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Abstract: In this review, we discuss the present status of the description of confining flux tubes in
SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on
three main pillars: modeling in the continuum the ensemble components detected in the lattice, the
derivation of effective field representations, and contrasting the associated properties with Monte
Carlo lattice results. The integration of the present knowledge about these points is essential to get
closer to a unified physical picture for confinement. Here, we shall emphasize the last advances,
which point to the importance of including the non-oriented center-vortex component and non-
Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs
are responsible for the emergence of topological solitons and the possibility of accommodating the
asymptotic scaling properties of the confining string tension.

Keywords: confinement; ensembles and effective fields; topological solitons

1. Introduction

Our knowledge about the elementary particles, as well as three of the four known
fundamental interactions, is successfully described by the standard model of particle
physics. In particular, the quantitative behavior of the electromagnetic, weak, and strong
interactions is encoded in the common language of gauge theories. In the strong sector, an
important and intriguing phenomenon regarding the possible asymptotic particle states
takes place. When quarks and gluons are created in a collision, they cannot move apart.
Instead, they give rise to jets of colorless particles (hadrons) formed by confined quark and
gluon degrees of freedom. Although confinement is key for the existence of protons and
neutrons, a first-principles understanding of the mechanism underlying this phenomenon
is still lacking. At high energies, the detailed scattering properties between quarks and
gluons are successfully reproduced by QCD perturbative calculations in the continuum,
which are possible thanks to asymptotic freedom. This is in contrast with the status at
low-energies, where the validity of quantum chromodynamics (QCD) is well-established
from computer simulations of the hadron spectrum which successfully make contact with
the observed masses. This review focuses on this type of non-perturbative problem in pure
SU(N) Yang–Mills (YM) theory, which is a challenging open problem in contemporary
physics. Here again, Monte Carlo simulations provide a direct way to deal with the large
quantum fluctuations and compute averages of observables such as the Wilson loop, which
is an order parameter for confinement in pure YM theories. As usual, the lattice calculations,
as well as the center-vortex ensembles we shall discuss, consider an Euclidean (3d or 4d)
spacetime. Unless explicitly stated, this is the metric that will be used throughout this work.
For heavy quark probes in an irreducible representation D, the Wilson loop is given by:

WD(Ce) =
1
D

tr D
(

P
{

ei
∫
Ce dxµ Aµ(x)

})
, (1)

Universe 2021, 7, 253. https://doi.org/10.3390/universe7080253 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0003-4547-7817
https://orcid.org/0000-0002-4670-5597
https://doi.org/10.3390/universe7080253
https://doi.org/10.3390/universe7080253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7080253
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7080253?type=check_update&version=1


Universe 2021, 7, 253 2 of 23

where D is the dimensionality of D. The closed path Ce can be thought of as associated
to the creation, propagation, and annihilation of a pair of quark/antiquark probes. From
a rectangular path with sides T and R, information about the static interquark potential
was obtained from the large T behavior 〈WD(Ce)〉 ∼ e−T VD(R). An area law, given by
the propagation time T multiplied by the interquark distance R, corresponds to a linear
confining potential [1] (for a review, see [2]).

There are many model-independent facts that point to the importance of the center of
the group SU(N) to describe the confining properties of YM theory. In this regard, the first
ideas relating the possible phases to the Z(N) properties of the vacuum were developed
in [3]. There, disorder vortex field and string field operators were introduced in (2 + 1)d
and (3 + 1)d Minkowski spacetime, respectively. At equal time, they satisfy

ŴF(Ce) V̂(x) = ei2π L(x,Ce)/N V̂(x) ŴF(Ce) , in (2 + 1)d, (2)

ŴF(Ce) V̂(C) = ei2π L(C,Ce)/N V̂(C) ŴF(Ce) , in (3 + 1)d, (3)

where the subindex F denotes the fundamental representation, x ∈ R2 (C ∈ R3) is a point
(curve) in real space where a thin pointlike (looplike) thin center vortex is created in three
(four) dimensional spacetime. L(x, Ce) and L(C, Ce) are the corresponding linking numbers.
An explicit realization of V̂ was given by the action V̂|A〉 = |AS〉, where |A〉 are quantum
states with well-defined shape A0 = 0, Ai (i = 1, 2, 3) at a given time. The field AS

µ has
the form of a gauge transformation, but performed with a singular phase S ∈ SU(N). To
define the operator V̂(x) (respectively V̂(C)), S must change by a center element when
going around any spatial closed loop that links x (respectively C). Spurious singularities
may be eliminated by using the adjoint representation Ad(S), which leaves a physical
effect only at the point x, or closed path C, where Ad(S) is multivalued. Arguments in
favor of characterizing confinement as a magnetic Z(N) spontaneous symmetry breaking
phase (center-vortex condensate),

〈V̂(x)〉 6= 0, 〈V̂(C)〉 ∼ e−µPerimeter(C) , (4)

were also given in that work.
The lattice also provides direct information about the role played by the center of

SU(N) in the confinement/deconfinement phase transition. This is observed in the proper-
ties of the Polyakov loops Px(A ), which are given by Equation (1) computed on a straight
path located at a spatial coordinate x and extending along the Euclidean time-direction.
Due to the finite-temperature periodicity conditions, these segments can be thought of
as circles. By considering the fundamental representation, Px(A ) was analyzed in the
lattice [4]. When changing from higher to lower temperatures, the distribution of the phase
factors of Px(A ), for typical Monte Carlo configurations, shows a phase transition. At
higher temperatures, for most x, the phase factors are close to one of the center elements
ei2πk/N , k = 0, . . . , N − 1. On the other hand, below the transition, they are equally dis-
tributed on Z(N), as a function of the spatial site x. As a result, the Monte Carlo calculation
gives a transition from a non-vanishing to a vanishing gauge-field average 〈Px〉, which is
in fact x-independent, where the electric Z(N) symmetry is not broken. This corresponds
to a transition from a deconfined phase at higher T, where the quark free energy is finite,
to a confined phase below Tc, where the free energy diverges.

In the full Monte Carlo simulations, the relevance of Z(N) is also manifested in general
Wilson loops at asymptotic distances. In this regime, the string tension only depends on the
N-ality k of D, which determines how the center Z(N) of SU(N) is realized in the given
quark representation [5],

D (ei 2π
N I) =

(
ei 2π

N

)k
ID . (5)
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Regarding the confinement mechanism, lattice calculations aimed at determining the
relevant degrees of freedom have been performed for many years. In particular, procedures
have been constructed to analyze Monte Carlo Uµ(x) ∈ SU(N) link-configurations and ex-
tract center projected configurations Zµ(x) ∈ Z(N) [6–9] (for recent techniques to improve
the detection of center vortices, see [10]). A given plaquette is then said to be pierced by a
thin center vortex if the product of these center elements along the corresponding links
is non-trivial. Observables may then be evaluated by considering vortex-removed and
vortex-only configurations. The confining properties are only well described in the latter
case [6,7,11–18]. In the lattice, the analysis and visualization of center-vortex configura-
tions [19] led to important insights regarding the origin of the topological charge density in
the YM vacuum. In 3d (4d), thin center vortices are localized on worldlines (worldsheets)
ω. In this case, the Wilson loop in Equation (1) yields a center element

WD(Ce) = ZD(Ce) =
1
D

tr
[
D
(

ei 2π
N I
)]L(ω,Ce)

, (6)

where L(ω, Ce) is the total linking number between ω and Ce. This result also applies
to thick center vortices, when their cores are completely linked by Ce. In this case, ω
refers to the thick center vortex guiding centers. In the scaling limit, where the lattice
calculations make contact with the continuum, the density of thin center vortices detected
at low temperatures is finite [7,20]. Furthermore, center vortices percolate and have positive
stiffness [21,22], while the fundamental Wilson loop average over Zµ(x) displays an area
law. This is in accordance with center-vortex condensation and the Wilson loop confinement
criteria. For SU(2), a model based on the projected thin center-vortex ensemble captures
97.7% of the fundamental string tension. On the other hand, the percentage drops to ∼62%
for SU(3) [23]. One of the most important features of the center-vortex scenario is that
it naturally explains asymptotic N-ality: the center element contribution in Equation (6)
only depends on the N-ality of D. For these reasons, it is believed that the confinement
mechanism should involve these degrees of freedom. For a recent discussion about this
area of research, see [24].

