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Simple Summary: The cosmological drag force on moving bodies can be understood as inductive
rectilinear frame dragging, and represents a local coupling to the gravitational field of the universe.
It implies the cosmic expansion can hypothetically be measured in a laboratory.

Abstract: There is a drag force on objects moving in the background cosmological metric, known
from galaxy cluster dynamics. The force is quite small over laboratory timescales, yet it applies
in principle to all moving bodies in the universe. The drag force can be understood as inductive
rectilinear frame dragging because it also exists in the rest frame of a moving object, and it arises
in that frame from the off-diagonal components induced in the boosted-frame metric. Unlike the
Kerr metric or other typical frame-dragging geometries, cosmological inductive dragging occurs at
uniform velocity, along the direction of motion, and dissipates energy. Proposed gravito-magnetic
invariants formed from contractions of the Riemann tensor do not capture inductive dragging effects,
and this might be the first identification of inductive rectilinear dragging. The existence of this drag
force proves it is possible for matter in motion through a finite region to exchange momentum and
energy with the gravitational field of the universe. The cosmological metric can in principle be
determined through this force from local measurements on moving bodies, at resolutions similar to
that of the Pound–Rebka experiment.

Keywords: cosmology; Hubble drag; frame dragging; gravitational induction; general relativity

1. Introduction

The freedom of a general coordinate transformation allows a local Lorentz frame to be
defined sufficiently locally around a point in curved spacetime. In this frame, also called an
inertial frame, first derivatives of the metric vanish, and therefore the connections vanish,
and gravitational forces on moving bodies vanish. Yet the coordinate freedom cannot
remove all second derivatives of the metric, and so components of the Riemann tensor
can be non-zero locally where the connections are zero. The lengthscale of the second
derivatives determines the scale of the spacetime region over which first derivatives vanish
and the local Lorentz frame holds [1,2].

This local vanishing of gravitational forces, and the resulting local rectilinear tra-
jectories of moving bodies in these frames, can be understood as an expression of the
Equivalence Principle. Gravitational forces can be made to vanish locally. Correspondingly,
it is impossible to localize gravitational field energy [3].

Now let us ask whether it is possible for matter to locally exchange momentum or
energy with the gravitational field of the universe. According to a naive understanding
of the Equivalence Principle, and the availability of local Lorentz frames, it might seem
impossible for a body to exchange momentum or energy with the gravitational field of the
universe, if such energy cannot be localized in the field. This article is to show how such
exchange can in principle occur locally, without violating the Equivalence principle.
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The gravitational field of the universe is the cosmological metric of general relativity.
Since the discovery of dark energy at the turn of the century, the cosmological metric is well-
constrained to behave as a flat Robertson–Walker metric, and the energy budgets of matter,
radiation, and dark energy are likewise well-constrained. The resulting cosmological model
is called Lambda-Cold-Dark-Matter, where Lambda refers to dark energy [4].

For bodies in motion against the cosmological metric, there is a drag force resulting
from the expanding spacetime [5,6]. This force is sometimes called Hubble drag, e.g., [7,8]
and has been in models of galaxy cluster dynamics for decades [9,10].

We show that the Hubble drag force exists in the rest frame of a moving body. There-
fore, although gravitational forces are coordinate-dependent, the Hubble drag force exists
in all frames.

Hubble drag can be understood as inductive rectilinear frame dragging. Recti-
linear, or translational, frame-dragging has been considered to some extent for linear
acceleration [11–16]. However, Hubble drag would be the first case of rectilinear frame
dragging proposed for an unaccelerated body.

Hubble drag can be understood as a type of frame-dragging because it arises in the
rest-frame of moving bodies from off-diagonal metric components, as in the Kerr metric
around rotating masses. Yet in the boosted frame, Hubble drag originates not from the
gravito-magnetic field, but from the inductive part of the gravito-electric field. The gravito-
magnetic field vanishes in the cosmological case because there are no spatial gradients,
and the Newtonian part of the gravito-electric field vanishes for the same reason. Therefore
proposed gravito-magnetic invariants formed from contractions of the Riemann tensor [17]
do not capture inductive gravito-electric effects.

2. Force on a Body Moving in the Isotropic Frame

The standard model of cosmology, the Lambda-Cold-Dark-Matter model, describes
the metric of the universe in terms of the Robertson–Walker metric, with zero curvature [4]:

− c2dτ2 = −c2dt2 + a2(t)[dx2 + dy2 + dz2] (1)

in terms of cosmological time coordinate t and spatial coordinates x, y, z, where c is the
speed of light, and a(t) is the cosmological scale factor. The scale factor at the present epoch
t0 is a(t0) = 1.

The Hubble constant H is given in terms of the scale factor by

H(t) ≡ 1
a

da
dt

(2)

The Hubble constant at the current epoch is H(t0) ≡ H0 = (da/dt)|t0 , the cosmological
value observed today.

