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Abstract: Gauge invariance of the measure associated with the gauge field is usually taken for
granted, in a general gauge theory. We furnish a proof of this invariance, within Fujikawa’s approach.
To stress the importance of this fact, we briefly review gauge anomaly cancellation as a consequence
of gauge invariance of the bosonic measure and compare this cancellation to usual results from
algebraic renormalization, showing that there are no potential inconsistencies. Then, using a path
integral argument, we show that a possible Jacobian for the gauge transformation has to be the
identity operator, in the physical Hilbert space. We extend the argument to the complete Hilbert
space by a direct calculation.

Keywords: gauge field theories; gauge anomalies; nonperturbative techniques

PACS: 11.15.-q; 11.15.Tk ; 11.30.-j

1. Introduction

As we celebrate the 80th anniversary of Wigner’s fundamental paper [1], on how to
build Poincaré symmetry in the quantum domain, it seemed relevant to us to consider some
aspects of the phenomenon of quantum obstruction to implementation of a given symmetry,
which is called an anomaly. An anomaly usually manifests as an operator that prevents the
expectation value of a Noether current from vanishing. Anomalies become specially critical
when they refer to gauge symmetry, usually required to prove renormalization of the
corresponding gauge theories. A common statement is that gauge anomalies break Ward-
Takahashi (or Slavnov-Taylor) identities, necessary to reduce the number of renormalization
constants to be computed, spoiling perturbative renormalization of these theories. In this
way, the unavoidable presence of a gauge anomaly is usually taken as an indication that
the gauge theory under analysis is not adequate.

Chiral gauge theories are examples of this kind of theory. They are defined through
minimal couplings between chiral fermions and gauge fields. As they are the basis over
which the standard model is built, the solution was to choose fermion representations in
such a way that gauge anomalies are canceled [2]. However, when chiral gauge theories
are considered as effective theories, their gauge anomalies are not always problematic.
In several contexts [3–5], with the gauge field taken as external (not quantum), gauge
anomalies have been used successfully to cancel unwanted boundary contributions.

The scene described above should be enough to raise a question mark on the alleged
inconsistency of chiral gauge theories. There has been a lot of work [6–9] during the 80’s
that showed that anomalous gauge theories are not necessarily inconsistent. A more recent
work [10] indicated that, in the full quantum context (i.e., integrating also over the gauge
fields), the gauge anomaly had null vacuum expectation value, in an arbitrary number
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of dimensions, for abelian and non-abelian theories. Its insertion in correlators of gauge
invariant operators also gives a null result. These results point towards gauge symmetry
restoration when the complete quantum theory is considered non-perturbatively. There
are also modifications in the Ward-Takahashi identities [11], in the abelian case, which,
however, do not prevent potential relations between renormalization constants, thus
opening the path to prove renormalizability also in this extended context. Although this
renormalizability has not yet been proved, it is clear that there is a lot of open questions
concerning gauge anomalies.

This paper intends to discuss a point frequently overlooked in the literature, which
concerns the gauge invariance of the bosonic measure in the generating functional of chiral
gauge theories. In general, this is taken for granted, but no systematic analysis is found
in the literature. We consider this question by using path integral arguments to show
that it is indeed gauge invariant. We check our findings with known results from the
renormalization of Yang-Mills theories. Given the central role played by this argument
in several fundamental instances (e.g., Faddeev-Popov’s method), we believe that this
study may fill an important gap in the area. We organize our discussion as follows: in
Section 2, we briefly review the gauge anomaly vanishing mechanism, for the general
(non-abelian) case. We also consider arguments against this vanishing, from an algebraic
renormalization approach, and show that they do not apply to this context. The role of
gauge invariance of the bosonic measure is stressed. In Section 3, we derive, by a path
integral argument, the gauge invariance of the bosonic measure, when we restrict ourselves
to the physical Hilbert space. We extend our argument to the whole Hilbert space by
performing a calculation based on Fujikawa’s approach to Jacobians. In Section 4, we
present our conclusions and some future perspectives.