When it comes to accommodating the model-independent full Monte Carlo calcula-
tions, some questions arise. In 3d, the full asymptotic string tension dependence on D is
very well fitted by the Casimir law [25]

σ
(3)
k =

k(N − k)
N − 1

, (7)

which is proportional to the lowest quadratic Casimir among those representations with the
same N-ality k of D, which corresponds to the antisymmetric representation. In addition, it
is precisely at asymptotic interquark distances where a model based on an ensemble of thin
objects should be more reliable. This is different at intermediate distances, where finite-size
effects allowed for an explanation of the observed scaling with the Casimir of D [26,27].
Then, one question is: how to capture the asymptotic law in Equation (7) from an average
over percolating thin center-vortices? In 4d, where the available data cannot tell between a
Casimir or a Sine law [28]

σ
(4)
k =

k(N − k)
N − 1

vs. σ
(4)
k =

sin kπ/N
sin π/N

, (8)

is there any ensemble based on center-vortices that could reproduce one of these behaviors?
More importantly, how can one explain this together with the formation of the confining
flux tube observed in the lattice? This means reproducing the Lüscher term [29–31] and the
observed transverse field distributions (see [32–34], and references therein). Here, we shall
review some developments aimed at providing a possible answer to these questions.

In Section 2, we shall discuss the simplest Abelian center-vortex ensembles. In Section 3,
we summarize, from different points of view, additional non-Abelian information and cor-
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relations that could be natural ingredients to be taken into account. In Section 4, we review
ensembles of percolating oriented and non-oriented center vortices in 3d and 4d, their effective
field description, as well as the possibility to accommodate the asymptotic properties of the
confining string. Finally, in Section 5, we discuss recent lattice results in the light of our
effective description, and present some perspectives.

2. Center-Vortex Ensembles

The idea that center vortices are the dominant degrees of freedom in the infrared
regime means, in practice, that the Wilson loop average at asymptotic distances may well
be captured by modeling the average of the center-elements in Equation (6). This line of
research was mainly explored in the lattice [35] by considering an ensemble of fluctuating
worldlines (in 3d) or worldsurfaces (in 4d) with tension and stiffness (see also the discussion
at the beginning of Section 3.2). For example, in 4d, a theory of fluctuating center-vortex
worldsurfaces in four dimensions was introduced by considering the lattice action [35]

Slatt(ω) = µA(ω) + cNp , (9)

where A(ω) is the area of the vortex closed worldsurface ω, formed by a set of plaquettes,
and Np is the number of pairs of neighboring plaquettes of the surface lying on different
planes. The latter term, as well as the lattice regularization, contribute to the stiffness
of the vortices. This model, initially introduced for SU(2), and then generalized for
SU(3) [36], is able to describe important features, such as the confining string tension for
fundamental quarks and the order of the deconfinement transition. This type of model
can be also formulated in the continuum. The objective is the same, that is, looking
for natural ensemble measures to compute center-element averages and compare them
with the asymptotic information extracted from the full Monte Carlo average 〈WD(Ce)〉. A
successful comparison is expected to give important clues about the underlying mechanism
of confinement. When computing center-element averages in the continuum, the simplest
model has the form:

〈ZD(Ce)〉 = N ∑
ω

e−S(ω) 1
D

tr
[
D
(

ei 2π
N I
)]L(ω,Ce)

, (10)

where ∑ω represents the sum over different configurations in a diluted gas of closed
worldlines (in 3d) or worldsurfaces (in 4d). The weight factor e−S(ω) implements the
effect of center-vortex tension (µ) and stiffness (1/κ) observed in the lattice [21,22]. More
precisely, S(ω) contains a term proportional to the length or area of ω, and another one
proportional to a power of the absolute value of the curvature of ω. See Equation (A3) for
an explicit formula in 3 dimensions. S(ω) could also contain interactions with a scalar field
ψ that, when integrated with a corresponding weight W(ψ), generates interactions among
the variables ω.

Extended models can also be introduced where the defining elements are not only
given by ω but also by additional labels. At the level of the gauge field variables Aµ, the
center-vortex sectors can be characterized by different mappings S0 ∈ SU(N) containing
defects (see Section 4.2). A center vortex with guiding center ω and magnetic weight β is
characterized by S0 = e−iχβ·T , β · T ≡ β|qTq, where χ is a multivalued angle that changes
by 2π when going around ω, and Tq, q = 1, . . . , N − 1 are the Cartan generators. As they
carry a single weight, these vortices are known as oriented (in the Cartan subalgebra). For
elementary center vortices, the tuple β is one of the magnetic weights βi (i = 1, . . . , N) of
the fundamental representation. In the region outside the vortex cores, Aµ is locally a pure
gauge configuration constructed with S0. Then, for fundamental quarks, the contribution
to a large loop contained in that region is i-independent and given by the elementary
center-element (1/N) tr

(
e−i2πβi ·T

)
= ei2π/N to the power L(ω, Ce). Different elementary

fluxes may join to form more complex configurations, provided this is done in a way that
conserves the flux. For example, N center-vortex guiding centers associated with different
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magnetic weights βi can be matched. For simplicity, let us consider the SU(3) case in three
dimensions and a configuration characterized by S0 = eiχ1β1·Teiχ2β2·T , where χ1 and χ2
are multivalued when going around the closed worldlines ω1 and ω2, respectively. These
worldlines could meet at a point, then follow a common open line γ, and again bifurcate to
close the corresponding loops. In this case, we would have a pair of fluxes entering the
initial point, carrying the fundamental weights β1, β2, and a flux leaving along γ, carrying
the weight β1 + β2. In SU(3), this sum is an antifundamental weight −β3. In other words,
there are three fluxes entering the initial point, which carry the three different fundamental
weights β1, β2, β3. This can be readily generalized to SU(N), where N fluxes carrying
the different fundamental weights can meet at a point, as these weights satisfy ∑i βi = 0.
Vortices may also be non-oriented [37], in the sense that they may not be described by
a single weight. In this case, the center-vortex components with different fundamental
weights are interpolated by instantons in 3d and monopole worldlines in 4d. These lower
dimensional junctions, which carry a flux of the form βi − β j, should be weighted with
additional phenomenological terms in S(ω). Furthermore, in the 4d case, three monopole
worldlines carrying fluxes βi − β j, β j − βk, βk − βi can be matched at a spacetime point.
Similar higher-order matching rules are also possible. In what follows, we shall discuss the
different ensembles, starting with the simplest possibilities in 3d and 4d.

3. Abelian Effective Description of Center Vortices

In this section, we shall briefly discuss center-vortex ensembles formed by diluted
closed worldlines in 3d (Section 3.1) or worldsurfaces in 4d (Section 3.2), characterized by
no other properties than tension, stiffness, and vortex–vortex interactions. No additional
degrees of freedom, matching rules or correlations with lower dimensional objects will be
considered here.

