (observed in galaxies). This is confirmed by estimates presented in Introduction.
Indeed, Gaussian distribution of wormholes is described by three typical scales those are
Lw ∼ n−1/3, which characterizes the absolute value of corrections, R0, and X0. Starting
from a typical scale R > X0 Vphys(R) ' VCoor(R) and all corrections reduce to a some renor-
malization of gravitational constant, while at smaller intermediate scales (R0 < R < X0),
corrections have more complex behavior (partial screening, e.g., see [29]). This indicates
that we should consider more general fractal distributions.

In the case of fractal distributions, such an expansion does not work since all mo-
menta may diverge, while the density of wormholes n is badly determined (its value also
depends on scales). In this case, we should directly work with characteristic functions
w(k) (R(k) = −Im w(k)/k) and ν(k). Indeed, consider the simplest example when w(k)
and ν(k) are independent. Then, every function can be expressed as

ν(k) = exp
{
−(kL1)

α1
(

1− iβ1 tan
(α1π

2

))}
, (9)

where β1 ∈ [−1, 1] determines an asymmetry of the distribution e.g., see Ref. [52]. Analogously,

w(k) = exp
{
−(kL2)

α2
(

1− iβ2 tan
(α2π

2

))}
, (10)

with its own parameters L, β, and α. The last equation defines the effective radius as

R(k) = −Im
w(k)

k
= −L2

exp
(
−(kL2)

α2
)

kL2
sin
[
(kL2)

α2 β2 tan
(α2π

2

)]
. (11)
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In the case α = 2, the above characteristic functions corresponds to the standard Gaus-
sian distribution, while for α < 2 the dispersion which corresponds to such a distribution
diverges as

σ =
d2

dk2 ln ν(k)
∣∣∣∣
k=0

∝ kα−2 → ∞

as well as all higher momenta. The parameters αi relate to the Hausdorff dimension of
space D and it characterizes the fractal structure of f (X, R). To avoid misunderstanding,
we also point out that the scales Li do not characterize the mean value between entrances
into throats, or the mean radius, since for fractal distributions such moments diverge. In
such a case the decomposition in series presented above (8) does not work. In this case, we
should expand directly the characteristic functions (9) and (11) themselves. In the region
of sufficiently small scales kLi � 1 (i.e., at very small distances) the function b(k) quickly
oscillates and vanishes b(k)→ 0. In this region of scales the standard Newton’s law does
work. At sufficiently big scales, that is, in the limit kLi � 1, we find the first leading
term as

b(k) ≈ 4πχ
(kL2)

α2−1(kL1)
α1

(kL3)
2 + · · · = 4πχ

(
kL̃
)α1+α2−3

+ . . . , (12)

where L3 = 1/
√

nL2 and

χ = β2 tan
(α2π

2

)(
1− iβ1 tan

(α1π

2

))
.

Corrections to the empirical Green function b(k) can be restored directly from ob-
servations and by relations (6) and (7) they determine the distribution of wormholes. In
the present paper, we do not analyze any actual data, since it requires an independent
study. However, some rough estimates can be obtained. Indeed, the first correction for
the empirical Green function, which follows from rotation curves [14], behaves roughly
as Gemp = − 4π

k2 (1 + (kL̃)−α) with α ' 1, which determines parameters in (12) as χ ' 1
(β1 = 0), α1 + α2 ' 2, and L̃ ∼ 5Kpc. As was discussed in Reference [14], the value of the
parameter L̃ may somewhat change from a galaxy to a galaxy that reflects the presence of
the initial inhomogeneities of the metric at the moment of recombination.

As demonstrated in [14], the bias in the form (12) and the homogeneity of total
matter (baryon plus dark matter components) [6] straightforwardly lead to the origin
of Tully-Fisher and Faber-Jackson relations. Therefore, this can also be considered an
indirect indication of the fractal topological structure of space. Moreover, the recent SDSS
data [24,25] show the traces of the fractal distribution of baryons up to scales ∼0.1RH .

4. Concluding Remarks

As concluding remarks, we point out the basic results of this paper. First, we have
demonstrated that the most natural origin of dark matter phenomena relates to the existence
of a locally complex or fractal topological structure of our Universe. At extremely small
(sub-Planckian) distances, such a fractal structure is predicted by lattice quantum gravity
models. It is widely accepted that, in the past, the Universe underwent the stage of
exponential expansion, that is, the inflationary stage. Exactly in this period, the topological
fractal structure tempers and it forms the initial conditions for the actual structure of space
in Friedman models. One may imagine such a process as an instant enormous increase
of a small (of the Planckian order) portion of space filled with virtual wormholes up to
macroscopic scales. The stretched wormholes become real and form the initial topological
structure, while their subsequent evolution is already governed by classical gravity (general
relativity). Spherical wormholes collapse very quickly and form primordial black holes.
Toroidal wormholes do not require exotic matter for their stability and they may survive
until the present day.

Secondly, the fractal structure is consistent with the apparent homogeneity and
isotropy of space. The simplest rigorous model is the Lobachevsky space factorized



Universe 2021, 7, 178 13 of 14

over a discrete subgroup of the group of motion (of the group of the symmetry). The
resulting space has a constant spatial curvature and it locally cannot be distinguished from
the Friedman model. However, it is not a homogeneous space anymore and, in general, it
possesses a complex topological structure. The flat model can be obtained by a deformation
(due to particle production) of the factorized Lobachevsky space. In this case, the fractal
topological structure will correspond to a specific distribution of relic wormholes that
possesses fractal properties.

Finally, we have demonstrated that when the distribution of wormholes possesses
fractal properties, corrections to the standard Newton’s law have the necessary form to
imitate rather carefully the presence of dark matter in galaxies. Moreover, the empirical
Green function restored from the analysis of rotation curves in galaxies allows us to directly
restrict some of the parameters of the fractal distribution of wormholes.

We also indicate that the complex topological structure of space does not assume any
modification of general relativity. However it results in a strong modification of gravity
predictions, for example, it changes the behavior of perturbations and even the rate of
expansion of space changes with the development of perturbations. Besides, it is much
more flexible as compared to different modified theories that have been suggested in the
last decade [7,8].
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