2. Is There a Gauge Anomaly in Chiral Gauge Theories?

In order to fix our conventions and define precisely the problem under investigation,
we briefly review some of the main results of reference [10], pointing the role played by
the invariance of the bosonic measure when appropriate. What we call chiral gauge theories
are described by an action S

[
ψ, ψ̄, Aµ

]
, given by

S
[
ψ, ψ̄, Aµ

]
= SG

[
Aµ

]
+ SF

[
ψ, ψ̄, Aµ

]
=
∫

dx
1
2

tr FµνFµν +
∫

dx ψ̄Dψ, (1)

where dx indicates integration over a d-dimensional Minkowski space. The operator D is
called the Dirac operator of the theory and is given by

D = iγµ
(
∂µ1− ieAµ

)
≡ iγµDµ. (2)

The fields ψ are left handed Weyl fermions (γ5ψ = ψ) carrying the fundamental repre-
sentation of SU(N). As usual, Aµ takes values in the Lie algebra of SU(N) such that

Aµ = Aa
µTa,

Fµν = ∂µ Aν − ∂ν Aµ − ie
[
Aµ, Aν

]
, (3)

and the generators Ta satisfy

[Ta, Tb] = i fabcTc, tr (TaTb) = −
1
2

δab. (4)

Considering
g = exp(iθa(x)Ta), (5)
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and simultaneous changes of the fields ψ and Aµ as

Ag
µ = gAµg−1 +

i
e
(
∂µg
)

g−1,

ψg = gψ,

ψ̄g = ψ̄g−1, (6)

the action S is classically gauge invariant

S[ψg, ψ̄g, Ag
µ] = S[ψ, ψ̄, Aµ]. (7)

2.1. The Gauge Anomaly and Its Vanishing

The quantum theory is defined by the generating functional, which is

Z[η, η̄, jµ
a ] =

∫
dψdψ̄dAµ exp

(
iS[ψ, ψ̄, Aµ] + i

∫
dx[η̄ψ + ψ̄η + jµa Aa

µ]

)
. (8)

We set the external sources to zero and perform a change of variables Aµ −→ Ag
µ:

Z[0, 0, 0] =
∫

dψdψ̄dAµ exp
(
iS[ψ, ψ̄, Aµ]

)
=
∫

dψdψ̄dAg
µ exp

(
iS[ψ, ψ̄, Ag

µ]
)

. (9)

It is well known [12] that the fermion measure is not invariant under ψ −→ ψg,
ψ̄ −→ ψ̄g. In what concerns the bosonic measure, its gauge invariance is universally aceppted

dAg
µ = dAµ. (10)

We show, below, that once Equation (10) is considered, we can promptly show that
the Noether current associated to the gauge symmetry (6) is covariantly conserved. To see
this, suppose g = 1 + iθa(x)Ta, with θa infinitesimal, and remember that

Ag
µ = Aµ −

1
e
Dµθ, (11)

with
Dµθ = Ta

(
∂µδa

b + e fabc Ac
µ

)
θb ≡ Ta

(
Dµ

)a
bθb. (12)

Using this expression for Ag
µ (10) we obtain:

Z[0, 0, 0] =
∫

dψdψ̄dAg
µ exp

(
iS[ψ, ψ̄, Ag

µ]
)

=
∫

dψdψ̄dAµ exp
(

iS[ψ, ψ̄, Aµ] +
∫

dx θa(x)
(
Dµ

)a
b(ψ̄γµTbψ)

)
= Z[0, 0, 0]

+
∫

dx θa(x)
∫

dψdψ̄dAµ

[(
Dµ

)a
b(ψ̄γµTbψ)

]
exp

(
iS[ψ, ψ̄, Aµ]

)
. (13)

This means ∫
dψdψ̄dAµ

[(
Dµ

)a
b(ψ̄γµTbψ)

]
exp

(
iS[ψ, ψ̄, Aµ]

)
= 〈0|

(
Dµ

)a
b(ψ̄γµTbψ)|0〉

= 0. (14)
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We could follow a different path when considering the original dependence of Z on
Ag