3.1. Three Dimensions

In a planar system, thin center vortices are localized on points, so they are created
or annihilated by a field operator V̂(x). The emergence of this order parameter can be
clearly seen by applying polymer techniques to center-vortex worldlines [38]. In [39],
the center-element average for fundamental quarks, over all possible diluted loops, was
initially represented in the form

〈ZF(Ce)〉 = N
∫
[Dψ] e−W[ψ] e

∫ ∞
0

dL
L
∫

dx
∫

du Q(x,u,x,u,L) , (11)

where Q(x, u, x0, u0, L) is the integral over all paths with length L, starting (ending) at x0
(x) with unit tangent vector u0 (u), in the presence of scalar and vector sources ψ and 2π

N sµ,
and weighted by tension and stiffness. The factor W[ψ] = ζ

2

∫
d3x ψ2(x) generates, upon

integration of the auxiliary scalar field ψ, repulsive contact interactions between the loops
with strength given by the parameter 1

ζ . Indeed, as in the exponential we have x = x0,
u = u0, its expansion generates the diluted loop ensemble. As usual, the factor 1/L is
to avoid loop overcounting when choosing x0 on a given loop. The external source sµ is
localized on a surface S(Ce) whose border is the Wilson loop. As a consequence, it generates
the intersection numbers between the loop-variables in Q and S(Ce), which coincide with
the different linking-numbers. Using the large-distance behavior of Q(x, u, x0, u0, L), which
satisfies a Fokker–Planck diffusion equation (given by Equations (A1) and (A7), with
bµ Abelian, and D(Γγ[bµ]) being the complex number Γγ[bµ]) we then showed that the
ensemble average of center elements becomes represented by a complex scalar field V(x),

〈ZF(Ce)〉 ≈ N
∫
[DV][DV̄] e−

∫
d3x

[
1

3κ DµVDµV+ 1
2ζ (VV−v2)2

]
,

v2 ∝ −µκ > 0, Dµ = ∂µ − i
2π

N
sµ . (12)
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This was obtained for small (positive) stiffness 1/κ and repulsive contact interactions.
The scalar field V is originated due to the approximate behavior of Q(x, u, x0, u0, L) in
Equation (A12), which turns the exponential in Equation (11) into a functional determinant.
The squared mass parameter of this field is proportional to κµ, where µ is the center-vortex
tension. For percolating objects (µ < 0), the U(1) symmetry of the effective field theory is
spontaneously broken (κµ < 0). Among the consequences, we have:

1. In the center-vortex condensate, the effective description is dominated by the soft
Goldstone modes, V(x) ∼ v eiφ(x). Then, the calculation of the center-element average
is neither Gaussian nor dominated by a saddle-point, as it involves a compact scalar
field φ and large fluctuations;

2. This is better formulated in the lattice, where the Goldstone mode sector is governed
by a 3d XY model with frustration

S(3)
latt = β̃ ∑

x,µ
Re
[
1− eiγ(x+µ̂)e−iγ(x)e−iαµ(x)

]
. (13)

The external source in Equation (12) translates into the frustration eiαµ(x) = ei 2π
N if

S(Ce) is crossed by the link and is trivial otherwise;
3. In the expansion of the partition function, due to the measure ∏x

∫ π
−π dγ(x), the terms

that contribute contain products of the composite eiγ(x+µ̂)e−iγ(x) (or its conjugate)
over links organized forming loops. Otherwise, the integrals over the site variables at
the line edges vanish (see Figure 1);

4. Due to frustration, every time Ce is linked, a center element is generated. Then, in
the lattice, the closed center-vortex worldlines in the initial ensemble, which led to
Equation (11) and gave origin to the effective description (12), are represented by the
loops of item 3.

This point of view will be useful to propose other ensemble measures relying on lattice
models, as in the case where the derivation of the effective description is not known, see for
example Sections 3.2 and 5.3. It is also interesting to see that the initial ensemble properties
encoded in Equation (11) are recovered close to the 3d XY model critical point, as expected.
Indeed, using the same techniques reviewed in [40] for the case without frustration, the
partition function may be formulated in terms of integer-valued divergenceless currents,
originated after using the Fourier decomposition

eβ cos γ =
∞

∑
b=−∞

Ib(β)eibγ , (14)

at every lattice link. The resulting expression turns out to be equivalent to a grand canonical
ensemble of non-backtracking closed loops formed by currents of strength |bµ| = 1. In
the model without frustration, close to the critical point βc ≈ 0.454 (continuum limit), the
relevant configurations are known to be formed by large loops rather than by multiple
small loops, and multiple occupation of links is disfavored, thus making contact with the
initial properties parametrized in the ensemble (see Table 1 below).

Table 1. The correspondence between the effective field and 3d XY model representations of the
Abelian center−vortex ensemble.

3d XY Effective Fields

large loops are favored negative tension µ
multiple small loops are disfavored positive stiffness 1/κ

multiple occupation of links is disfavored repulsive interactions
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(a) (b)

Figure 1. The Wilson loop and the frustration are represented in red and green, respectively. Configu-
rations of type (a), which involve sites joined by open lines, do not contribute to the partition function.
Only site configurations joined by loops, like the one in (b), contribute (with a center-element).

3.2. Four Dimensions

Regarding the effective description of 4d ensembles based on random surfaces, as
in the 3 + 1 dimensional world center vortices are one-dimensional objects spanning
closed worldsurfaces, the emergent order parameter would be a string field. However,
unlike the 3d case, a derivation starting from the ensemble of closed worldsurfaces with
stiffness is still lacking. Such generalization should initially describe a growth process
where a surface is generated, and then derive a Fokker–Planck equation for the lattice
loop-to-loop probability. Similarly to what happens with end-to-end probabilities for
polymers, where stiffness is essential to get a continuum limit when the monomer size
goes to zero [41,42], curvature effects are expected to be essential for the continuum limit
of triangulated random surfaces. Indeed, ensembles of surfaces which consider only the
Polyakov (or Nambu-Goto) action leads to a phase of branched polymers [43,44]. On the
other hand, in [45], the phase fluctuations of an Abelian string field with frozen modulus
were approximated by a lattice field theory: the U(1) gauge-invariant Abelian Wilson action.
In other words, the Goldstone modes for a condensate of one-dimensional objects are gauge
fields. Motivated by this enormous simplification and by an analogy with the 3d case,
in [46] we proposed a Wilson action with frustration as a starting point to define a measure
for percolating center vortices in four dimensions. This proposal will be discussed in
Section 5.3. For the time being, we summarize the main initial steps, which are analogous
to items 1–4 in Section 3.1:

1. In the center-vortex condensate, the effective theory is dominated by the soft Gold-
stone modes, which are represented by an emergent compact Abelian gauge field
Vµ ∈ U(1). In the center-vortex context, we proposed another natural one based on
Vµ ∈ SU(N) (see Section 5.3);

2. The lattice version of the Goldstone mode sector is given by a Wilson action
with frustration;

3. In the expansion of the partition function, the relevant configurations to compute the
gauge model correspond to link-variables on the edges of plaquettes organized on
closed surfaces (see Figure 2);

4. The frustration is non-trivial on plaquettes x, µ, ν that intersect S(Ce). Every time a
closed surface links Ce, a center-element for quarks in the representation D is generated.

Thus, the main simplification in 4d is that, in a condensate, the effective description
can be captured by a local field. Similarly to 3d, where the soft modes can be read in
the phase of the vortex field V(x) ∼ v eiγ(x), the natural soft modes in 4d are given by a
compact gauge field,

V(C) ∼ v eiγΛ(C), γΛ(C) =
∮

C
dxµ Λµ . (15)
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(a) (b)

Figure 2. (a) Configurations formed by link variables distributed on plaquettes organized on an
open surface do not contribute, as the Vµ link−variables at the surface edges cannot form singlets;
(b) when they are organized on closed surfaces, singlets can be formed and the group−integral is
non−trivial.

4. Center-Vortex Gauge Fields, Matching Rules, and Correlations

The simplest center-vortex ensembles discussed in Section 3 could provide an impor-
tant basis to understand the confinement mechanism at asymptotic distances. However,
they do not contain enough ingredients to reproduce more intricate properties. In this
section, we shall discuss the center-vortex gauge fields and typically non-Abelian elements
that could characterize the associated ensembles.

