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Abstract: The aim of this study is to search for quasi-periodical structures at moderate cosmological
redshifts z <∼ 0.5. We mainly use the SDSS DR7 data on the luminous red galaxies (LRGs) with
redshifts 0.16 ≤ z ≤ 0.47. At first, we analyze features (peaks) in the power spectra of radial (shell-
like) distributions using separate angular sectors in the sky and calculate the power spectra within
each sector. As a result, we found some signs of a large-scale anisotropic quasi-periodic structure
detectable through 6 sectors out of a total of 144 sectors. These sectors are distinguished by large
amplitudes of dominant peaks in their radial power spectra at wavenumbers k within a narrow
interval of 0.05 < k < 0.07 h Mpc−1. Then, passing from a spherical coordinate system to a Cartesian
one, we found a special direction such that the total distribution of LRG projections on it contains a
significant (>∼5σ) quasi-periodical component. We assume that we are dealing with a signature of a
quasi-regular structure with a characteristic scale 116± 10 h−1 Mpc. Our assumption is confirmed by
a preliminary analysis of the SDSS DR12 data.

Keywords: statistical methods; distances and redshifts of galaxies; large-scale structure of Universe

1. Introduction

The large-scale distribution of the matter (dark and baryonic substances) in the Uni-
verse represents a very complex multi-scale structure (known as cosmic web, [1] ) whose
origin, evolution, dynamics and structural features have been the subject of extensive study
for a few decades (e.g., [2]). The structure represents a network of high-density regions
formed by galaxy clusters and superclusters, walls and filaments, delineating low-density
regions—giant voids, occupying the bulk of the space in the Universe (for review see,
e.g., [3–5]).

The complex pattern of the cosmic web includes a huge variety of scales, ranging
from units and tens of megaparsecs up to hundreds of megaparsecs. In this regard, it
seems important to question the highlighted scales of inhomogeneities that appear in
the largest observable structures and the related question of the possible existence of
some geometric order, at least in certain parts of the cosmic web. Among the largest
scales, the most frequently mentioned scales in the literature are >∼100 h−1 Mpc, where
h = H0/100 km s−1 Mpc−1 and H0 is the present Hubble constant. These are, for instance,
the characteristic scales of large voids ∼100 h−1 Mpc, the spatial scales (100–110) h−1 Mpc
corresponding to the Baryon Acoustic Oscillations (BAO, e.g., [6–8] and references therein),
as well as somewhat larger scales found in ordered quasi-periodic formations. It is well
known that the scale of the BAO is determined by the size of the horizon of sound waves in
the recombination epoch and manifests itself as the presence of a weak periodic component
in the 3D power spectrum of cosmological inhomogeneities (e.g., [9–11]). As a consequence
of such oscillations in k-space, a significant bump is registered in the spatial 3D correlation
function at the scales noted above (e.g., [12–16] and references therein).

On the other hand, we have a number of observational evidence that some areas of the
cosmic web show elements of spatial regularity at scales of the order of (110–140) h−1 Mpc.
Important evidence of the existence of some order in the spatial distribution of galaxies
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was the detection of 1D quasi-periodicity at a scale ∼130 h−1 Mpc found in the pencil-
beam surveys near both Galactic poles [17]. This result was confirmed (but see note in
Section 6) in further studies of pencil-beam distributions of galaxies [18–20]. This was
followed by a series of works, e.g., [21–26], in which it was shown that the cosmological
network formed by rich clusters and superclusters of galaxies and voids between them
may show traces of a regular spatial (cubic-like or shell-like) structure, with characteristic
scales (110–140) h−1 Mpc.

Using a 2D Fourier transform technique (developed in [27,28] for clustering of as-
trophysical objects), the authors of [29] demonstrated the possibility of the existence of
quasi-periodic structures inside thin slices whose centers were directed along the right
ascensions of the north and south Galactic poles. In some directions of 2D wave vectors k,
significant peaks in 2D power spectra were detected in selected slices, which correspond to
quasi-periods of order 100 h−1 Mpc. Somewhat later, a new method was proposed in [30]
for determining the periodicity of a cubic-like lattice formed by a network of superclusters
and voids. It was shown that a periodicity with periods (120–140) h−1 Mpc can be observed
along certain directions in space.