µ, by absorbing the gauge dependence in the fermions and using again the bosonic measure
gauge invariance:

Z[0, 0, 0] =
∫

dψdψ̄dAg
µ exp

(
iS[ψ, ψ̄, Ag

µ]
)

=
∫

dψdψ̄dAµ exp
(

iS[ψg−1
, ψ̄g−1

, Aµ]
)

=
∫

dψdψ̄dAµ exp
(

iS[ψ, ψ̄, Aµ]− iα1

[
Aµ, g−1

])
, (15)

where α1
[
Aµ, g−1] is related to the Jacobian for the gauge transformation of the fermionic

measure as,
dψdψ̄ = exp(−iα1

[
Aµ, g−1

]
)dψg−1

dψ̄g−1
. (16)

Under an infinitesimal gauge transformation,

α1
(

Aµ,−θ
)
= i

∫
dx θaAa(Aµ) + . . . , (17)

with Aa(Aµ) being the gauge anomaly operator, as is well known [12]. Following this path
we arrive at

Z[0, 0, 0] = Z[0, 0, 0]

− i
∫

dx θa
∫

dψdψ̄dAµAa(Aµ) exp
(
iS[ψ, ψ̄, Aµ]

)
⇒
∫

dψdψ̄dAµAa(Aµ) exp
(
iS[ψ, ψ̄, Aµ]

)
= 〈0|Aa(Aµ)|0〉 = 0. (18)

If the integration over the gauge fields were not performed, it is easy to see that the
result would be

〈0|
(
Dµ

)a
b(ψ̄γµTbψ)|0〉Aµ

= Aa(Aµ), (19)

where

〈0|
(
Dµ

)a
b(ψ̄γµTbψ)|0〉Aµ

=
∫

dψdψ̄
[(
Dµ

)a
b(ψ̄γµTbψ)

]
exp

(
iS[ψ, ψ̄, Aµ]

)
, (20)

corresponds to the situation of the chiral fermions being considered under the influence of
a fixed external field Aµ.

This means that, with all the fields being quantized, there is no gauge anomaly preventing
the conservation of the gauge current Jµ

a = ψ̄γµTbψ. We have to stress that this result is not
in contradiction with the well-known existence and topological interpretation of the gauge
anomaly (see, for example, [13,14]), since it is always present when the integration over the
fields Aa

µ is not performed (i.e., they are taken as external fields). However, when quantum
corrections are taken into account, the simple argument above shows that it must vanish.

If the bosonic measure dAµ were not gauge invariant, we should have to add the
contribution of the Jacobian of the gauge transformation of that measure, which would spoil
the covariant conservation just obtained. We will further investigate this gauge invariance
in the next section. Note also that the absence of gauge invariance of the fermionic measure
plays no role in the covariant conservation of the fully quantized gauge current, as opposed
to usual statements. The vanishing of the vacuum expectation value of the anomaly is to
be seen as a consistency requirement, in the situation of a fully quantized gauge field.
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2.2. An Algebraic Renormalization Objection

An argument, based on the technique of algebraic renormalization [15], could in
principle question the findings reported above. One starts with a gauge fixed version of
(1), namely

SFP
[
ψ, ψ̄, Aµ, B, c, c̄

]
= S

[
ψ, ψ̄, Aµ

]
+ Sgf

[
Aµ, B, c, c̄

]
, (21)

where

Sgf
[
Aµ, B, c, c̄

]
=
∫

dx tr
(

B∂µ Aµ +
1
2

αB2 − c̄∂µ
(
i∂µ + ie

[
c, Aµ

]))
, (22)

with B being an auxiliary field (the Lautrup-Nakanishi field) and c, c̄ being ghost fields,
all of them taking values on the Lie algebra of SU(N). The action (21) would be obtained
from (1) by the use of the Faddeev-Popov procedure to fix the gauge. Then, one defines the
linearized Slavnov-Taylor operator [16], which will test gauge invariance of the (quantum)
effective action at each order of perturbation theory. When one solves the cohomology
problem associated with this nilpotent operator, one finds a non-trivial solution. This
means that the effective action is found to be not gauge invariant, as gauge symmetry
violating terms dynamically generated at any given order can not be absorbed by suitably
chosen gauge invariant counterterms. So, gauge invariance would be hopelessly lost and a
gauge anomaly would be present, contradicting frontally what we found previously and
putting renormalizability at risk.