4.1. Thick Center Vortices and Intermediate Casimir Scaling

Before discussing generalized center-vortex ensembles with matching rules and non-
oriented components, let us recall how the consideration of center-vortex thickness and
the natural non-Abelian orientations in the gauge group can account for the observed
Casimir scaling at intermediate distances. Some ideas along this line were initially pursued
in [47]. In [26,27] (see also [48]), a simple model was put forward in the lattice, where the
contribution to a planar Wilson loop along a curve Ce was modeled. The starting point
is to postulate an ensemble of thick center vortices whose total flux, as measured by a
fundamental holonomy, have different possibilities zj = ei2π j/N , j = 1, . . . , N − 1. When a
thick center vortex is partially linked, the contribution to the Wilson loop is given by the
insertion of a group element Gj(x, S) that depends on the location (x) of the center-vortex
midpoint (or guiding center) with respect to Ce. It also depends on a group orientation S,

Gj(x, S) = SGj(x)S† , (16)

where Gj = exp
[
i αj · T

]
is in the Cartan subgroup and the tuples αj are formed by

model-dependent scalar profiles. These profiles implement the natural condition that
Gj(x, I) = zj IN , if the thick center vortex is fully enclosed by Ce, it is IN if it is not enclosed
at all, and it gives an interpolating value otherwise. After averaging over random group
orientations in [26,27], they arrived at

σCe(D) ≡ −∑
x

1
A

ln(1−
N−1

∑
j=0

f j(1−
1
D

Tr D
(
Gj
)
)) , (17)

where f j is the probability that a given plaquette of the planar surface enclosed by Ce
be pierced by the midpoint of a center-vortex of type j, σCe(D) is the string tension in
representation D, and A is the minimal area of Ce. At intermediate distances, after some
natural approximations, an appropriate choice of profiles, and using the key formula

Tr (D(Tq)D(Tp)) = D δqp
C2(D)

N2 − 1
, (18)
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the Casimir Scaling
σI(D)

σI(F)
=

C2(D)

C2(F)
(19)

was obtained. In [26,27], based on a specific choice of probabilities and profiles, it was
also possible to reproduce different asymptotic behaviors, such as the Casimir and the
Sine law. In Section 5, we shall review a different line based on oriented and non-oriented
center vortices, which naturally lead to an asymptotic Casimir law. As these models are
generated from weighted center-element averages, they are expected to be applicable in
the asymptotic region.

4.2. Center-Vortex Sectors in Continuum YM Theory

Center vortex correlations were considered for the first time in [3]. In (2 + 1)d
Minkowski spacetime, the order–disorder algebra in Equation (2) says that the action
of V̂(x) on |A〉 gives

ŴF(Ce)
(
V̂(x)|A〉

)
= ei 2π

N WF(Ce)
(
V̂(x)|A〉

)
, (20)

if x is encircled by Ce, and it leaves the state |A〉 unaltered otherwise. Here, |A〉 is a state
with well-defined shape in the Weyl gauge A0 = 0, That is, V̂(x)|A〉 is a state where a thin
center-vortex is created on top of Ai. In particular, the action of V̂N(x) is trivial. Then, the
possible phases were effectively described by a model with magnetic Z(N) symmetry

L = ∂µV̄ ∂µV + m2 V̄V +
λ

2
(V̄V)2 + ξ (VN + V̄N) . (21)

This includes quadratic and quartic correlations, as well as the N-th order terms
that capture the possibility that N vortices may annihilate. The case m2 > 0 would
correspond to a Higgs phase where center vortices are in the spectrum of asymptotic
states. The case m2 < 0 corresponds to a center-vortex condensate, with N degenerate
classical vacua, so that Z(N) is spontaneously broken. For a detailed analysis of this
effective description, see [49,50]. In [3], based on the center-vortex operator definition
V̂(x)|A〉 = |AS〉, discussed in Section 1, 3d Euclidean vortex Green’s functions 〈V̄(y)V(x)〉
were defined. This was done by considering the YM path-integral over configurations Aµ

with boundary conditions around the pair of points x, y ∈ R3, such that a vortex is created
at x, it is then propagated, and finally annihilated at y. When |x− y| → ∞, an exponential
decay would correspond to a Higgs phase and 〈V〉 = 0, because of the clustering property.
This agrees with the discussion above, where the Higgs phase m2 > 0 is characterized by a
Z(N) symmetric vacuum. On the other hand, a condensate would correspond to a Green’s
function that tends to a constant.

Now, from the definition of the operator V̂(x), it is clear that it introduces singularities
in the gauge fields. If A is smooth, the configuration AS is singular, with a field strength
containing a delta-singularity at the center vortex location x. As pointed out by ’t Hooft,
the operator’s definition could be made more precise by smearing the singularities over
an infinitesimal region around x. Otherwise, we would be working with singular infinite
action gauge fields. Although this direction was not pursued in that work, the smeared
Green’s functions could depend on the choice of boundary conditions, for the mapping
S ∈ SU(N), around x and y. In other words, the vortex field V̂ could hide non-Abelian
degrees of freedom which are not evidenced by the algebra in Equation (2), which only
depends on properties with respect to the Wilson loop.

In [51], we proposed a partition of the full configuration space of smooth gauge fields
{Aµ} into sectors V(S0) ⊂ {Aµ} characterized by topological labels S0. For this objective,
we introduced Nf auxiliary adjoint scalar fields ψI by means of an identity in the YM
path integral, which constrain them to be a solution to a classical equation of motion for
the minimization of an auxiliary action Saux(ψI , A). Imposing regularity and boundary
conditions, the solution ψI(A) is unique, and can be decomposed by means of a gener-
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alized polar decomposition ψI(A) = SqIS−1, where S(x) ∈ SU(N) and (q1, . . . , qNf) is a
“modulus” tuple. The phase defects cannot be eliminated by regular gauge transformations
U, which act on the left S → US. A gauge field is then said to belong to a given sector
V(S0) if S(A) is equivalent to a class representative S0. The continuum of possible labels
S0 are characterized by the location of oriented and non-oriented center-vortex guiding
centers, with all possible matching rules (see the discussion in Section 2). Although a
possible label for an oriented center-vortex would be S0 = eiχβ·T , a typical non-oriented
configuration is characterized by S0 = eiχβ·TW. In 3d, close to some points (instantons)
on the center-vortex worldline generated by eiχβ·T , the mapping W behaves as a Weyl
transformation that changes the fundamental weight β to β′. Similarly, in 4d, the change
occurs at some monopole worldlines on the center-vortex worldsurfaces generated by
eiχβ·T (see [46]). The full YM partition function and averages of observables were then
represented by a sum over partial contributions,

ZYM = ∑
S0

Z(S0)
, 〈O〉YM =

1
ZYM

∑
S0

∫
V(S0)

[DAµ]O e−SYM . (22)

Here, ∑S0
is a short-hand notation for the contribution originated from the continuum

of labels S0. These ideas provided a glimpse of a path connecting first principles Yang–Mills
theory to an ensemble containing all possible center-vortex configurations. In addition
to addressing this important conceptual issue, the partition into sectors may circumvent
the well-known Gribov problem when fixing the gauge in non-Abelian gauge theories, as
Singer’s no go theorem [52] only applies to global gauges in configuration space (see [53]
for a detailed discussion). In [51], the gauge was locally fixed by a regular gauge transfor-
mation that rotates S to the reference S0, which is imposed by a sector dependent condition
fS0(ψ) = 0. Furthermore, the theory was shown to be renormalizable in the vortex-free
sector [54]. The extension of the renormalization proof to sectors labeled by center vortices
is under way, and will be presented elsewhere. An interesting consequence of this con-
struction is that a new label may be generated by the right multiplication, S0 → S0Ũ−1,
with regular Ũ, which is not necessarily connected to S0 by a regular gauge transformation.
That is, given a center-vortex sector, there is a continuum of physically inequivalent sectors
characterized by non-Abelian d.o.f. where the defects are located at the same spacetime
points. In the context of effective Yang–Mills–Higgs models, which describe the confining
string as a smooth topological classical vortex solution, the presence of similar internal
d.o.f. was previously noted in a large class of color-flavor symmetric theories [55–64].