The metric (1) is the gravitational field of the universe. It has the form of being
maximally symmetric in the spatial components, and independent of position. This form
enforces the standard assumption of an isotropic and homogeneous universe. The metric (1)
is characterized by the single parameter a(t), where t is a cosmological time coordinate that
goes to t = 0 at the Big Bang. The exact functional dependence of a(t) depends on the energy
content of the universe, with distinct regimes for radiation-dominated, matter-dominated,
and Lambda-dominated phases of evolution.

The form (1) can be considered a cosmic standard coordinate system, and the time
coordinate a cosmic standard time coordinate. The time coordinate can be determined in
principle from local time-dependent cosmological measurements, such as the temperature
change of the microwave background, or the acceleration/deceleration of the redshift [18].
The time coordinate of (1) is the time measured by a local free-fall observer.

The motion of a free body in spacetime is described by the geodesic equation,

dUµ

dτ
+ Γµ

αβUαUβ = 0 (3)
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where −c2dτ2 = gµνdxµdxν, greek indices range over the four components of spacetime,
and the four-velocity of a body is

Uµ =
dxµ

dτ
(4)

The connections Γµ
αβ are given in terms of the metric by the standard textbook formula.

From a cosmological perspective, the relativistic force Equation (3) is understood to apply
to galaxies or clusters of galaxies, moving in the smoothed, cosmological metric (1). Local
gravitational interactions will always dominate cosmic gravitational influences.

For a body at rest in the cosmic rest frame of (1)

Ũµ = (c, 0, 0, 0) (5)

The force equation is simply
dŨµ

dτ
+ Γµ

ttc
2 = 0 (6)

The connections operative for a body at rest in (1) are:

Γµ
tt =

1
2

gµt∂tgtt + gµk∂tgtk = 0 (7)

Galaxies at rest in this frame are in free fall. They experience no forces and remain at rest.
The time and space coordinates are co-moving.

However, the free-fall frames in which the metric has the form (1) are not inertial
frames, because the connections do not all vanish. The definition of an inertial frame is
that all first derivatives of the metric vanish, even while second derivatives may be present.
Therefore, all gravitational forces must vanish in true inertial frames. Yet in the cosmic
rest frame (1), first derivatives do not all vanish. In fact, first derivatives correspond to
the Hubble constant. Therefore, a true inertial cosmic frame would stipulate zero Hubble
constant, locally.

Let us consider the connections for the metric (1). We will use small roman indices
i, j, k to denote spatial coordinates, and the index t for the time coordinate. The metric (1)
components are

gtt = −c2, gij = a2(t) δij, gtt = −c−2, gij = a−2(t) δij (8)

Then the connections are:

Γi
tt = 0, Γl

ij = 0, Γt
jt = 0, Γt

tt = 0 (9)

Γi
jt =

1
2

gik(∂tgjk +��
�*0

∂kgtk −��
�*0

∂kgtj) = Hδi
j (10)

Γt
ij =

1
2

gtt(��
�*0

∂igjt +��
�*0

∂jgit − ∂tgij) =
a2

c2 Hδij (11)

The non-zero spatial connections have one time index and are proportional to the Hubble
constant (2). They originate in the time dependence of the spatial components gjk(t).

Consider the forces on a body moving in the x-direction with speed dx/dt ≡ v and
with four-velocity

Uµ = (Ut, Ux, 0, 0) =
(

c
dt
dτ

,
dx
dτ

, 0, 0
)
=

dt
dτ

(c, v, 0, 0) (12)

The energy and momentum effects from the cosmological metric are:

dUt

dτ
+ Γt

xx(U
x)2 = 0 (13)
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dUx

dτ
+ 2Γx

txUtUx = 0 (14)

Using the connections (9)–(11), these equations reduce to

dUt

dt
= −a2HUt v2

c2 (15)

dUx

dt
= −2HUx (16)

The Equation (16) masks a cubic velocity dependence which can be exposed by expanding (16)
and using (15):

dv
dt

= −2Hv +
a2v3

c2 H = −Hv
(

2− a2v2

c2

)
= −Hv

(
1 +

c2

(Ut)2

)
< 0 (17)

where the last equality follows because

− c2 = gµνUµUν = −(Ut)2 + a2(Ux)2 = −(Ut)2(1− a2v2/c2) (18)

which is in turn consistent with (15). This shows that the coordinate acceleration is
negative-definite.

We can also calculate this force from an alternative form of the geodesic equation that
is useful when the metric is independent of a coordinate. In this form, the change to each
component of the covariant four-velocity depends on the derivative of the metric with
respect to the corresponding coordinate:

dUµ

dτ
=

1
2

UαUβ∂µgαβ (19)

Since the metric (1) is independent of position, the evolution of spatial velocity of a
body is given simply from (19) by:

Uj = gjµUµ = a2Ux = constant (20)

which implies:
dUx

dt
= −2HUx (21)

This is the same cosmological drag Equation (16). Although it is written for a particular
component here, the isotropy of the Hubble expansion means it will be experienced by an
object with any rectilinear velocity. This allows us to understand Hubble drag in terms of
conservation of momentum in the expanding universe.