There is nothing wrong with this line of reasoning, except its starting point. Gauge
fixing is essential for the perturbative definition of a gauge theory, but one can not do it in a
gauge anomalous theory in the same way as one does in the case of a non gauge anomalous
one. If one starts with the non gauge fixed action (1) and insists in the insertion of the
identity through the Faddeev-Popov’s method, one ends up with a generating functional
given by [8]

Z[0, 0, 0] =
∫

dθdψdψ̄dAµdBdcdc̄

× exp
(
iSFP

[
ψ, ψ̄, Aµ, B, c, c̄

]
+ iα1

(
Aµ, θ

))
=
∫

dθdψdψ̄dAµdBdcdc̄ exp
(
iSfull

[
ψ, ψ̄, Aµ, B, c, c̄, θ

])
, (23)

where α1 was defined in (16) and is called Wess-Zumino action. The fields θ = θaTa are called
Wess-Zumino fields and represent new quantum degrees of freedom. The action Sfull is the
true starting point from where one should restart the analysis of the cohomology of the
linearized Slavnov-Taylor operator. It is gauge invariant and, thanks to Faddeev-Popov’s
technique, it has a well-defined gauge boson propagator. Unfortunately, as the fields θa

have null mass dimension, it is not known how to perform this analysis up to now. In order
to avoid the appearance of the Wess-Zumino fields, one is not allowed to fix the gauge.
However, in doing this, there is no BRS symmetry to help one with the analysis of gauge
invariance at an arbitrary perturbative order.

Thus, within the present knowledge, algebraic renormalization methods do not seem
to be useful to decide if chiral gauge theories are truly gauge anomalous (and poten-
tially inconsistent). As we pointed in the previous section, there are strong indications of
the opposite.

3. On the Gauge Invariance of the Bosonic Measure

Let us now focus on the behavior of the bosonic measure under gauge transformations.
To this end, let us first display a preparatory argument: consider the generating functional
for correlators of gauge invariant operators in pure Yang-Mills theory (without chiral
fermions). These gauge invariant operators satisfy

Oi

(
Ag

µ

)
= Oi

(
Aµ

)
(24)
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and the correlators are obtained as

δn

δλ1(x1) . . . δλn(xn)
Z
[
λi
]∣∣∣∣

λi=0
= 〈0|T

(
O1
(

Aµ

)
(x1) . . . On

(
Aµ

)
(xn)

)
|0〉, (25)

with

Z
[
λi
]
=
∫

dAµ exp i
∫

tr
(

1
2

FµνFµν + λiOi
[
Aµ

])
. (26)

Considering the integration not over Aµ but over its gauge transformed version Ag
µ:

Z
[
λi
]
=
∫

dAµ exp i
∫

tr
(

1
2

FµνFµν + λiOi
(

Aµ

))
=
∫

dAg
µ exp i

∫
tr
(

1
2
(

FµνFµν
)g

+ λiOi

(
Ag

µ

))
=
∫

dAµ J
[
Aµ, g

]
exp

(
i
∫

tr
(

FµνFµν + λiOi
(

Aµ

)))
, (27)

where we allowed the potential presence of a Jacobian for the gauge transformation of the
measure. What was obtained above corresponds to,

〈0|T
(

J
[
Aµ, g

]
O1
(

Aµ

)
(x1) . . . On

(
Aµ

)
(xn)

)
|0〉

= 〈0|T
(
O1
(

Aµ

)
(x1) . . . On

(
Aµ

)
(xn)

)
|0〉, (28)

which, translated into words, means that all correlators involving J
[
Aµ, g

]
with gauge

invariant operators are the same as those involving the identity. Thus, in the physical
Hilbert space of the theory, the two operators are the same.