5. Mixed Ensembles of Oriented and Non-Oriented Center Vortices

The general properties of center vortices discussed so far motivate the search for
a natural ensemble that captures all the asymptotic properties of confinement. Among
them, the formation of a confining flux tube is the most elusive one in this scenario.
The formation of this object would also explain the Lüscher term, which has not been
observed in projected center-vortex ensembles. Furthermore, the asymptotic Casimir law
(cf. Equation (7)) should be reproduced in 3d, while in 4d we would like to understand
the coexistence of N-ality with the Abelian-like flux tube profiles [32–34]. It is clear that a
confining flux tube requires an ensemble whose effective description contains topological
solitons, namely, a confining domain wall in (2 + 1)d and a vortex in (3 + 1)d. However,
the simple models of oriented and uncorrelated center vortices discussed in Section 3
do not have the conditions to support these topological objects1. In what follows, we
shall review how the inclusion of the center-vortex matching rules and correlations with
lower dimensional defects (see Sections 2 and 4.2) could fill the gap between center-vortex
ensembles and the formation of a flux tube. In [65,66], lattice studies showed that the
4d Abelian-projected lattice is not represented by a monopole Coulomb gas, but rather
by collimated fluxes attached to the monopoles. In the continuum, these configurations
correspond to the previously discussed non-oriented center vortices. While in 4d the lower
dimensional defects on center-vortex worldsurfaces are monopole worldlines, in 3d they
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are instantons. The relevance of non-oriented center vortices to generate a non-vanishing
Pontryagin index was shown in [37]. Now, although oriented and non-oriented center
vortices, located at the same place, would contribute to a large Wilson loop with the same
center-element, it is natural to weight them with different effective actions. In the second
case, the measure should also depend on the location of the lower-dimensional defects.

5.1. 3d Ensemble with Asymptotic Casimir Law

In this section, we review the mixed ensembles formed by oriented and non-oriented
center-vortices with N-line matching rules introduced in [67]. In that reference, to prepare
the formalism so as to include the different correlations, we initially wrote the contribution
to the Wilson loop of a thin center-vortex loop l as

WD(Ce)|loop =
1
N

Tr Γl [bCe
µ ], Γγ[bµ] = P{ei

∫
γ dxµbµ} , (23)

where bCe
µ = 2πβe · T sCe

µ , βe is the highest magnetic weight of D, and sCe
µ is a source

localized on Ce. Here, we use the notation βe · T = βe|qTq, with Tq, q = 1 . . . , N − 1 being
the Cartan generators of SU(N). Then, after weighting each loop with a phenomenological
factor e−S(l) accounting for tension and stiffness (cf. Equation (10)), and summing over all
possible diluted loops, we obtained the center-element average

〈ZD(Ce)〉 = e
∫ ∞

0
dL
L
∫

dx
∫

du tr Q(x,u,x,u,L) , (24)

where Q(x, u, x0, u0, L) is the integral over all the paths with length L that begin at x0 with
unit tangent vector u0, and end at x with orientation u. This is given by Equation (A1), using
as D the fundamental representation. This object satisfies a non-Abelian diffusion equation
whose large κ-limit (small stiffness) solution (cf. Equation (A12)) led to approximate
Equation (24) by

〈ZD(Ce)〉 ≈ Zloops = N
∫
[dφ] e−

∫
d3x φ†Oφ, O = − 1

3κ
(IN∂µ − ibCe

µ )2 + µIN , (25)

where φ is an emergent complex scalar field in the fundamental representation.
One basic defining property of center vortices is that N such objects can be virtually

created out of the vacuum at x0 and then annihilated at x. At the level of the gauge fields,
this is related to the possibility of matching N guiding centers each one carrying a different
fundamental magnetic weight βi, i = 1, . . . , N, which satisfy β1 + . . . + βN = 0. Then,
to incorporate all possible oriented center-vortex line matchings (see Section 5.1.1), we
expanded the loop ensemble in Equation (25) considering the N types of weights, each
one represented by a fundamental field φi, i = 1, . . . , N. At this point, the center-element
average over loops was generated from the partition function

ZN
loops =

∫
[DΦ†][DΦ] e−

∫
d3x[ 1

3κ Tr((DµΦ)†DµΦ)+µTr(Φ†Φ)] , (26)

where Φ is a complex N × N matrix with components Φij = φj|i.

5.1.1. Including N-Vortex Matching

The contribution to the Wilson loop of N center-vortex worldlines starting at x0 and
ending at x, and carrying different weights, was rewritten as

WD(Ce)|N−lines =
1

N!
εi1 ...iN εi′1 ...i′N

Γγ1 [b
Ce
µ ]|i1i′1

. . . ΓγN [b
Ce
µ ]|iN i′N

. (27)
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By weighting each line in Equation (27) with the factor e−S(γi), and integrating over
paths with fixed endpoints and over all the lengths Li (cf. Equation (A13)), we obtained

CN ∝
∫

d3xd3x0 εi1 ...iN εj1 ...jN G(x, x0)i1 j1 . . . G(x, x0)iN jN , (28)

where G(x, x0) is the Green’s function of the operator O. In this manner, the N-line
contribution in Equation (28) and similar processes were generated by adding a term
∝ (det Φ + det Φ†). The effective description thus obtained is separately invariant under
local and global SU(N) symmetries Sc(x), S f ∈ SU(N)

Φ→ Sc(x)Φ, bµ → Sc(x)bµS−1
c (x) + iSc(x)∂µS−1

c (x) ,

Φ→ ΦS f . (29)

In the effective description, other natural terms compatible with these symmetries,
like the vortex–vortex interaction Tr(Φ†Φ)2, should also be included, thus leading to the
center-element average 〈ZD(Ce)〉 = Zv[bCe

µ ]/Zv[0],

Zv[bCe
µ ] =

∫
[DΦ†][DΦ]e−

∫
d3x
[

1
3κ Tr((DµΦ)† DµΦ)+µTr(Φ†Φ)+

λ0
2 Tr(Φ†Φ)2−ξ0(det Φ+det Φ†)

]
. (30)

This effective description has some similarities with the ’t Hooft model (cf. Equation (21)).
More specifically, they coincide for configurations of the type Φ = VIN . However, there
is no reason for the path-integral to favor this type of restricted configuration. Up to this
point, in the percolating phase (µ < 0), the quadratic and quartic terms tend to produce a
manifold of classical vacua labeled by U(N), while the addition of the det Φ-interaction
reduces this manifold to SU(N). Then, unlike the ’t Hooft model, in the SSB phase this
effective description has a continuum set of classical vacua which precludes the formation
of the stable domain wall. It is interesting to formulate the Goldstone modes V(x) ∈ SU(N)
in the lattice, which leads to

S(3)
latt(b

Ce
µ ) = β̃ ∑

x,µ
Re
[
I− ŪµV(x + µ̂)V†(x))

]
, (31)

where Uµ(x) = ei2πβe·T ∈ Z(N), if the link x, µ crosses S(Ce), and it is the identity other-
wise. As expected, in the expansion of the partition function, besides the contribution of
sites distributed on links that form loops, there is also one originated from N lines that start
or end at a common site x. In the former case, the singlets are included in N ⊗ N̄, while in
the latter they are in the products of N V(x) or V†(x) (compare with the Abelian case in
Section 3.1). In this way, the rules originating Equation (30) can be recovered in the lattice.
This type of cross-checking is useful to better understand proposals of lattice ensemble
measures in situations where it is harder to derive the effective field description, like in
4d spacetime.

5.1.2. Including Non-Oriented Center Vortices in 3d

In terms of Gilmore–Perelemov group coherent-states (see [68,69] for a complete dis-
cussion or [46] for a summary of the main ideas) |g, ω〉 = g|ω〉, g ∈ SU(N),
Equations (23) and (27) became

WD(Ce)|loop ∝
∫

dµ(g) 〈g, ω|Γl [b
Ce
µ ]|g, ω〉 ,

WD(Ce)|N−lines ∝
∫

dµ(g)dµ(g0) 〈g, ω1|Γγ1 [b
Ce
µ ]|g0, ω1〉 . . . 〈g, ωN |ΓγN [b

Ce
µ ]|g0, ωN〉 . (32)

The first contribution can be thought of as associated to the creation of a center-vortex
with initial fundamental weight ω and group orientation g, which is propagated along
the closed worldline l, and is then annihilated. The second corresponds to N vortices
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with different magnetic weights βi = 2N ωi, i = 1, . . . , N, created out of the vacuum at a
spacetime point x0, that follow separate worldlines γi and then annihilate at x f . Following a
similar interpretation, and recalling that the center-vortex weights change at the instantons,
we introduced non-oriented center vortices. When a closed object is formed by n parts
γ1 ◦ γ2 ◦ . . . ◦ γn with n instantons at points x1 . . . xn, we considered the contribution

Cn =
∫

dµ(g1) . . .
∫

dµ(gn)〈g1, ω|g2, ω′〉〈g2, ω|g3, ω′〉 . . . 〈gn, ω|g1, ω′〉× (33)

× 〈g1, ω′|Γγn [b
Ce
µ ]|gn, ω〉 . . . 〈g3, ω′|Γγ2 [b

Ce
µ ]|g2, ω〉〈g2, ω′|Γγ1 [b

Ce
µ ]|g1, ω〉 .