The Hubble drag force has an associated effect in the geodesic deviation equation

d2Sµ

dτ2 = Rµ
νρσUνUρSσ (22)

where Uν is the four-velocity of a moving body, and Sν is a deviation vector separating
observers with that four-velocity.

The independent components of the Riemann tensor are

c2Rk
ttj =

ä
a

δk
j , c2Ri

jkl = a2H2(δi
kδjl − δi

lδjk) (23)

and their non-zero permutations, which may differ by factors of a2.
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For the case (12) of a body moving in the x direction, there will be geodesic deviation
along x:

d2Sx

dτ2 = (Rx
ttµUtUt + Rx

txµUtUx +
�
��>

0
Rx

xtµUxUt +��
�*0

Rx
xxµUxUx)Sµ/c2

= Rx
ttxUtUtSx/c2 + Rx

txtU
tUxSt/c2 =

ä
a

Ut(UtSx −UxSt)/c2 6= 0 (24)

This shows that the Hubble drag force corresponds to a non-vanishing effect in
geodesic deviation, along the direction of motion of moving bodies. There is a well-known
increasing spatial spatial separation of bodies at rest accruing from the expansion of the
universe. For moving bodies there is also acceleration along the direction of motion.

The Equation (16) expresses the well-known effect from galaxy cluster dynamics [9,10]
that is sometimes known as Hubble drag, e.g., [7,8]. It implies that an observer at rest in the
cosmic standard coordinate system would detect a slowing and a drag force on a moving
body. The result (21) from a conserved quantity is also well known [5,6].

The drag force is minute, as the characteristic time scale for this slow-down is the age
of the universe:

∆U ∼ ∆tHU ∼ dynamical timescale
age of universe

U (25)

This Hubble drag force would be insignificant for terrestrial or planetary phenomena. It
is relevant for super clusters or other objects that are in cosmic free fall over the age of
the universe.

The Hubble drag force effect is usually understood to apply to galaxy clusters [9,10],
but mathematically it applies at a point in the smoothed background metric. There is a non-
zero effect in the geodesic deviation (24) that validates the reality of the local gravitational
interaction. Therefore these force effects should be understood as local gravitational
phenomena arising from an interaction with the gravitational field of the universe.

Here is the interesting case of action of the gravitational field of the universe at a point,
and on a body in uniform motion.

3. Force in the Rest Frame of a Moving Body

Now we show that the Hubble drag force manifests in the rest frame of a moving
body, so that the force is not a mere coordinate artifact.

The isotEinstein used somewhat different notation than in textbooks today. ropy
of the cosmological metric (1) selects a preferred cosmological frame. There is only one
frame in which the metric is isotropic. Any coordinate transformation involving a boost at
constant velocity will introduce off-diagonal components into the transformed isotropic
metric. For a coordinate system not at rest in (1), we can write the transformed metric as
g̃µν, and the components of the connections that operate on a body at rest (7) in this frame
are rewritten for g̃µν:

Γ̃µ
tt =

1
2

g̃µt∂t g̃tt + g̃µk∂t g̃tk 6= 0 (26)

In order to define the boosted frame metric g̃µν from the isotropic metric (1), we want
to consider a velocity transformation with magnitude v in the x-direction. It is clear that the
spatial coordinates will be boosted by the velocity, but the time coordinate can be handled
in several ways.

1. Boost to an inertial frame, where all first derivatives vanish, including the Hubble constant

t̃ = p(xµ, v), x̃i = qi(xµ, v) (27)

where p and qi are functions of the coordinates that eliminate all first derivatives of
the metric.
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2. Lorentz transformation to a boosted frame

ct̃ = γ(ct + vx/c), x̃ = γ(x + vt), ỹ = y, z̃ = z (28)

3. Galiean-type transformation to a boosted frame, retaining the cosmic standard time
coordinate

t̃ = t, x̃ = x + vt, ỹ = y, z̃ = z (29)

Although the transformation (29) has the form of a Galilean transformation, and although
a Galilean transformation approximates a Lorentz transformation (28), the transformation (29)
is valid and exact for relativistic velocities in curved space. The transformation (29) only
approximates (28) against a background Minkowski spacetime. In our case, the reference
frame of (1) is not an inertial frame. In order for a boosted object to maintain the cosmic time
coordinate in curved space, the transformed metric contains the information for the time
dilation that would ordinarily be associated with the transformation (28). So the significance
of the choice (29) is not as a non-relativistic approximation to (28), but as the cosmic time
coordinate in a boosted frame.