This argument does not generalize to arbitrary, non-gauge invariant operators. How-
ever, an explicit calculation can resolve the problem. Let us use the usual prescription of
defining the bosonic measure by means of a complete set of orthonormal eigenfunctions
{φn} of an hermitian operator D̄:

D̄φn = λnφn,∫
dxφ†

nφm = δnm, ∑
n

φn(x)φ†
n(y) = δ(x− y),

Aa
µ(x) = ∑

n
aa

µ,nφn(x)→ dAµ = ∏
a,µ,n

daa
µ,n. (29)

Under a infinitesimal gauge transformation (11) we have

Ag
µ = ∑

n
āa

µ,nTaφn(x) = ∑
n

aa
µ,nTaφn(x)− i

e
Dµθ

=

(
∑
n

(
aa

µ,n + iab
µ,n fabcθc

)
φn(x)− i

e
∂µθa

)
Ta. (30)

Decomposing θa in terms of the same eigenfunctions of D̄,

− i
e

∂µθa(x) = ∑
n

ãa
µ,nφn(x), (31)

We obtain,

āa
µ,n = ∑

m

(
δabδnm +

∫
dxφ†

n(x)i fabcθc(x)φm(x)
)

ab
µ,m + ãa

µ,n, (32)
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so that

∏
a,µ,n

dāa
µ,n = det

[
δabδnm +

∫
dxφ†

n(x)i fabcθc(x)φm(x)
]

∏
a,µ,n

daa
µ,n. (33)

The term ãa
µ,n does not contribute because of translational invariance of each measure

daa
µ,n. Following the steps of Fujikawa [12] we get the expression for the Jacobian:

J
[
Aµ, θ

]
= exp

(
∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x)φn(x)

))
(34)

where “tr” is to be computed over Lie algebra indices. It is easy to see that the expression
for J

[
Aµ, θ

]
is indefinite:

∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x)φn(x)

)
= tr

∫
dxi fabcθc(x)∑

n
φn(x)φ†

n(x)

=
∫

dxi faacθc(x)δ(0) = 0×∞. (35)

So, it must be regularized in order to make sense. It is natural to choose the eigenvalues
of the operator D̄ to regularize the Jacobian as

J
[
Aµ, θ

]
≡ exp

(
lim

M2→∞
∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x) exp

(
− λ2

n
Mα

)
φn(x)

))

= exp

(
lim

M2→∞
∑
n

(
tr
∫

dxφ†
n(x)i fabcθc(x) exp

(
− D̄2

Mα

)
φn(x)

))
, (36)

where α is chosen so that the argument of the exponential is dimensionless. The choice
of the operator D̄ is usually guided by the requisites that (a) it naturally appears in the
theory; (b) it is gauge invariant; and (c) its eigenvalues are real. Besides, our choice of
the coefficients aa

µ,n carrying all the dependence on µ and a implies that the φn must be
eigenfunctions of an scalar colorless operator. A good choice is

D̄ = tr
(
DµDµ

)
, (37)

where the trace is taken only over the color indices. Under these conditions, we see that
the sum is regularized and, as there is no additional dependence on color indices coming
from exp

(
−D̄2/M4), the trace can be immediately taken and the result is

J
[
Aµ, θ

]
= exp

(
lim

M2→∞
∑
n

(
i faac

∫
dxφ†

n(x)θc(x) exp
(
− D̄2

M4

)
φn(x)

))
= exp(0) = 1. (38)

Of course, one could choose other strategies and a result different from 1 could arise.
However, the “gauge anomaly” coming from this “non-trivial” Jacobian could be removed
by a adequate choice of counterterms. To say this more precisely, we can use what we know
from the fact that Yang-Mills theories are renormalizable. In fact, ’t Hooft’s proof [17,18]
shows that it is possible to preserve gauge invariance at every order in perturbation theory
and this is crucial for the demonstration that the theory is renormalizable. Algebraic
renormalization results confirm this, by noticing that the cohomology of the Slavnov-Taylor
operator is trivial for a Yang-Mills theory [19]. Then, even if we would regularize the theory
with non-gauge invariant regulators (then obtaining a non-trivial Jacobian), a change in
renormalization scheme could restore gauge invariance and set the Jacobian as 1.
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4. Conclusions