Here, a center vortex is propagated along γ1 from x1, with orientation g1 and weight
ω, up to x2, with orientation g2 and weight ω′. At x2, keeping the orientation g2, the weight
changes to ω′, and then γ2 is followed, etc. This precisely characterizes a non-oriented
center vortex, where the flux orientation along the Cartan subalgebra changes. Additionally,
notice that |ω′〉〈ω| is the root vector Eα, which is in line with the presence of pointlike
defects carrying adjoint charge. Moreover, when the chain configuration links the Wilson
loop Ce, one of the holonomies Γγ1 , . . . , Γγn gives a center element, while all the others are
trivial, thus leading to the expected center-element for a chain, up to a positive and real
weight factor. Performing the integrals on the group, we arrived at an additional vertex and
the final formula for the ensemble average ofWD(Ce), incorporating all the configurations
discussed so far,

〈ZD(Ce)〉 =
Z[bCe

µ ]

Z[0]
, Z[bµ] =

∫
[DΦ] e−Seff(Φ,bµ) , (34)

Seff(Φ, bµ) =
∫

d3x
(

Tr(DµΦ)†DµΦ + V(Φ, Φ†)
)

, Dµ = ∂µ − ibµ , (35)

V(Φ, Φ†) =
3
2

λ0κTr(Φ†Φ +
µ

λ0
IN)2 − ξ0(3κ)

N
2 (det Φ + det Φ†)− 3ϑ0κTr

(
Φ†TAΦTA

)
, (36)

where λ0, ξ0, ϑ0 > 0, and we have made the redefinition Φ →
√

3κΦ of the field. When
vortices with positive stiffness percolate (1/κ > 0, µ < 0), a condensate is formed. In the
parameter region λ0 , ξ0 >> ϑ0, the most relevant fluctuations will be parametrized by
Φ ∝ S, S ∈ SU(N). It is interesting to check in the lattice how the different configuration
types are recovered. The additional non-oriented component in the discretized theory is
generated from the product of an adjoint variable arising from the new term

Tr
(

Φ†TAΦTA

)
∼ const. Tr(Ad(S)) , (37)

at a lattice site x, with the adjoint contribution in N ⊗ N̄ associated with V(x) and V†(x).

5.2. Saddle-Point Analysis in 3d

For non-trivial ϑ, the SU(N) classical vacua degeneracy is lifted, and the possible
global minima become discrete:

Φ = vZN , ZN = {ei 2πn
N ; n = 0, 1, . . . , N − 1} , (38)

6λ0κN
(

v2 +
µ

λ0

)
− 2ξ0(3κ)

N
2 NvN−2 − 3κϑ0(N2 − 1) = 0 . (39)

Thus, the presence of instantons opens the possibility of stable domain walls that
interpolate the different vacua. In this case, the calculation may be approximated by a
saddle-point expansion. Considering a large circular Wilson Loop Ce centered at the origin
of the x2 − x3 plane, the effect of the source is simply to impose the boundary conditions

lim
x1→−∞

Φ(x1, x2, x3) = vIN , lim
x1→∞

Φ(x1, x2, x3) = vei2πβe ·T , (0, x2, x3) ∈ S(Ce) . (40)



Universe 2021, 7, 253 14 of 23

In [67], we showed that the Ansatz

Φ = (η IN + η0β · T)eiθβ·Teiα (41)

closes the equations of motion, yielding scalar equations for the profiles η, η0, θ, α. Due to
the relation ei2πβe ·T = e−i 2kπ

N , the boundary conditions (40) may be imposed either by a
solution where α varies with θ constant, or vice versa. The first possibility is closely related
to the ’t Hooft model (cf. Equation (21)). In the second case, the θ variation is governed by
the Sine-Gordon equation

∂2
x1

θ =
3κϑ0

2
sin(θ) . (42)

In this manner, for quarks with N-ality k, we obtained the asymptotic Casimir Law

εk =
k(N − k)

N − 1
ε1 , (43)

where ε1 is proportional to the Sine-Gordon parameter 3κϑ0.

5.3. A 4d Ensemble with Asymptotic Casimir Law

Here, we review the ensembles of oriented and non-oriented center vortices in four
dimensions as proposed in [46]. In that study, instead of deriving the effective description
of center-vortex ensembles with negative tension and positive stiffness, we started the dis-
cussion from the natural Goldstone modes defined on the lattice (see also Section 3.2). The
missing steps are expected to be implemented by deriving diffusion loop equations includ-
ing the effect of stiffness. The lattice description of an Abelian ensemble of worldsurfaces
coupled to an external Kalb–Ramond field in the form∫

dσ1dσ2 Bµν(X(σ1, σ2))Σµν(X(σ1, σ2)), Σµν =
∂Xµ

∂σ1

∂Xν

∂σ2
− ∂Xν

∂σ1

∂Xµ

∂σ2
, (44)

where Xµ(σ1, σ2) is a parametrization of the worldsurface, was obtained in [45]. This was
done in terms of a complex-valued string field V(C), where C is a closed loop formed by a
set of lattice links. The associated action is

SV = −∑
C

∑
p∈η(C)

[
V̄(C + p)UpV(C) + V̄(C− p)ŪpV(C)

]
+ ∑

C
m2V̄(C)V(C) . (45)

η(C) is the set of plaquettes that share at least one common link with C, while C + p
is the path that follows C until the initial site of the common link, then detours through
the other three links of p, and continues along the remaining part of C. In addition, the
coupling (44) originates the plaquette field Up = eia2Bµν(p). Then, the following polar
decomposition was considered

V(C) = w(C) ∏
l∈C

Vl , Vl ∈ U(1) , (46)

with a phase factor that has a “local” character, as it was written in terms of the holonomy
along C of gauge field link-variables Vl . Finally, when a condensate is formed (m2 < 0), it
was argued that the modulus is practically frozen2, so that w(C) ≈ w > 0. By using this
fact in Equation (45), the only links whose contribution do not cancel are those belonging
to p:

V̄(C + p)UpV(C) = w2 ∏
l∈C+p

∏
l′∈C

V̄lUpVl′ = w2Up ∏
l∈p

V̄l . (47)
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Thus,

S(4)
latt(αp) = β̃ ∑

p
Re

[
I− Ūp ∏

l∈p
Vl

]
. (48)

where the sum is over all plaquettes p and a constant was added such that the action
vanishes for a trivial plaquette. Then, the description of a loop condensate, where loops
are expected to percolate, is much simpler than that associated with a general phase. The
string field parameter gives place to simpler gauge field Goldstone variables Vµ = eiΛµ(l),
governed by a Wilson action with frustration Up. This was the starting input used in [46].
An external Kalb–Ramond field that generates the center elements when the simplest
center-vortex worldsurface link Ce is obtained by replacing Bµν → 2πk

N sµν, where k is the
N-ality of the quark representation D and

sµν =
∫

S(Ce)
d2σ̃µνδ(4)(x− X(σ1, σ2)) , (49)

d2σ̃µν =
1
2

εµναβ

(
∂Xα

∂σ1

∂Xβ

∂σ2
− ∂Xβ

∂σ1

∂Xα

∂σ2

)
dσ1dσ2 (50)

is localized on S(Ce). In the lattice, this localized source corresponds to a frustration
Up = eiαp , where αp = −2πk/N if p intersects S(Ce) and it is trivial otherwise. Similarly
to the 3d case, we can check a posteriori that the lattice expansion involves an average
of center elements over closed worldsurfaces (see Section 3.2). This is a consequence of
the properties of U(1) group integrals. This also applies to the non-Abelian extension
Vµ ∈ SU(N), governed by

Slatt
V (αµν) = β̃ ∑

x,µ<ν

Re tr
[

I − ŪµνVµ(x)Vν(x + µ̂)V†
µ (x + ν̂)V†

ν (x)
]

,

where plaquettes are denoted as usual. The closed surfaces are generated because N ⊗ N̄
contain a singlet. Interestingly, the SU(N) version has additional configurations where N
open worldsurfaces meet at a loop formed by a set of links. This is due to the presence
of a singlet in the product of N link variables. Therefore, the associated normalized
partition function

Zlatt
v [αµν]

Zlatt
v [0]

, Zlatt
v [αµν] =

∫
[DVµ] e−Slatt

V (αµν) (51)

is an average of the center elements generated when a Wilson loop in representation D is
linked by an ensemble of oriented center-vortex worldsurfaces with matching rules.