Nonetheless, in practice, the three velocity transformation cases become indistinguish-
able for terrestrial time scales and non-relativistic velocities. The first derivatives of the
isotropic metric (1) are quite small—time derivatives are of order the inverse of the age of
the universe—and so the deviations from Minkowski space are all small. Therefore, the
cosmic rest frame, with a non-zero, local Hubble constant, is approximately inertial to the
extent the Hubble constant can be set to zero.

Let us therefore choose the transformation (29) that preserves the cosmic standard
time coordinate and that approximates (28) when the metric is Minkowski.

The components of the transformation matrix for (29) are:

∂t̃
∂t

= 1,
c∂t̃
∂x

= 0,
∂x̃
∂t

= v,
∂x̃
∂x

= 1,
∂ỹ
∂y

= 1,
∂z̃
∂z

= 1 (30)

The inverse transformation matrix components are:

t = t̃, x = x̃− vt̃, y = ỹ, z = z̃ (31)

The components of the inverse transformation are:

∂t
∂t̃

= 1,
c∂t
∂x̃

= 0,
∂x
∂t̃

= −v,
∂x
∂x̃

= 1,
∂y
∂ỹ

= 1,
∂z
∂z̃

= 1 (32)

The transformed metric in the boosted frame is given by

g̃µν =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ = −c2 ∂t

∂x̃µ

∂t
∂x̃ν

+ a2δij
∂xi

∂x̃µ

∂xj

∂x̃ν
(33)

The components of the metric implicated in the rest-frame forces of (26) are given by:

g̃tt = −1 +
a2v2

c2 , g̃xx = a2 (34)

g̃tx = −v
c

a2 (35)

The off-diagonal, gravito-magnetic metric components (35) depend on the non-Minkowski
character of the isotropic metric (1). For a truly Minkowskian metric, with no first deriva-
tives, then there are no off-diagonal components because the Minkowski metric is invariant
under a Lorentz transformation.
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The inverse transformed metric components are given by

g̃µν =
∂x̃µ

∂xα

∂x̃ν

∂xβ
gαβ = − 1

c4
∂x̃µ

∂t
∂x̃ν

∂t
+ a−2δij

∂x̃µ

∂xi
∂x̃ν

∂xj (36)

The components of the inverse metric relevant to rest-frame forces are

g̃tt = −c−2, g̃xx = a−2 − v2

c2 (37)

g̃tx = −v
c

(38)

Therefore the rest frame connections (26) are

Γ̃t
tt =

1
2

g̃tt∂t g̃tt + g̃tk∂t g̃tk −
1
2

g̃tk
��
�*0

∂k g̃tt = H
a2v2

c2 (39)

Γ̃i
tt =

1
2

g̃it∂t g̃tt + g̃ik∂t g̃tk −
1
2

g̃ik
�
��*

0
∂k g̃tt = −2

v
c

H +
v3

c3 a2H (40)

Just as for an object at rest in the istropic frame (3), the force equation in the boosted
frame for an object at rest is

dŨµ

dt̃
+ Γ̃µ

ttc
2 = 0 (41)

where the proper time is just the coordinate time t̃, and instantaneously Ũµ = (c, 0, 0, 0).
In the instantaneous rest frame of the body, any force will manifest in the spatial

components of the acceleration, since

d
dτ

(g̃µνŨµŨν) = 0 = 2g̃µνŨµ dŨν

dτ
→ dŨν

dτ
=

(
0,

dŨx

dτ
, 0, 0

)
(42)

This means that an acceleration exists in the rest frame of an accelerated body, and in that
frame the acceleration four-vector is purely spatial.

When we consider dŨx/dτ in the instantaneous rest frame, we find a non-zero force
component along the x-direction:

− dŨx

dt̃
= −Γ̃x

ttc
2 → dŨx

dt̃
= −2

v
c

H +
v3

c3 a2H (43)

The form of the rest-frame force (43) is the same as (17). The acceleration measured on
the body from the isotropic frame is the same force the body feels in its rest frame. This
shows that this force is frame-independent.

There are an infinity of reference frames in which Hubble drag arises as it does here,
from the off-diagonal, three-vector metric components g̃tk. There is only one frame in
which it arises from isotropic metric components. Yet the frame-independence of the effect
insures that it can be fairly called frame dragging.

4. Inductive Frame Dragging

Gravitomagnetism, frame-dragging, and Lense-Thirring effect are synonymous terms
for the same underlying effect. They arise from the influence of off-diagonal metric elements
on the motion of bodies. These effects are seen in both linear approximations and exact
solutions of the Einstein equations. We give a brief overview of both.