In our previous papers, we analyzed radial (shell-like) distributions of cosmologically
distant matter traced by the luminous red galaxies (LRGs; Reference [31] hereafter Papers I)
or the brightest cluster galaxies (BCGs; Reference [32]). We treated the radial distributions
of matter as a sensitive way to detect possible quasi-periodic spatial distributions of
cosmological objects. When using the radial statistics, the sample is characterized only by
a comoving radius (light-of-sight distance) independently of its direction on the sky, which
corresponds to a complete loss of tangential statistical information.

Similar approaches were applied, for instance, in [33], for searching for radial shell-like
associations of main galaxies around central LRGs to visualize the BAO phenomenon in
the spatial distribution of galaxies, or in [26] for searching for shell-like structures of rich
galaxy clusters in the environment of central superclusters.

In the papers cited above, we found that the radial distribution of LRGs and BCGs
incorporates a set of quasi-periodical components relative to the radial comoving distance.
The major scale revealed in these studies turned out to be ∼100 h−1 Mpc. It was shown,
in particular, that the existing methods for assessing the significance of peaks in the power
spectrum of radial distributions (especially in cases with complex behavior of smoothed
power spectra, so-called trends in k-space) can give a variety of results. Therefore, in [34]
(hereafter Paper II), a special approach was proposed to assess the significance of peaks
in the power spectra of radial distributions of objects (galaxies and clusters), which are
subject to clustering at a variety of scales. This approach systematically reduces (in relation
to Paper I and [32]) the significance of the peaks (up to <∼3σ) in the radial power spectra,
although the peak amplitudes may appear to be quite large.

The present work also refers to the topic of searching for quasi-periodic (quasi-ordered)
structures at moderate cosmological redshifts. As in Paper I, we deal with the LRG data by
Kazin et al. (2010) [35] presented on the World Wide Web1. We use their full flux-limited
sample DR7-Full (0.16 ≤ z ≤ 0.47, −23.2 ≤ Mg ≤ −21.2) and two subsamples with a
focus on volume-limited regions − DR7-Dim (0.16 ≤ z ≤ 0.36, −23.2 ≤ Mg ≤ −21.2)
and DR7-Bright (0.16 ≤ z ≤ 0.44, −23.2 ≤ Mg ≤ −21.8). DR7-Dim is quasi-volume-
limited subsample, while DR7-Bright is closest to being volume-limited, i.e., the most
homogeneous of the three (e.g., [36]). This allows studying the variations in the spatial
distribution of LRGs at different sample homogeneities.

Here, we use data of the mock Large Suite of Dark Matter Simulations (LasDamas)
catalog (e.g., [35,37]) and combine these data with the procedure for estimating the peak
significance, proposed in Paper II. The procedure is based on the exponential distribution
of the height of random peaks in the power spectra. The LasDamas catalog was originally
coordinated with the data of the SDSS DR7; therefore, in the present consideration, we
mostly use the same data release (except Section 5).
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Based on the SDSS DR7 data with redshifts 0.16 ≤ z ≤ 0.47, we found that within
a wide rectangular region in the sky, there are six quite narrow restricted areas (sectors)
characterized by an increase in the amplitudes of the dominant peaks in the respective
radial power spectra. The significance evaluation of these peaks gives >∼3 − 5σ. The
peaks lie in a narrow range of wavenumbers 0.05 < k < 0.07 h Mpc−1 and correspond to
quasi-periodical components with rather close periods (2π/k). However, the periodicities
demonstrate markedly different phases and the resultant radial power spectra calculated
for summarized data of all six sectors (as well as for the whole rectangular region) are
essentially smoothed out.

On the other hand, specific directions (axes) in space were found such that the projec-
tions of the Cartesian coordinates of LRGs, observed through the six sectors (windows),
form a one-dimensional (1D) distribution, which contains a quasi-periodic component with
a characteristic scale 116± 10 h−1 Mpc at a high level of significance (>∼5σ). Given this,
one can imagine that the quasi-periodic component is likely to represent a set of flat-like
condensations and rarefactions transverse to a narrow beam of axes. In particular, such a
structure could give rise to a moderate (<∼3σ) quasi-periodicity in the radial distribution
calculated for the whole region under study.