5.4. Including Non-Oriented Center Vortices in 4d

Although thin oriented or non-oriented center vortices contribute with the same center-
element to the Wilson loop, they are distinct gauge field configurations, with different
Yang–Mills action densities. It is then important to underline that the ensemble measure
could depend on the monopole component. In order to attach center vortices to monopoles,
we included dual adjoint holonomies defined on a “gas” of monopole loops and fused
worldlines. In this case, because of the integration properties in the group there are
additional relevant configurations like those of Figure 3a,b. The use of adjoint holonomies
is in line with the fact that monopoles carry weights of the adjoint representation (the
difference of fundamental weights), see [46,51].
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(a) (b) (c)

Figure 3. Non−oriented center vortices containing monopole worldlines. We show a configuration
that contributes to the lowest order in β̃ (a), and one that becomes more important as β̃ is increased
(b). A non-oriented center vortex with three matched monopole worldlines is shown in (c).

Then, partial contributions with n-loops were generated by

Zlatt
mix[αµν]

∣∣
p ∝

∫
[DVµ] e−Slatt

V (αµν)W (1)
Ad . . .W (n)

Ad

W (k)
Ad =

1
N2 − 1

tr
(

∏
(x,µ)∈ C latt

k

Ad
(
Vµ(x)

))
. (52)

In addition to the matching rules of N worldsurfaces, which in the continuum occur
as N different fundamental magnetic weights add to zero, monopole worldlines carrying
different adjoint weights (roots) can also be fused. For example, when N ≥ 3, three
worldlines carrying different roots that add up to zero can be created at a point. For this
reason, we also considered partial contributions to the ensemble like

Zlatt
mix[αµν]

∣∣
p ∝

∫
[DVµ] e−Slatt

V (αµν) Dlatt
3 , (53)

where Dlatt
3 is formed by combining three adjoint holonomies Ad(Γlatt

j ) (see Figure 3c).
Other natural rules involve the matching of four worldlines. Then, weighting the monopole
holonomies with the simplest geometrical properties (tension and stiffness), the lattice
mixed ensemble of oriented and non-oriented center vortices with matching rules can be
pictorially represented as

Zlatt
mix[αµν] =

∫
[DVµ] e−Slatt

V (αµν) × . . . (54)

where the dots represent possible combinations of holonomies as illustrated in Figure 4.
Then, noting that ei2πk/N = e−i 2π β·we , where β is a fundamental magnetic weight and

we is a weight of the quark representation D, we considered the naive continuum limit,
Vµ(x) = eiaΛµ(x), Λµ ∈ su(N),

Zmix[sµν] =
∫
[DΛµ] e

−
∫

d4x 1
4g̃2 (Fµν(Λ)−2πsµν βe·T)

2

× . . . (55)

The dots represent all possible monopole configurations to be attached to center-vortex
worldsurfaces (see Figure 5). Each contribution was obtained using the methods in the
Appendix A. The first factor in Figure 5 (monopole loops) generates emergent adjoint fields
coupled to the effective field Λµ.
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Figure 4. Natural combinations of holonomies that can be used to model the mixed ensemble of
oriented and non-oriented center vortices. Each contribution is weighted with tension and stiffness.

Figure 5. Continuum limit of the monopole sector. The worldline contributions are obtained from
the solution to a Fokker–Planck diffusion equation.

For example, a diluted ensemble of a given species of monopoles, with tension µ̃ and
stiffness 1

κ̃ , is generated by

e
∫ ∞

0
dL
L
∫

d4x du tr Q(x,u,x,u,L) , (56)

where Q is given by Equation (A1) and D corresponds to the adjoint representation. In
the small-stiffness approximation, the non-Abelian diffusion equation for Q is solved by
Equation (A12), with

O = − π

12κ̃

(
∂µ − i Ad

(
Λµ

))2
+ µ̃IDAd

. (57)

Therefore, the factor in Equation (56) was approximated by

e−Tr ln O =
∫
[Dζ][Dζ†] e−

∫
d4x ((Dµζ † ,Dµζ)+m̃2(ζ† ,ζ))

m̃2 = (12/π) µ̃κ̃, Dµ(Λ) ζ = ∂µζ − i [Λµ, ζ] , (58)

where ζ is an emergent complex adjoint field, and we have introduced the Killing product
between two Lie algebra elements X, Y as (X, Y) ≡ tr(Ad(X)Ad(Y)). In the continuum,
the path-integral of Ad(Γ[Λ]) over shapes and lengths led to the Green’s function for the
operator O, so that fusion rules like the one in Equation (53) became effective Feynman
diagrams. Indeed, to differentiate the monopole lines that can be fused, the monopole loop
ensemble was extended to include different species. At the end, a set of real adjoint fields
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ψI ∈ su(N) emerged (I is a flavor index). This, together with the non-Abelian Goldstone
modes (gauge fields), led to a class of effective Yang–Mills–Higgs (YMH) models,

Zmix[sµν] =
∫
[DΛµ][Dψ] e

−
∫

d4x
[

1
4g2 (Fµν(Λ)−2πsµν βe·T)

2
+ 1

2 (DµψI ,DµψI)+VH(ψ)

]
. (59)

The vertex couplings weight the abundance of each fusion type. Percolating monopole
worldlines (positive stiffness and negative tension) favor a spontaneous symmetry breaking
phase that can easily correspond to SU(N)→ Z(N) SSB. This pattern has been extensively
studied in the literature (see [55–60,70–72] and references therein).

5.5. Analysis of the Saddle Point in 4d

In [73–75], we investigated a possible model containing N2 − 1 real adjoint scalar
fields ψI and Ad(SU(N)) flavor symmetry,

VH(ψ) = c +
µ2

2
(ψA, ψA) +

κ

3
fABC(ψA ∧ ψB, ψC) +

λ

4
(ψA ∧ ψB)

2 , (60)

where X∧Y ≡ −i[X, Y]. This model includes some of the correlations previously discussed.
The case µ̃ = 0 is specially interesting. At this point, the classical vacua are

Λµ =
i
g

S∂µS−1, ψA = vSTAS−1 . (61a)

Then, the Higgs vacua manifold is Ad(SU(N)) and the system undergoes SU(N)→
Z(N) SSB, which leads to stable confining center strings. Interestingly, at µ̃ = 0, we were
able to find a set of BPS equations that provide vortex solutions whose energy is

ε = 2πg̃v2β · 2δ , (62)

where δ is the sum of all positive roots of the Lie algebra of SU(N). Using an inductive
proof based on the Young tableau properties, we showed that the smallest β · 2δ factor is
given by the k-A weight, the highest weight of the totally antisymmetric representation
with N-ality k. Then, for a general representation D(·) with N-ality k, the asymptotic string
tension satisfies

σ(D)

σ(F)
=

C2(k-A)

C2(F)
=

k(N − k)
N − 1

, (63)

which is one of the possible behaviors observed in lattice simulations. Furthermore, the radial
energy distribution transverse to the string is k(N − k) times the distribution for a Nielsen–
Olesen vortex. For k = 1, this agrees with the YM energy distribution of the fundamental
confining string, recently obtained from lattice Monte Carlo simulations [32–34].