The Kerr metric is an exact solution for a static, spherical spacetime with aziumthal
symmetry around an object with mass M and angular momentum J. The metric in Boyer–
Lindquist coordinates can be approximated in a weak field limit:



Universe 2021, 7, 284 8 of 15

− c2dτ2 ' −
(

1− 2M
r

)
c2dt2 +

(
1 +

2M
r

)
dr2 + r2(dθ2 + sin2 θdφ2)− 4J

r
sin2 θdφcdt (44)

Frame-dragging effects arise from the off-diagonal components gtφ, which have their source
in the angular momentum of the central gravitating object.

Gravito-magnetic effects also emerge in the geodesic equation written to linear order
in metric perturbations hµν, where gµν ' ηµν + hµν. To linear order in test particle speed,
the geodesic equation linear in the metric perturbations has the form [19]:

1
m

dpi

dt
' c2Ei

g + εijkcvjBk
g − vj∂thij, v� c (45)

where pi are the spatial momentum components of a body in motion, m is rest mass, and we
have defined the usual linear gravito-electric and -magnetic fields:

Ei
g ≡ ∂ihtt/2− ∂thti/c, Bi

g ≡ εijk∂jhtk (46)

The linear force Equation (45) carries a striking analogy to the Lorentz force of electromag-
netism, but there are also non-Lorentz, tensor effects from the hij. The gravito-magnetic
effect is apparent, and its potentials are the off-diagonal metric components htk.

In the linear approximation of the field equations, the off-diagonal components of (44)
in turn have their origin in static mass currents [19]:

∇2htk ' −
16πG

c4 Ttk (47)

where ∇2 is the three-space Laplacian and where the Ttk are the time–space components
of the energy–momentum sources. The units of Ttk are momentum density or energy flux,
and so they represent a mass current. Along with the transverse constraint that ∂khtk = 0, (47)
governs two of the six physical degrees of freedom of the linear gravitational field [19].
Those degrees of freedom are clearly elliptical, with sources in the mass currents.

Standard treatments of frame dragging utilize mass currents (47) originating in the
rotation of astrophysical masses. There is a wide literature on this subject, but key works in-
clude [20–23]. See also [15,17] for a review, and [24–27] for measurement reviews. A cosmo-
logical metric has also been investigated as the boundary for a rotational geometry [28,29].

There is some association of frame dragging with accelerated masses, since rotating
mass currents are sustained via centripetal acceleration. Therefore, the small literature on
rectilinear frame dragging [11–16] is focused on linear acceleration. Yet we see from (47)
that acceleration is not required for a mass flux to exist. Rectilinear frame dragging for
uniform motion is suggested here for the first time.

Let us return to the connections in the geodesic Equation (3). As seen in (10), the
three-space forces for a body in motion in the isotropic cosmological metric arise from:

2Γi
tj = gik( ∂tgjk

Hubble drag
+ [��

�∂jgtk −���∂kgtj]
gravito-magnetic force

) (48)

The forces associated with the connections (48) are proportional to particle velocity, and we
have identified the separate contributions of Hubble drag and gravito-magnetic forces.

On the other hand, for a homogeneous metric g̃µν with off-diagonal components g̃tk,
the three-forces on a body at rest arise from:

2Γ̃i
tt = g̃it∂t g̃tt + [

inductive

2g̃ik∂t g̃tk −
Newtonian

g̃ik
��
�∂k g̃tt ]

gravito-electric force
(49)

These forces exist for bodies at rest, and contain the limit of Newtonian gravity as well as a
gravito-electric induction force.
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The inductive force effects were considered early by Einstein [30], and he coined
the term “inductive”, although he anticipated the inductive effects would come from
accelerated motion, not from the expanding spacetime.

For the homogeneous cosmological metric, spatial derivatives vanish. The Newtonian
piece of the gravito-electric field (49) vanishes, as does the entire gravito-magnetic field (48).
Hubble drag in the isotropic frame is accounted in the boosted frame by the inductive term
in the gravito-electric field. Therefore, we call this effect “inductive linear frame dragging”.

There are some important distinctions from frame-dragging induced by rotating mass
currents. One is that a gravito-magnetic force in (45) acts normal to particle velocity,
and so does no work. The forces of Hubble drag and the inductive gravito-electric effect,
by contrast, do work on a body, changing its energy.

Another distinction is that the Hubble drag force, or the inductive dragging, occurs
at constant velocity. It does not require acceleration, as in frame-dragging from rotation.
Therefore we consider this the first proposed case of uniform-velocity frame dragging.

Any velocity transformation will introduce off-diagonal components into the metric,
so there is some reasonable question as to whether such effects are real or are a coordinate
artifact. Ref. [17] suggested a scalar invariant for the existence of gravitomagnetism in
terms of the Riemann tensor and the antisymmetric tensor:

I = εαβσρRσργδRαβµνgµγgνδ (50)

The quantity I is zero for the metric (1). However, the traditional scalars of the flat Robertson–
Walker metric, the curvature scalar R and the Kretschmann scalar R, are non-zero:

c2R = 6
(

ȧ2

a2 +
ä
a

)
, c4R = 12

(
ȧ4

a4 +
ä2

a2

)
(51)

There can be no traditional gravito-magnetic invariant involving contractions of
Riemann for uniform-velocity frame dragging in the cosmological metric because rectilinear
uniform motion is coordinate-dependent.