In Section 2, we determine basic quantities and definitions used in our analysis of
radial distributions. In Section 3, we introduce a rectangle region in the sky and find
six sectors within this region for which the significance of the peaks in the radial power
spectra at 0.05 < k < 0.07 h Mpc−1 turns out to be relatively high. In Section 4, we enter
a Cartesian coordinate system (CS) and show that there is a narrow beam of axes in the
comoving space such that the distributions of the coordinate projections on these axes
manifest enhanced quasi-periodic components. In Section 5, we compare our results with
those obtained in a similar way but based on the preliminary analysis of SDSS DR12 data.
Conclusions and discussions of the results are given in Section 6.

2. Basic Definitions

The basic value of the power spectra calculations is a radial (shell-like) distribution
function NR(D) integrated over angles α (right ascension) and δ (declination); D = D(z) is
the line-of-sight comoving distance between an observer and cosmological objects under
study; NR(D) dD is the number of objects inside an interval dD. The radial comoving
distances are calculated in a standard way (e.g., [38,39])

D(zi) =
c

H0

∫ zi

0

1√
Ωm(1 + z)3 + ΩΛ

dz, (1)

where i numerates redshifts zi of cosmological objects in a sample, H0 = 100 h km s−1 Mpc−1

is the present Hubble constant, and c is the speed of light; hereafter, we use the same ΛCDM
model with the relative total density of matter Ωm = 0.25 and relative dark energy density
ΩΛ = 1−Ωm = 0.75 as it is chosen in the mock LasDamas catalogs and in Paper I.

We use the binning approach and calculate the so-called normalized radial distribution
function in the comoving CS as the number of redshifts (LRGs) inside concentric (spherical)
non-overlapping bins:

NN(Dl
c) =

NR(Dl
c)− S√
S

, (2)

where Dl
c is the central radius of a concentric bin with a width ∆D = 10 h−1 Mpc, l =

1, 2, . . . ,Nb is a numeration of bins, S = 〈NR〉 is the mean value of the radial distribution
over all bins under study2. For the majority of the distances D(z) analyzed hereafter
(except DR7-Dim and DR7-Bright data in Section 4, as well as the extended interval of
DR12 data in Sector 5) we use a fixed interval 464 ≤ D(z) ≤ 1274 for the redshift region
0.16 ≤ z ≤ 0.47, which consists of Nb = 81 spherical bins3.
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The values of NN(Dl
c) allow one to calculate the radial power spectrum constructed

according to the definition of 1D power spectra (e.g., [41,42])

PR(km) = |F1D
R (km)|2 =

1
Nb

{[
∑Nb

l=1 NN(Dl
c) cos(kmDl

c)
]2
+
[
∑Nb

l=1 NN(Dl
c) sin(kmDl

c)
]2
}

, (3)

where F1D
R (km) = (Nb)

−1/2 ∑Nb
l=1 NN(Dl

c)e−ikmDl
c is the one-dimensional discrete Fourier

transform, km = 2πm/LR is a wavenumber corresponding to an integer harmonic number
m = 1, 2, . . . ,M,M = bNb/2c is a maximal number (the Nyquist number) of independent
discrete harmonics, bxc denotes the greatest integer ≤x, x is an arbitrary real (positive)
number, and LR is the whole interval in the configuration space, i.e., the so-called sam-
pling length.

To assess the significance of the peak amplitudes in the power spectra of the normal-
ized radial LRG distributions, we employ 80 “ns” (north–south) realizations of two mock
galaxy LasDamas (LD) catalogs, “lrgFull-real” and “lrg21p8-real”4. Both catalogs simulate
possible clustering of the LRG distribution in accordance with the data obtained by SDSS
DR7. The first one simulates DR7-Full and DR7-Dim catalogs (see Introduction), the sec-
ond − DR7-Bright. Employing Equations (2) and (3) or their modification (considered in
Section 4), we computed a set of power spectra for NLD = 80 realizations by considering
each region in the sky selected below separately.

When calculating the radial power spectra PLD(k) for any realization of the “lrgFull-
real” catalog, we need to carry out a scaling (reduction) procedure as employed in Paper I.
Actually, radial smooth functions (trends) of the LD data NLD

tr (Dc) and the complex trend
of the LRG sample Ntr(Dc) are quite different and mutually poorly matched. Therefore,
to make two types of the samples more comparable, we apply an appropriate scaling5.

