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Abstract: For further insight into the perturbation technique within the framework of the asymptotic
iteration method (PAIM), we suggest this method to be used as an alternative method to the traditional
well-known perturbation techniques. We show by means of very simple algebraic manipulations that
PAIM can be directly applied to obtain the symbolic expectation value of any perturbed potential piece
without using the eigenfunction of the unperturbed problem. One of the fundamental advantages
of PAIM is its ability to extract a reference unperturbed potential piece or pieces from the total
Hamiltonian which can be solved exactly within AIM. After all, one can easily compute the symbolic
expectation values of the remaining potential pieces. As an example, the present scheme is applied
to the semi-relativistic wave equation with the harmonic-oscillator potential implemented with the
Fermi–Breit potential terms. In particular, the non-trivial symbolic expectation values of the Dirac
delta function, and the momentum-dependent orbit–orbit coupling terms are successfully calculated.
Results are then used, as an illustration, to compute the semi-relativistic s-wave heavy-light meson
masses. We obtain good agreement with experimental data for the meson mass splittings cū, cd̄, cs̄,
bū, bd̄, bs̄.

Keywords: optimal perturbation technique within the framework of the asymptotic iteration method;
semi-relativistic wave equation; Fermi–Breit potential; masses of heavy-light quark-antiquark structures

1. Introduction

The nonexistence of a precise analytical solution to Schrödinger-like wave-equations
with different potential models has led the study of such wave-equations to be one of the
most common theoretical laboratories for investigating the validity of various methods
based on perturbative and non-perturbative approaches. The literature is full of these meth-
ods, such as the Rayleigh–Schrödinger perturbation method [1], the moment method [2],
the analytic continued fraction theory [3], the Hill determinant [4], the super-symmetric
quantum mechanics (SUSYQM) [5], the shifted 1/N expansion method [6], and other many
methods [7,8].

The perturbation technique within the framework of the asymptotic iteration method
(PAIM) previously introduced for solving Schrödinger-like wave-equations including
Coulomb plus linear plus Oscillator potential models [9] is one such method.

In this work, our aim was to extend PAIM, and we would like to show how PAIM can
be directly applied to obtain the symbolic expectation values of any perturbed potential
piece within the same mathematical process of the PAIM.

Contrary to the traditional well-known perturbation techniques, there is no need in
PAIM to find the base eigenfunction of the unperturbed problem. In addition, PAIM is
different from other perturbation approaches [1,6], as it lays no limitations on the coupling
constants or the quantum numbers included in the phenomenological potential models.
Furthermore, it avoids attaching to numerical computations at the initial stages. Above
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all, we will see that PIAM is valid with the same form for each of the ground and excited
energy states.

Simply, PAIM looks, as the other methods, lie it is the solution of the fundamental
problems in theoretical physics H | Ψ〉 = E | Ψ〉, where H is the total Hamiltonian of
the system, E is the energy, and Ψ is the wavefunction. The solution of this equation for
a general observable H is in general very difficult, excepted, however, for very limited
simple potentials with a high degree of symmetry where an analytic solution is possible.
Therefore, for a large class of un-symmetrical potentials which are in fact representing
realistic physical systems, the total Hamiltonian is usually re-written as the sum of two
components: H = H0 + ωV. One of the fundamental advantage of PAIM in this respect is
that it facilitates choosing a reference Hamiltonian H0 from several available options in H
that can be easily solved exactly within the asymptotic iteration method (AIM) [10–12].

In this regard, a reasonable problem to tackle the above issue could be the semi-
relativistic wave-Equation (SR). This equation is used to solve the semi-relativistic bound-
state structures, which in fact represents a standard non-covariant approximation to the
covariant Bethe–Salpeter Equation [13,14].

As a practical application, we will investigate the masses of the heavy-light meson
structures using the SR wave-equation within the PAIM procedure. The Hamiltonian for the
quark–antiquark structure consists of the SR wave equation with the harmonic-oscillator
potential model, implemented with the Fermi–Breit potential terms plus a constant term.