This is unlike the traditional gravito-magnetic invariants, or the Kerr metric itself. While
the off-diagnonal elements of the Kerr metric arise from mass in motion, the motion is compact,
and cannot be transformed away with respect to the background stars. This is consistent
with the understanding that the de Sitter precession arising from motion around a static
mass source is fundamentally different than frame-dragging or gravitomagnetism [17,31].
Therefore the metric arising from the closed mass flux of a rotating central object can be
described in terms of an invariant composed of contractions of the Riemann tensor.

The compactness of the matter current not only allows an invariant, but also implies
acceleration, and establishes the link between gravitomagnetism and acceleration. Accel-
eration is not necessary for an inductive rectilinear gravito-electric effect, but it will be
coordinate-dependent in the way of de Sitter precession.

This implies that there are dragging phenomena that are not contemplated in gravito-
magnetic invariants of the Riemann tensor.

5. Local Coupling to the Cosmological Metric

The Hubble drag force in principle acts on bodies great and small, and so represents
a local momentum transfer from matter to the gravitational field of the universe. This
locality of momentum lost by the matter is not mirrored by a localization of momentum
deposited into the field, because gravitational field energy–momentum cannot be localized.
The freedom of a general coordinate transformation allows construction of a local inertial
frame in which all gravitational forces vanish, and so local gravitational energy–momentum
must vanish [3].
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Yet gravitational forces do work locally on matter, as can be seen from the covariant
divergence of the Einstein equations [32]:

∇µTµν = g−1/2∂µ(g1/2Tµν) + Γν
µλTµλ = 0 (52)

This is the expression of conservation of energy and momentum in a gravitational field.
The last term represents the energy–momentum exchanged between the non-gravitational
energy–momentum Tµν and the gravitational field.

The energy–momentum of the gravitational field can be characterized by decomposing
the metric into a Minkowski piece and a variable piece fµν that is not small:

gµν ≡ ηµν + fµν (53)

With this, the Einstein tensor can be decomposed into a term linear in fµν and terms of
higher order:

Gµν ≡ G(1)
µν + G(2+)

µν (54)

Then the Einstein equations can be recast exactly:

G(1)
µν = 8πGTµν − G(2+)

µν (55)

This invites definition of the gravitational energy–momentum pseudotensor:

Θµν ≡ (8πG)−1[Gµν − G(1)
µν ] (56)

The pseudotensor Θµν has several properties that support its interpretation as the energy–
momentum of the gravitational field [33]. One is that the total energy-momentum of matter
and the field is a constant:

∂ν[η
νµηλκ(Tµκ + Θµκ)] ≡ ∂ν(Tνκ + Θνκ) = 0 (57)

The pseudotensor Θνκ describes the gravitational field energy measured in any coor-
dinate system. However, the pseudotensor is not a tensor, and is coordinate-dependent.
It yields meaningful integrals of energy and momentum only if the fields asymptotically
approach Minkowskian [33].

Consideration of the volume integral of (57) allows identification of the energy-
momentum four-vector that locally describes the combined gravitational and non-gravitational
contributions at every spacetime point:

Pµ =
∫
(Tµt + Θµt)d3x (58)

where the t index indicates the time component.
Since the field energy cannot be localized, the momentum absorbed by the gravita-

tional field of the universe Θjt owing to rectilinear inductive frame dragging of matter T jt

must be expressed as an integral of Θjt over a finite region, where roman indices indicate
the three spatial coordinates. Therefore, from (58) the momentum lost by a body moving
with velocity v for a time ∆t would be absorbed into the field in a volume of size ∆x = v∆t:∫

Ttid3x = −
∫

Θtid3x = −
∫

v Θti∆t d2x (59)

Cosmologically, Θti = 0 for (1), indicating that the gravitational field of the universe
carries no net momentum. However, the cosmological gravitational field is integrated over
all matter in the universe, with varying concentrations and in varying states of motion.
The total gravitational field will include all these effects from source motion, including
the effects in the field of local mass currents. However, the cosmological field will always
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naturally be described in the frame in which the net motion of the matter in the universe
Tit

U is zero, and the net motion of matter in the universe can always be determined from an
integral over all space: ∮

Tit
Ud3x ≡ ρUc2Vi (60)

The metric (1) is then formulated in the frame for which Vi = 0, composed as it is of all the
disparate motion of all the matter in the universe.

The expression (59) quantifies the resolution with the Equivalence Principle that was
mentioned in the introduction. The key is that the momentum and energy transfer occurs
across a finite region, over which the gravitational field cannot be made to vanish with a
coordinate choice. The Equivalence Principle does hold at a point, but a moving body will
sample the curvature of space.