For this, we perform the reduction procedure for all realizations of the LD catalog
within the full available interval 0.16 ≤ z ≤ 0.44 or 464 ≤ D(z) ≤ 1194 h−1 Mpc using
a formula:

NLD
f in(Dl

c) = NLD
in (Dl

c) · Ntr(Dl
c)/NLD

tr (Dl
c), (4)

where index l as in (2) and (3) numerates bins, but with a slightly different bin number
(Nb = 73), NLD

in (Dl
c) and NLD

f in(Dl
c) are initial and final radial distributions of mock galaxies

over all investigated bins, NLD
tr (Dl

c) is a trend calculated for each mock realization, Ntr(Dl
c)

is a trend of the radial distribution calculated for a sample of LRGs, and both are obtained
employing the least-square method with a set of parabolas. Using Equation (2), we
determine the normalized radial distribution NNLD(Dl

c), where NLD
f in(Dl

c) and the mean

SLD (over the whole indicated interval) stand for NR(Dc) and S, respectively. It is worth
emphasizing that all calculations of the power spectra (3) are carried out in a uniform way,
avoiding the concept of a trend. This guarantees an undistorted representation of all scales
in the power spectra.

Similar to [43], we calculate a power spectrum 〈PLD(k)〉 averaged over all 80 radial
spectra Pn

LD(k)
6 and construct a corresponding covariance matrix

Ci,j =
∑NLD

n=1 [〈PLD(ki)〉 − Pn
LD(ki)][〈PLD(k j)〉 − Pn

LD(k j)]

NLD − 1
, (5)

where index n numerates spectra of different LD realizations, and i and j run over different
harmonic numbers m in Equation (3).

As the next step we produce fitting of the average radial power spectrum 〈PLD(k)〉 by
a smooth model function f (k), which is designed as

f (k) = fCDM(k) + 1, (6)
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here, fCDM(k) is a 3D power spectrum of the cold dark matter (CDM) density averaged
over all directions in k-space (e.g., [44])

fCDM(k) = A · q T2(q), (7)

A is a normalizing constant to be found, and q is a dimensionless variable determined
according to [45] as

q =
k/(Mpc−1 h)

Ωmh exp[−Ωb(1 +
√

2h/Ωm)]
, (8)

where k = |k|, Ωm is introduced above, Ωb = 0.04 is the relative density of baryons (and
h = 0.7), and T(q) is a transfer function:

T(q) =
ln(1 + 2.34q)

2.34q
× (9)

[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4.

The second term “1” on the right-hand side of Equation (6) stands for so-called
“shot noise” (e.g., [43]), which dominates at small scales (large k) and takes into account
additional random (Poisson) distribution of point-like objects.

It was shown in Paper II by numerical calculations that 〈PR(k)〉 = P3D(k), where
P3D(k) is the 3D power spectrum averaged over directions of ~k. Considering this, we
assume that the average radial power spectrum 〈PLD(k)〉 (ensemble averaging) provides a
good approximation for the average radial power spectrum of the real sample of LRGs
〈PR(k)〉, which in principle could be calculated as volume averaging. Therefore, we use the
equality 〈PR(k)〉 ' 〈PLD(k)〉 in our assessments below.

Then we can employ the smooth function f (k) (see Equation (6)) as an approximate
substitute of 〈PLD(k)〉. To describe the fit quantitatively, we introduce the maximum
likelihood function

L ∝ exp[−1
2
· χ2(A)]; (10)

χ2(A) =

[〈PLD(k)〉 − f (A, k)]T · Ĉ−1 · [〈PLD(k)〉 − f (A, k)],

where the upper index T means transposed matrix, and Ĉ−1 is the inverse matrix with
respect to Ĉ given in (5). Varying the constant A in Equation (7), one can find the best fit at
a minimal value of χ2.

It was also verified numerically in Paper II for a set of simulated radial power spectra
PR(k) that the cumulative probability function of random peak amplitudes Pk at any kmax
(a central wavenumber of a peak) integrated over all values lower than a fixed value P∗k
can be expressed as (see also, e.g., [42,46])

F (Pk < P∗k , λ) = 1− exp(−λ · P∗k ) at P∗k ≥ 0, (11)

where λ = λ(k) is a parameter of the exponential distribution determined by a recip-
rocal mean (mathematical expectation) peak amplitude M[Pk] = 〈PR(k)〉, i.e., λ(k) =
〈PR(k)〉−1 ' f−1(k). In this double equality, we replace 〈PR(k)〉 by the value 〈PLD(k)〉 and,
in turn, by the function f (k). This estimation is valid for a single independent peak at
arbitrary m and yields the probability of pure noise, generating a power P(m) less than the
given level P.