Gauge invariance of the bosonic measure is essential to cancel the gauge anomaly
at full quantum level in a chiral gauge theory (abelian or non-abelian). Besides this, it is
crucial for the implementation of Fadeev-Popov’s technique. Although it is a commonly
used feature, this gauge invariance has not deserved a careful consideration in the literature
(up to our knowledge). This paper intends to furnish a detailed analysis of this useful
property and, in so doing, to fill an important omission. It inserts itself into a program
of investigation of the renormalization of chiral gauge theories, to see if it can really be
implemented at perturbative level. Although the vacuum expectation value of the gauge
anomaly vanishes, there are indications that it has non-null insertions in correlators of
non-gauge invariant operators. The dynamical picture remains unclear.

An important point would be to ask what could happen to the axial anomaly, de-
fined as

〈0|∂µ Jµ
5 |0〉Aµ

= 〈0|∂µ(ψ̄γµγ5ψ)|0〉Aµ
= A5

(
Aµ

)
.

It is related to the quantum violation of axial symmetry

ψ′ = eαγ5 ψ ≡ g5ψ,

which is classically exact in the massless case. The gauge anomaly appears as the non-
covariant conservation of the gauge current

〈0|
(

Dµ

)a
b Jµ

b |0〉Aµ
= 〈0|

(
Dµ

)a
b(ψ̄γµTbψ)|0〉Aµ

= Aa(Aµ

)
,

Whose classical conservation would be a consequence of gauge symmetry

ψ′ = eiθaTa ψ ≡ gψ. (39)

While the gauge transformation (39) can be transferred from the fermions to the gauge
fields (with all of them being considered as quantum)

S
[
ψg, ψ̄g, Aµ

]
= S

[
ψ, ψ̄, Ag−1

µ

]
,

the same can not be done with the axial transformation under the same circumstances:

S
[
ψg5 , ψ̄g5 , Aµ

]
= S

[
ψ, ψ̄, Aµ

]
,

which means that the gauge fields do not play any role in axial symmetry. As a consequence,
we are not allowed to make the same manipulations in the functional integral and so, we
can not say that the axial anomaly is canceled as well. The axial anomaly is a welcome one,
as it is responsible for the explanation of the observed π0 decay into two photons. On the
other hand, the gauge anomaly is a generally undesired feature and has to be canceled (in
the construction of the standard model) in order not to ruin explicit renormalizability of
the theory. So, we could answer that the dynamical role of the axial anomaly is unaltered
in our approach. It keeps appearing and influencing low energy effective actions of
QCD, for example. However, we offer some hope that the gauge anomaly is not such a
catastrophic issue.

We must also remind the reader that there must be several ways to prove gauge
invariance of the bosonic measure. One of them is surely to consider the theory on the
lattice, where one can define the bosonic measure as a Haar measure, which is naturally
gauge invariant (see, for example, Formula (7.12) of [20]). Then, we could consider the
limit of zero lattice spacing with due caution to establish this invariance in the continuum
theory. However, this discussion (and other ones, using different arguments) is not usually
seen in the literature and we found it could be useful to present it explicitly, by means of a
Fujikawa approach.
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Some big issues have to be considered in this path. Perhaps one of the most urgent
would be how to define the tree level of chiral gauge theories. Since one is not allowed to
fix the gauge (due to the appearance of a Jacobian for the fermion measure), we have no
definition of a free gauge boson propagator, which invalidates a perturbative analysis of
the theory. We also have no natural choice to choose a method of regularization to deal
with loops, as gauge invariance can not be used as a guiding principle. We will continue to
investigate these and other issues and our findings will be reported as they appear.
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