Since matter can lose momentum into the gravitational field of the universe, it seems to
imply that the gravitational field of the universe can be detected from dynamics. The Hub-
ble constant can be measured by looking outward into space, at galactic redshift. It would
appear that Hubble drag also allows such a determination looking inward at the motion of
material bodies.

6. Detectability of Hubble Drag in The Laboratory

Cosmological redshift is given in terms of the scale factor by the simple textbook formula

λe

a(te)
=

λr

a(tr)
(61)

where the subscripts indicate “emission” and “reception” of a photon, t is the time, and λ
the wavelength. The Hubble expansion famously redshifts light, and the redshift increases
with time. The galaxies can be considered beacons emitting light at known frequencies,
and the cosmological redshift increases the separation between beacons at rest, and reddens
their light.

The geodesic Equation (16) applies to null geodesics as well as to geodesics of massive
bodies. In fact, the same term in the geodesic equation accounts for the effect on both
timelike and null trajectories. Yet due to the “running-awayness” of the momentum loss
associated with Hubble expansion—the passive draining of momentum, instead of losing
it to work elsewhere in the system—there is a misconception that Hubble drag is not a
“real” force.

In principle, an experiment could be conducted to detect the Hubble expansion within
the bounded space of a laboratory, without looking at the distant galaxies or at the cosmic
microwave background. In addition to the well-known effect on redshift that accrues
over time as the universe expands, there is also an effect on the Doppler shift arising from
Hubble drag. At intermediate cosmological redshifts, there is an interplay of these effects
before the magnitude of cosmological redshift overwhelms the Doppler shifts in local
velocity effects. Of course, Hubble drag has been modeled already statistically in galaxy
dynamics in terms of “peculiar velocities” [10], but we are referring here to detecting it on
a single moving body.

Let us consider a hypothetical laboratory deep in intergalactic space, far from local
gravitational sources. Consider a test body carrying a beacon of known frequency, and re-
ceding along the line of sight. A beacon at rest in the frame of (1) will have a redshift from
the Hubble expansion, and this is the usual cosmological redshift. A beacon receding in the
frame of (1) will have an additional redshift from the Doppler effect. There is also a third
redshift effect from the time dilation of the moving source that will always accompany its
motion. Let us quantify this.
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Let the radiation emitted from the beacon be at a fixed frequency corresponding to
some sufficiently narrow spectral line. The period of the radiation in the rest frame of the
moving body can be written as a differential dt̃, which is an invariant:

dt̃2 = ηµνdx̃µdx̃ν = gµνdxµdxν = gµν
dxµ

dt
dxν

dt
dt2 (62)

where dt is the time in the frame of (1).
In addition to this time dilation in curved space, the period dto of the radiation received

by an observer at rest in the cosmic isotropic frame will be Doppler-shifted by the motion
of the object along the line of sight:

dto = (1 + avr/c)dt = (1 + avr/c)
(

gµν
dxµ

dt
dxν

dt

)−1/2
dt̃ (63)

where vr is the velocity of the source along the radial direction from the observer, a is the
scale factor, and gµν is given by (1). For this time dilation expression, the Hubble timescale
is much longer than the period of the radiation, so the term in gµν can be evaluated at a
single instant.

Let us now convert (dx/dt) → v, and convert (63) from period to frequency. Then
dto → 1/ fo and dt̃→ 1/ f̃ , and the frequency shift of a beacon moving against the metric (1) is

fo

f̃
=

(1− a2v2/c2)1/2

(1 + avr/c)
→

vr=v

(
1− av/c
1 + av/c

)1/2
(64)

where the last expression follows because the beacon is receding from the observer along
the line of sight. Note that the previous three expressions relate the frequency of radiation
seen in two different coordinate systems, but co-located at the same spacetime point. We
have not yet integrated radiation from the moving source to a fixed observer.

Now let us evaluate the time derivative of fo in (64):

ḟo

f̃
= − fo

f̃
(vȧ/c + av̇/c)
(1− a2v2/c2)

(65)

where dot notation ḟ0, ȧ, and v̇ indicates time derivatives.
There are two effects on the time derivative of the Doppler shift (65). One is from the

time derivative of the scale factor, and represents the effect of the Hubble expansion carry-
ing bodies apart. The other is from the time derivative of the beacon velocity, presumed
to be receding along the line of sight. These two effects operate oppositely on the redshift
because the Hubble deceleration reduces Doppler shift.

The scale factor increases with time, so its time derivative is positive. Yet v̇ < 0
according to (17), due to the slowing of Hubble drag. Putting (17) into (65) yields:

ḟo

f̃
=

ȧv
c

fo

f̃
> 0 (66)

The Hubble drag effect dominates in the Doppler shift over the Hubble expansion effect,
leading to a net positive time derivative of the Doppler-shifted frequency as measured at
the beacon.