Let us emphasize also that the difference between Equation (13) of [42] or Equation (7)
of [46] and Equation (11) is a constant parameter λ of the exponential distributions in the
cited papers, while we consider a variable λ(k) in the present study7.

Equation (11) allows one to build fixed confidence probabilities for various k and con-
nect them in a single smooth curve to outline an appropriate significance level. The curves
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obtained in this way can be used as a measure of the significance of separate independent
peaks in the power spectra of real LRG samples. In Figures 1–5, dashed lines show two
levels of significance (3σ and 4σ) calculated using data of all 80 LD realizations by the
procedure described above with the respective (quasi-Gaussian) probabilities: 3σ − 0.998,
4σ − 0.999936. In contrast, the significance levels 5σ (probability 5σ − 0.9999994) are also
shown in Figures 2–5 as narrow bands corresponding to values A (Equation (7)) obtained
in a similar way but within an error interval ±1σ.
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Figure 1. (Left panel): Angular distribution of LRGs over the sky from the SDSS DR7 data in the
equatorial coordinate system; all grey colored regions comprise the DR7-Full sample in [35]; dashed
lines delimit the rectangular region of our statistical consideration with α = 140–230◦ and δ = 0–60◦, α

and δ are defined about the axes, α is shown in a nonstandard way: east to right, west to left. (Right
panel): Radial power spectrum PR(k) solid line calculated according to Equation (3) for all LRGs
located in the rectangular region within the redshift interval 0.16 ≤ z ≤ 0.47 or distance interval
464 ≤ D(z) ≤ 1274 h−1 Mpc. The significance levels 3σ and 4σ (dashed lines) are calculated using
the mock LasDamas catalog and the exponential probability function (11) for random spectral peak
amplitudes (see text).

 

 

D
ec

li
n

at
io

n
, 
δ

0
 (

d
eg

re
es

) 

1 

3 2 

 4 

 5 

6 

Right ascension, α0 (degrees) 
       

 k (h Mpc
─1

) 

P
R
 (

k
) 

116 ± 10 h
─1

 Mpc 

      3441 LRG 

   α = 189˚ ÷ 199˚ 

   δ = 18˚ ÷ 46˚ 

4σ 

5σ 

3σ 

Figure 2. (Left panel): A total of 6 out of 144 sectors covering the entire rectangular area, which
stand out due to their high peak amplitudes in the radial power spectra at kmax, lying in a range
0.05 ≤ kmax ≤ 0.07 h Mpc−1. (Right panel): Radial power spectrum PR(k) (solid line) calculated
using Equation (3) for the black sector (No 5) in the left panel; dashed lines—the significance levels
3σ, 4σ and a narrow band −5σ calculated using the mock LasDamas catalog (see text); intervals of α

and β as well as the sample size are indicated in the insert.
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the same six sectors; significance levels 3σ and 4σ (dashed lines) and the narrow band 5σ are plotted
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Figure 5. Same as the right panels of Figure 3 but for the subsamples DR7-Dim (left panel) and
DR7-Bright ((right panel); see Table 1 and text for details). The gray stripe near the power spectrum,
plotted for DR7-Bright, demonstrates error bars, calculated by the jackknife technique.

Table 1. SDSS LRG (DR7) and (DR12) statistics.

Sample Redshift X a Mpc h−1 Number LRGs α0
b δ0

b

DR7-Full c 0.16 ≤ z ≤ 0.47 464 ≤ X ≤ 1274 13,872 176◦ 24◦

DR7-Dim c 0.16 ≤ z ≤ 0.36 464 ≤ X ≤ 994 8606 177◦ 22◦

DR7-Bright c 0.16 ≤ z ≤ 0.44 424 f ≤ X ≤ 1114 4185 177◦ 23◦

DR12-LOWZ c,d 0.16 ≤ z ≤ 0.47 464 ≤ X ≤ 1274 38,880 175◦ 25◦

DR12-SMASSLOWZE3 c,d 0.16 ≤ z ≤ 0.72 464 ≤ X ≤ 1844 106,136 176◦ 27◦

DR7-Full e 0.16 ≤ z ≤ 0.47 464 ≤ X ≤ 1274 57,099 175◦ 27◦

a Intervals of galaxy Cartesian coordinate projections on any X-axis (see text). b Equatorial coordinates of X0-axes selected for each sample
(see text). c The data refer to the six sectors in the sky shown in Figure 2. d Two samples from the DR12 data (see Section 5). e The data refer
to LRGs observed in the whole rectangular region shown in Figure 1. f Special case: X ≥ 424 h−1 Mpc at z ≥ 0.16 (see text).