To start with, we consider the transformed SR wave-equation as a semi-relativistic
Schrödinger-like wave-equation with the inclusion of relativistic corrections up to order
(v/c)2 in the non-local kinetic energy term. Thus, it can be easily solved with any additional
potential pieces by applying the PAIM directly. Interestingly, the transformed SR wave-
equation is reduced to a form almost the same as the Schrödinger wave-equation with an
extra self-induced non-separable energy-dependent harmonic-oscillator field. The presence
of this term makes the solution to this equation generally more difficult to be solved within
the available traditional well-known perturbation techniques [1,15].

With this in mind, this paper is arranged as follows. Section 2 is dedicated to the
theoretical framework; and total inter-quark Hamiltonian is introduced. We will discuss
the several available options that can be easily chosen for H0 and be solved exactly by the
AIM. Therein, we discuss in detail the technique for obtaining the total energy eigenvalues,
including the perturbed Fermi–Breit potential pieces with the exclusion of use the base
eigenfunctions of the unperturbed problem. Section 3 is dedicated to the numerical calcu-
lations, and the discussion of results. Finally, we present our summary with concluding
remarks on the suggested technique and on its results.

2. Theoretical Framework: The Total Inter-Quark Hamiltonian

In the semi-relativistic framework, the effective Hamiltonian which describes the
internal structure of the s-wave mesons is assumed to be of the following form [16]:

H = (p2
1 + m2

1 )1/2 + (p2
2 + m2

2 )1/2 +
1
2

Kr2 + HFB(r) + Heve, (1)

HFB(r) = (αQ1Q2 −
4
3

αs)

[
1
| r | −

1
2m1m2

(
p1.p2

| r | +
r.(r.p1)p2

| r3 |

)
(2)

− π

2
δ(r)

(
1

m2
1
+

1
m2

2
+

16s1.s2

3m1m2

)]
, (3)

where Qi, mi, pi, and si are the charge, mass, momentum, and spin of the i-th quark or
antiquark, respectively. r is the inter-quark distance between quark–antiquark, and HFB(r)
is the Fermi–Breit potential terms. Heve is everything else, which we assume to be the
flavor-, spin-, and r-independent parts of the Hamiltonian, respectively.
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2.1. Analytical Eigenenergy for SR Wave Equation with the Harmonic-Oscillator Potential
via PAIM

As we noted earlier, one of the advantages of PAIM is that it facilitates choosing a
reference Hamiltonian H0 from the several available options in H that can be easily solved
exactly within the AIM [12]. Looking at Equation (1), the first option one may choose H0
to include the un-perturbed ∼ 1/r or ∼r2+ ∼ 1/r pieces. The second option is to choose
the reference Hamiltonian H0 to only include the un-perturbed ∼ r2 piece. This is the only
case which we are willing to discuss it in this work. Accordingly, the masses of the Qq̄
mesons can be estimated as the sum of the energy eigenvalues obtained from the solution
of SR wave- equation with the harmonic-oscillator potential, plus the energy eigenvalues
which are obtained from the expectation values of the remaining potential terms within
the mathematical procedure of PAIM. Therefore, herein, we start by simplifying the semi-
relativistic wave-equation including the harmonic-oscillator potential:[

(p2 + m2
1 )1/2 + (p2 + m2

2 )1/2 +
1
2

Kr2 −MSA

]
ψ(r) = 0, (4)

where m1 and m2 are the two quark–antiquark masses, and MSA is the total spin aver-
aged mass.

To facilitate the solution process for this equation, we start the investigation by re-
moving the non-locality in the kinetic energy operators by the direct expansion of the
square root-operator in powers of (v/c)2 up to two terms. This technique leads to a
Schrödinger-like wave-equation with some relativistic dynamics:{

p2

2µ
− 1

2η
[E2

n` +
1
4

K2r4 − KEn`r2] +
1
2

Kr2
}

ψn`(r) = En`ψn`(r), (5)

where En` = MSA −m1−m2, µ = m1m2/(m1 + m2) is the reduced mass, ν = m3
1m3

2/(m3
1 +

m3
2) is a useful parameter, and η = ν/µ2.