This makes sense physically. A beacon receding at velocity v at time t = 0 will have its
maximum Doppler shift according to (64). As Hubble drag works to decelerate the beacon,
the reduction in speed against the isotropic background leads to a decrease in the redshift
at time t > 0 compared to t = 0. Although the Hubble expansion is always working to
increase redshift, the deceleration of Hubble drag produces a stronger effect that leads to a
net bluing of the Doppler redshift. As Hubble drag brings the object to rest over the age of
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the universe, the locally-measured Doppler and time-dilation redshift effects vanish. This
is indicated schematically in Figure 1.

Figure 1. Schematic diagram of the bluing of Doppler redshift accruing from Hubble drag. This
diagram shows the time evolution of the locally-observed Doppler shift of a receding beacon. This
frequency shift at the beacon includes effects from time dilation, recession, and Hubble expansion.
Hubble drag will slow the velocity relative to the cosmic rest frame, manifesting as a decrease in
locally-observed Doppler shift.

In this way, by detecting the action of Hubble drag on the Doppler shift of a moving
body, and the resulting frequency shift operating opposite to the cosmological redshift, it is
in principle possible to determine cosmological parameters by measurements on material
bodies, without looking at astronomically-distant objects.

The local detection of cosmic expansion through the time derivative of the redshift
invites consideration of Mossbauer-type experiments. The Pound–Rebka experiment used
this technique and obtained a frequency measurement of gravitational redshift to a part in
1015 [34]. Controlled Doppler shifts were used to cancel out the gravitational redshift over
a 20-m vertical drop.

The sensitivity of gravitational redshift detection can be compared with the necessary
sensitivity of a Hubble drag experiment. In that case, the size of the effect (25) is the ratio
of the dynamic timescale to the age of the universe. For a timescale of hours, the ratio is
of the order 10−14. The associated frequency shift is reduced by a factor of v/c, so that a
beacon moving at 10% the speed of light would show a shift detectable at the Pound–Rebka
resolution. Configuring a free-fall experiment that eliminates all gravitational effects except
Hubble expansion might be impractical in a terrestrial experiment.

Nonetheless, a redshift observation of this type would be described by the time
integral of radiation received from the decelerating source:

∆ f0 ≡
∫ tr

te
ḟo(t′)dt′ = f̃

∫ tr

te

ȧv(t′)
c

(
1− av/c
1 + av/c

)1/2
dt′ (67)

where v(t) is the solution to (17), which depends on the scale factor a(t), which in turn
depends on the cosmological energy densities. Therefore, the solution to (17) is a well-
defined, albeit complex, function of the standard cosmological model. The cosmology-
dependent Hubble drag v(t) is then integrated along the line of sight in (67) to yield the
total frequency shift measured by an observer stationary in the frame of (1). As Hubble
drag slows the beacon over the age of the universe, its locally-measured Doppler shift
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vanishes as shown in Figure 1, and the redshift seen by a fixed observer merges with the
average Hubble flow measured with standard candles at rest in the frame of (1).

This shows the momentum transfer of Hubble drag is real and measurable, and in
principle observable looking inward at a laboratory configuration large enough to observe
a fast body for approximately an hour. If the slope of the frequency variation could
be distinguished, it may be possible to discriminate among cosmological models with
such measurements.

7. Conclusions

1. The Hubble drag force exists for motion with respect to the isotropic galactic free-fall
frame because the isotropic frame is not an inertial frame.

2. The isotropic cosmological metric acquires off-diagonal components in boosted frames.
In these frames, the Hubble drag force can be considered inductive rectilinear frame-
dragging. It arises from the inductive part of the gravito-electric force, and constitutes
a type of frame-dragging that is not covered by usual gravito-magnetic and frame-
dragging invariants.

3. The energy and momentum lost by Hubble drag are dissipated into the gravitational
field of the universe on cosmological timescales.

4. The effect of Hubble drag on Doppler shift is larger and opposite to that of the
Hubble expansion, leading to a bluing of Doppler-redshifted objects over the age of
the universe.

5. Since Hubble drag always operates on test bodies, it implies the cosmological metric
can be measured in principle through laboratory-scale dynamical experiments. If res-
olution similar to the Pound–Rebka experiment were attainable, Hubble drag should
be detectable in free-fall Doppler shifts over an integration time of order 1000 s for
bodies with v/c ∼ 0.1.

6. These considerations show there is a channel for exchange of energy and momentum
between a test body and the gravitational field of the universe. This exchange is
described mathematically in (59).

7. The energy and momentum transfer does not violate the Equivalence Principle,
because the transfer occurs over a finite region of spacetime in which the Riemann
tensor is non-zero; the Equivalence Principle applies only at a single spacetime point.
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