6. Discussion

We reviewed ensembles formed by oriented and non-oriented center vortices in 3d
and 4d Euclidean spacetime that could capture the confinement properties of SU(N) pure
Yang–Mills theory. Different measures to compute center-element averages were discussed.
In 3d and 4d, they include percolating oriented center-vortex worldlines and worldsurfaces
that generate emergent Goldstone modes, which correspond to compact scalar and gauge
fields, respectively. The models also have the natural matching rules of N center vortices,
as well as the non-oriented component where center-vortex worldlines (worldsurfaces) are
attached to lower-dimensional defects, i.e., instantons (monopole worldlines) in 3d (4d).
In addition to the weighting center vortices with tension and stiffness, it is also natural to
include additional weights for the lower dimensional defects. In 4d, monopole matching
rules are also included. The corresponding effective field content and the SSB pattern may
lead to the formation of a confining center string, represented by a domain wall (vortex) in
two-dimensional (three-dimensional) real space. The Lüscher term is originated as usual,
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from the string-like transverse fluctuations of the flux tube. An asymptotic Casimir law
can also be accommodated. This asymptotic behavior was observed in 3d, while in 4d it is
among the possibilities.

More recently, the transverse distribution of the 4d YM energy-momentum tensor
Tµν and the field profiles have been analyzed at intermediate and nearly asymptotic
distances [32,34,76]. In [34], it was numerically shown that the Tµν tensor of the Abelian
Nielsen–Olesen (ANO) model cannot fit the SU(3) data at the vortex guiding center for
L = 0.46 fm (intermediate distance) and L = 0.92 fm (near asymptotic distance) at the same
time. In fact, in [34], it was shown that the components of the energy-momentum tensor at
the origin may not be accommodated for L = 0.46 fm. Then, on this basis, an ANO effective
model to describe the fundamental string was discarded. However, while it is clear that
an effective model for the confining flux tube should work at asymptotic distances, it is
not that obvious that the same model could be extrapolated to intermediate distances. By
intermediate distances we mean those where the string tension scales with the quadratic
Casimir of the quark representation. In particular, this is the region where adjoint quarks
are still confined by a linear potential, before the breaking of the adjoint string. On the
other hand, in the asymptotic region, gluonic excitations around external quarks in a given
irreducible representation D(·) may be created, so as to produce an asymptotic scaling law
that only depends on the N-ality of D(·). As discussed in this review, the effective field
descriptions were derived by considering the (weighted) average of center elements over
oriented and non-oriented center vortices, which is expected to be applicable at asymptotic
distances. In other words, we wonder if it is meaningful to discard possible effective
models on the basis of the lack of adjustment to lattice data on a wide range that includes
the intermediate region, where these models are not expected to fully capture the physics.
Additionally, note that the known mechanism to explain intermediate Casimir scaling is
based on including center-vortex thickness. In turn, these finite-size effects are not included
in the ensemble definition that leads to our effective model. Interestingly, while the lattice
data rule out the ANO model at intermediate distances L = 0.46 fm, such profiles are still
among the possibilities at the nearly asymptotic distance L = 0.92 fm. Accordingly, the 4d
SU(N)→ Z(N) models we discussed in this review have a point in parameter space where
the infinite flux tube profiles Abelianize, while keeping all the required N-ality properties.
Additionally, the ideas presented in this review imply that not only an asymptotic Casimir
law should be observed, but also that the transverse confining flux tube profiles for quarks
in different representations should be the same, up to the asymptotic scaling law. This is
true for both 3d and 4d, with the profiles being of the Sine-Gordon type in 3d. It would be
interesting to test these predictions with lattice simulations.
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nológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and
the Deutscher Akademischer Austauschdienst (DAAD).
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Appendix A. Non-Abelian Diffusion

Center vortices in 3 dimensions and monopoles in 4 dimensions are propagated along
worldlines in Euclidean spacetime. Then, the corresponding ensembles will naturally
involve the building block Q associated to a worldline with length L that starts at x0 with
orientation u0 and ends at x with final orientation u. This is given by

Q(x, u, x0, u0, L) =
∫
[dx(s)]x,u

x0,u0
e−S(γ) D

(
Γγ[bµ]

)
, (A1)

Γγ[bµ] = P{ei
∫

γ dxµbµ} , (A2)
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where S(γ) is a vortex effective action, and an interaction with a general non-Abelian
gauge field bµ was considered. We are interested in the specific form

S(γ) =
∫ L

0
ds
(

1
2κ

u̇µu̇µ + µ

)
, uµ(s) =

dxµ

ds
, (A3)

which corresponds to tension µ and stiffness 1/κ. These objects were extensively studied
in [46,77]. In what follows, we review the results obtained.

For the simplest center-vortex worldlines in 3d, D is the defining SU(N) represen-
tation, while for monopole worldlines in 4d, D corresponds to the adjoint. To derive a
diffusion equation for this object, the paths were discretized into M segments of length
∆L = L/M. In this case, the path ordering was obtained from

P{e−
∫ L

0 dsH(x(s),u(s))} = e−H(xM ,uM)∆L . . . e−H(x1,u1)∆L, (A4)

where H(x, u) = −iD(uµbµ(x)). The relation between the building block QM associated to
a discretized path containing M segments of length ∆L and that associated with a path of
length L− ∆L is given by:

QM(x, u, x0, u0, L) =
∫

dnx′dn−1u′e−µ∆Lψ(u− u′)×

e−µ∆Le−H(x,u)∆Lδ(x− x′ − u∆L) QM−1(x′, x0, u′, u0) , (A5)

with

ψ(u− u′) = N e−
1

2κ ∆L
(

u−u′
∆L

)2

(A6)

arising from the discretization of the stiffness term. It acts like an angular distribution in
velocity space, which tends to bring u′ close to u. Expanding Equation (A5) to first order in
∆L, and taking the limit ∆L→ 0, the diffusion equation(

∂L −
κσ

2
L̂2

u + µ + uµ(∂µ − iD(bµ)
)

Q(x, u, x0, u0, L) = 0 , (A7)

was obtained, to be solved with the initial condition

Q(x, u, x0, u0, 0) = δ(x− x0)δ(u− u0)ID . (A8)

D is the dimension of the quark representation D and L̂2
u is the Laplacian on the sphere

Sn−1. The constant σ is given, in n spacetime dimensions, by

σ =

√
π

2n−3

Γ
( n−2

2
)
Γ
(

n+1
2

)
Γ2
(

n−1
2

)
Γ
( n−3

2
)
4Γ(n− 3)

Γ
( n−3

2
) − Γ(n− 1)

Γ
(

n+1
2

)
 . (A9)

For the cases considered in this review (n = 3, 4), σ = 1, 2/π, respectively. In the limit
of small stiffness, there is practically no correlation between u and u0, which allowed for a
consistent solution of these equations with only the lowest angular momenta components:

Q(x, u, x0, u0, L) ≈ Q0(x, x0, L), ∂LQ0(x, x0, L) = −OQ0(x, x0, L) , (A10)

O = − 2
(n− 1)σκn

(∂µ − iD(bµ))
2 + µ, Q0(x, x0, 0) =

1
Ωn−1

δ(x− x0) , (A11)

Ωn−1 being the solid angle of Sn−1. This implies,

Q(x, u, x0, u0, L) ≈ 〈x|e−LO |x0〉 . (A12)
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Then, in this limit, we also have∫ ∞

0
dL du du0

∫
[Dx]x,u

x0,u0
e−S(γ) D(Γ[b]) =

∫ ∞

0
dL du du0 Q(x, u, x0, u0, L)

≈ 〈x|O−1|x0〉, O G(x, x0) = δ(x− x0) ID . (A13)

Notes
1 Namely, a SSB pattern with discrete classical vacua in (2 + 1)d and multiple connected vacua in (3 + 1)d.
2 Similarly to the 3d case, this phase should be stabilized by a quartic interaction.
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