For our later discussions, in order to obtain the Fermi–Breit potential energy terms, it
is helpful to re-write Equation (4) as{

p2

2µ
+ Ve f f (r)

}
ψn`(r) = En`ψn`(r), (6)

where Ve f f (r) = 1
2 Kr2 − 1

2η

(
E2

n` +
1
4 K2r4 − KEn`r2

)
.

Expressing the operator p2 in spherical polar coordinates, and for states of definite or-
bital angular momentum l, we define ψn`(r) = r−1Rn`(r). This will transform Equation (4)
to a relativistic radial Schrödinger-like equation with non-separable energy term (in units
h̄ = c = 1):[

d2

dr2 −
`(`+ 1)

r2 − µK(1 +
En`
η

)r2 +
µK2

4η
r4
]

Rn`(r) = −2µ(
E2

n`
2η

+ En`)Rn`(r). (7)

To transform Equation (6) to an appropriate form for PAIM, it is worthwhile observe
the asymptotic behavior of the radial wave function Rn`(r) at r −→ 0 and at r −→ ∞. This
procedure suggests that Rn`(r) must look like:

Rn`(r) = r(`+1)e−$n`r2/2gn`(r), (8)

with the unknown energy-dependent parameter $n`. This parameter represents the size
of the suggested wave function, and to be determined from PAIM. In the following, as
we shall later see that this parameter will play an important role in explaining the mass
splittings of the heavy-light mesons, as well as in predicting the inter-quark distances.



Universe 2021, 7, 180 4 of 8

Substituting the trial wave function of Equation (7) into Equation (6), performing the
mathematics, and considering:

ζ2
n` = µK(1 +

En`
η

), εn` = 2µ(
E2

n`
2η

+ En`), An` = 2(`+ 1)$n`, andγ2 =
µ

4η
K2. (9)

As a result, the new function gn`(r) would satisfy a new second-order homogenous
linear differential equation which is appropriate to the application of the PAIM method:

g
′′
n`(r) = λ0(r, ω)g

′
n`(r) + s0(r, ω)gn`(r), (10)

where λ0(r, ω) = 2
(

$n`r−
(`+1)

r

)
, and we propose s0(r, ω) to be expressed as a sum of

two parts:

s0(r, ω) = s0
0(r, ω) + s1

0(r, ω), (11)

with s0
0(r, ω) =

(
(ζ2

n` − $2
n`)r

2 + $n` + An` − εn`
)
.

In the present scheme, s0
0(r, ω) is chosen as a reference potential, in such a way

that it has an accurate solution in AIM [12]. However, s1
0(r, ω) = ω

(
−γ2r4 + HFB(r)

)
is

representing the remaining potential pieces, and it is to be treated using PAIM, where ω is
an artificially introduced perturbation expansion parameter to be set equal to one at the
end of the computations.

Following the systematic technique of PAIM, the energy eigenvalues εn` are firstly
solved by satisfying the asymptotic convergency criteria of the AIM; that is for the suffi-
ciently large iteration number i = 0, 1, 2, . . . .:

δi(r, ω) ≡ si(r, ω)λi+1(r, ω)− si+1(r, ω)λi(r, ω) = 0, (12)

where:

λi(r, ω) = λ
′
i−1(r, ω) + si−1(r, ω) + λ0(r, ω)λi−1(r, ω), (13)

and:

si(r, ω) = s
′
i−1(r, ω) + s0(r, ω)λi−1(r, ω). (14)

In order to obtain the leading energy term ε
(0)
n` , one must only switch off ω in s1

0(r, ω),
and then choose ζ2

n` = $2
n` in the s0

0(r, ω) term. This procedure would lead to an exactly
solvable eigenvalue problem in the framework of AIM:

g
′′
n`(r) = 2

(
$n`r−

(`+ 1)
r

)
g
′
n`(r) + ($n` + An` − εn`)gn`(r), (15)

and the roots of δ
(0)
i (r, 0) = 0 are written in terms of ζn` like:

ε
(0)
n` = (4n + 1)ζn` + 2ζn`(`+ 1), for

{
n = 0, 1, 2, . . . ,

` = 0, 1, 2, . . . .
(16)

To find the total energy

εn` = ε
(0)
n` + ωε

(1)
n` + ω2ε

(2)
n` + ω3ε

(3)
n` + ω4ε

(4)
n` + . . . , (17)

we switched on ω in the s1
0(r, ω) term, and then we expanded δi(r, ω) of Equation (11)

around ω = 0:

δi(r, ω) = δi(r, 0) +
ω

1!
∂δi(r, ω)

∂ω
|ω=0 +

ω2

2!
∂2δi(r, ω)

∂ω2 |ω=0 +
ω3

3!
∂3δi(r, ω)

∂ω3 |ω=0 + . . . . (18)
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According to the PAIM technique, δi(r, ω) should be equal to zero; if this to be correct
for each ω value, each term of the series in Equation (17) should be equal to zero.

Thus, a quantitative estimate for the εn` expansion terms can be obtained by comparing
the terms with the same order of ω in Equations (16) and (17). Consequently, it is clear
from the technique of PAIM that the roots of δ

(0)
i (r, 0) = 0 provide us with the leading

zeroth-order contribution energy terms ε
(0)
n` . Similarly, the roots of δ

(1)
i (r, ω) = 0 provide

us with first-order correction terms to ε
(1)
n` , etc. Therefore, the final solution for the total

energy εn` in conjunction with Equation (16) within the PAIM framework is:

εn` = (4n + 1)ζn` + 2ζn`(`+ 1) + ωε
(1)
n` + ω2ε

(2)
n` + ω3ε

(3)
n` + . . . . (19)

For clarity, in the next section, we will show the application of the PAIM technique to find
the ε

(1)
n` contribution term.

2.2. The Explicit Perturbed Symbolic Energy Expressions via PAIM

To determine ε
(1)
n` , the perturbed symbolic energy expressions for

s1
0(r, ω) = ω

(
−γ2r4 + HFB(r)

)
. One should simply add the terms of s1

0(r, ω), one by one,

single-separated in Equation (14), after then replace εn` with ε
(0)
n` + ωε

(1)
n` , so that for the

first piece, the terms λ0(r, ω) and s0(r, ω) of Equation (14) reads

λ0(r, ω) = 2
(

$n`r−
(`+ 1)

r

)
,

s0(r, ω) =
(

$n` + An` − ε
(0)
n` + ωε

(1)
n` −ωγ2r4

)
, (20)

and then one should terminate the iterations by using the termination condition δ
(1)
i (r, ω) =

ω
∂δi(r,ω)

∂ω |ω=0 = 0 as a solution to Equation (19). The first root of the resulting solutions

give us the first-order energy ε
(1)
n` for γ2r4 term:

〈γ2r4〉 = 15
4

γ2

ζ2
n`

. (21)

Herein, the calculations are given up to the first-order in terms of γ and ζn`, where it
is observed that higher-order corrections are of negligible contributions.

At this stage, we can write the energy εn` for n = 0 and ` = 0 up to the first-order as

ε00 = 3ζ00 −
15
4

γ2

ζ2
00

+ . . . . (22)

Similarly, one can obtain the other perturbed symbolic energy expressions for the
Fermi–Breit potential terms. To do that, one should remove the γ2r4 term from Equation (19),
and then replace the Fermi–Breit coulomb 1

|r| term, and continue iterating with the same
procedure as before.

By the same way, one can also obtain the perturbed symbolic energy eigenvalue for the
Dirac delta δ(r) Fermi–Breit potential function via PAIM. Replacing the Dirac delta function
with its equivalence of the square modulus of the wave-function at the origin | ψ(0) |2,
where δ(r) =| ψ(0) |2. The only s-wave states ` = 0 have a non-zero value of the wave-
function at the origin: | ψ(0) |2= µ

2π 〈V
′
e f f (r)〉. Therefore, the expectation value of 〈δ(r)〉 =

µ
2π 〈Kr− 1

2η

(
K2r3 − 2KEn`r

)
〉. Furthermore, the calculations of the expectation value of the

momentum-dependent orbit–orbit coupling term 〈
(

p1.p2
|r| + r.(r.p1)p2

|r3|

)
〉 is straightforward

within the PAIM using p2 = 2µ2
(

En` −Ve f f (r)
)

.
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Below, we explicitly give the expectation values of the perturbed symbolic radial
Fermi–Breit potential terms:

1
r
≡ 〈 1
| r | 〉 = 2(

ζn`
π

)1/2,

〈δ(r)〉 = (
ζn`
π

)3/2
(

1− 4γ2
)

,

〈
(

p1.p2

| r | +
r.(r.p1)p2

| r3 |

)
〉 = −4π(

ζn`
π

)3/2
(

1 + γ2
)

. (23)

It is clear that the expectation values of 〈δ(r)〉, and the momentum-dependent orbit–orbit
coupling term 〈

(
p1.p2
|r| + r.(r.p1)p2

|r3|

)
〉 are relativistically modified by extra factors

(
1− 4γ2)

and
(
1 + γ2), respectively. However, these extra factors do not exist in the traditional

perturbation method [16]. Thus, the expectation value of the Fermi–Breit potential can be
expressed as

〈HFB(r)〉 = (αQ1Q2 −
4
3

αs)

[
1
r
+

π

4m1m2

(
1 + γ2)

r3 (24)

− π

16

(
1− 4γ2)

r3

(
1

m2
1
+

1
m2

2
+

16s1.s2

3m1m2

)]
, (25)

Finally, the explicit expression for the masses of the s-wave heavy-light mesons with
(n = ` = 0) then reads:

M = MSA + 〈HFB(r)〉+ E0, (26)

bearing in mind that MSA = m1 + m2 + E00; E00 = η

(
ζ2

00
µK − 1

)
, and E0 = 〈Heve〉.

3. Numerical Results, and Discussion

It is useful here to clarify that the obtained formulas in Equations (15), (21), (22), (23),
and (24) provide remarkably accurate and simple analytical expressions to explain the mass
splittings of the heavy-light pseudoscalar and vector mesons. To find these masses, we first
have to solve the energy-dependent size parameter ζ00. Recalling Equations (8) and (22),
and after some algebra, these two equations explicitly yield:

ζ6
00 − 12γ2ζ3

00 − (µK)2ζ2
00 + 15γ4 = 0. (27)

The positive real root of Equation (25) is assumed to be the acceptable solution to this
equation. Substituting this solution into Equation (24), then the different meson masses
with the different structures can be calculated. Typically, in numerical computations,
this approach needs various input parameters that one should fix and fit during the
computational process. For the constituent quark masses, we choose roughly mu =
(0.432± 0.001) GeV, md = (0.434± 0.001) GeV, mc = (1.944± 0.001) GeV, mb = (5.297±
0.001) GeV, and K = 0.14± 0.01 GeV3. These input values were taken from [16]. However,
the errors which we included in the input parameters did not changing the results, thus we
ensure the interested readers that the obtained results in Table 1 in these regions also work.

Firstly, we focus our attention here on the calculated results of the s-wave meson mass
splittings given in Table 1. We started with the pseudoscalar meson D0(cū) mass with
〈S1 · S2〉 = − 3

4 . To proceed further, one should find the positive root of Equation (25); ζ6
00−

0.03256 ζ3
00 − 0.00245 ζ2

00 + 0.00011 = 0, so that ζ00 = 0.332986 GeV2. After Equation (24),
we obtain MSA = mc +mu + E00 = 3.1680 GeV. Plugging all these results into Equation (24),
and considering the standard value αs(m2

c ) = 0.31± 0.01, we then obtain the mass of
D0(cū) = 1.8651 GeV by fitting E0 = −0.943± 0.001 GeV. Once the value of E0 is obtained,
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one can obtain the mass of the vector meson D∗0(cū) = 2.007 GeV with 〈S1 · S2〉 = 1
4 ,

etc. However, the strange constituent quark mass in our procedure is the only fitted mass:
ms = (0.580± 0.001) GeV—which is also consistent with the constituent strange quark
mass available in the literature [17].

Table 1 shows an explicit list of numerical computations for the predicted heavy-light
pseudoscalar and vector mesons, together with predicted inter-quark distances, so that our
findings may be reproduced by the reader. The experimental values in Table 1 are those
of the Particle Data Group [18]. From Table 1, one can observe that there is a satisfactory
agreement with the experimental results, as well as with the work of other researchers [16].

Table 1. The computed masses of the heavy-light pseudoscalar and vector mesons in MeV, with their
interquark-distances in units of GeV−1.

Meson M(Our Work) M(Expt.) [18] M [16] Interquark Distance

Pseudoscalar mesons

D0(cū) 1865.1 1864.83 ± 0.05 1863.8 1.53579
D+(cd̄) 1870.5 1869.65 ± 0.05 1868.7 1.53584
D+

s (cs̄) 1969.7 1968.34 ± 0.07 1969.7 1.53409
B−(bū) 5280.3 5279.34 ± 0.12 5282.2 1.45768
B0(bd̄) 5279.3 5279.65 ± 0.12 5280.6 1.45751
Bs(bs̄) 5330.8 5366.88 ± 0.14 5343.9 1.44283

Vector mesons

D∗0(cū) 2007.0 2006.85 ± 0.05 2008.7 1.53579
D∗+(cd̄) 2010.0 2010.26 ± 0.05 2011.4 1.53584
D∗s (cs̄) 2075.7 2112.20 ± 0.40 2096.9 1.53409

B∗−(bū) 5340.2 5324.70 ± 0.21 5333.9 1.45768
B∗0(bd̄) 5339.2 5331.30 ± 4.7 5332.6 1.45751
B∗s (bs̄) 5377.2 5415.40 ± 1.5 5393.1 1.44283

4. Conclusions

In the present work, we presented a deeply theoretical investigation on the pertur-
bation technique within the framework of the asymptotic iteration method (PAIM). We
proposed this method as an alternative method to the traditional well-known perturbation
techniques. We showed by means of very simple algebraic manipulations that PAIM can
be directly applied to obtain the symbolic expectation values of any perturbed potential
piece without using the eigenfunction of the unperturbed problem. Thus, one of the most
interesting aspects of PAIM was to show how it is an easy way to extract a reference unper-
turbed potential piece or pieces from the total Hamiltonian which can be solved exactly
within AIM. After that, one can easily apply PAIM to compute the symbolic expectation
values of the remaining potential terms.

For clarity, we examined with PIAM the semi-relativistic energy eigenvalues of the SR
wave-equation with the harmonic-oscillator potential implemented with the Fermi–Breit
potential terms to obtain the mass splittings of the heavy-light pseudoscalar and vector
mesons. Although we limited ourselves to one illustrative example, however, the range of
application of the method is rather large and appears to be straightforward.

It is worth noting here that the PAIM approach which we described in the current paper
with its analytical expressions is a lot more helpful than the pure numerical computations.
Moreover, we see that the expectation values of 〈δ(r)〉, and the momentum-dependent
orbit–orbit coupling terms 〈

(
p1.p2
|r| + r.(r.p1)p2

|r3|

)
〉 are relativistically modified by an extra

factors
(
1− 4γ2) and

(
1 + γ2), respectively. This is a new piece of information. However,

these extra factors do not exist in the traditional perturbation methods [16].
Finally, in this work, we showed that it was a very easy task to use the PAIM without

needing to be concerned with the ranges of the couplings in the potential. Furthermore, the
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degree of precision of our results can be significantly enhanced by raising the perturbation
order in the energy expansion series by one more step, without any technical difficulty.
Altogether, it is hoped that this approach and its findings will give us a valuable future
hint and also enrich our knowledge in investigating the fascinating diquark–antidiquark
problem in any tetraquark configuration.
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