3. Radial Distributions in Rectangle Region and Sectors

In this section, we only use the DR7-Full sample as it contains the largest amount of
statistical data. The SDSS DR7 LRG regions of the sky in the equatorial coordinates are
shown in the left panel of Figure 1. We restrict ourselves by considering a rectangle region
highlighted in the left panel to avoid the possible effects of irregular edges of the central
domain. In such a way, we choose the intervals of right ascension 140◦ ≤ α ≤ 230◦ and
declination 0 ≤ δ ≤ 60◦. The sample contains 60,308 LRGs observed within the redshift
interval indicated above. Note that in the left panel of Figure 1, as in the left panels of the
following three Figures 2–4, the right ascension α is shown in a nonstandard way: east to
right, west to left.

The right panel of Figure 1 represents the radial power spectrum calculated with
the use of Equation (3) at 0 < k ≤ 0.3 for the entire rectangle region in the sky. The
dominant peaks at k > 0.04 h Mpc−1 correspond to kmax = 0.062 h Mpc−1 or spatial
comoving scale (101± 7) h−1 Mpc and have quite large amplitude (about 20). However,
the present evaluation on the base of the mock LasDamas catalog turns out to be noticeably
less than 3σ. It is not serious enough to discuss the quasi-periodicity of the radial LRG
distribution. Note also that very large values of PR(k) at the smallest values of k (largest
scales), k < 0.04 h Mpc−1, are associated with a large-scale trend Ntr(D), i.e., with the
smoothed part of the total radial distribution function NR(D), and can be ignored.

Let us produce the next step that takes us beyond purely radial distributions. We scan
the entire rectangle region by a trial sector with angular dimensions 5◦ × 25◦ along right
ascension and declination, respectively. At first, we build the radial distribution of LRGs
precisely within the trial sector located in the angle range α = 140◦÷ 145◦ and δ = 0◦÷ 25◦,
i.e., in the left lower corner of the rectangle region on the left panel of Figure 2. Using
Equation (3), we calculate the 1D power spectrum PR(k) for the radial distribution of those
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LRGs, which were observed through this sector (as through a window) in the sky and
strictly limited by the same redshift or distance intervals, as indicated in Section 2. Then
we consequently shift this trial sector along the axes of right ascension or declination by
five degrees and calculate the appropriate radial power spectra. In such a way, we consider
144 radial power spectra PR(k), which are non-overlapping along the horizontal axis but
overlapping along the vertical one.

When analyzing the obtained spectra, we restrict ourselves to an interval 0.05 < k < 0.07
and exploit the same procedure of significance assessment as it is described in Section 2
using the data of the mock LasDamas catalog. On the basis of these data, one can build
the radial distributions and calculate power spectra within all of the outlined angular
sectors. Among 144 sectors, we select only six, in which the significance of the peak
amplitude exceeds 3σ, and vary the angular boundaries of these sectors with a step 1◦ to
achieve maximum peak amplitudes. In this way, the appropriate angular dimensions of
the six sectors were found to preserve the rectangular shape. After that, the 1D Fourier
transform of the radial distributions of LRGs (already at 0 < k ≤ 0.3) within their angular
boundaries were produced. This allows us to calculate the scales and phases of quasi-
periodic components in the selected cases.

The six selected sectors are represented in the left panel of Figure 2, and their char-
acteristics are shown in Table 2. The data include the sector numbers, the boundaries of
angular variables, number of sampled LRGs, quasi-periods ∆Dc with errors determined as
HWHM of the main spectral peaks and significance of the peaks.

Table 2. Data on six selected sectors with relatively high significance (Sign.) of the peaks in radial
power spectra.

No α δ
Number

LRGs
Periods
Mpc/h Sign.

1 140–146◦ 5–31◦ 2098 101± 7 >3σ
2 154–160◦ 8–39◦ 2434 116± 10 >3σ
3 162–174◦ 10–35◦ 3629 116± 10 >5σ
4 182–185◦ 15–41◦ 1121 116± 10 >3σ
5 189–199◦ 18–46◦ 3441 116± 10 >5σ
6 222–230◦ 36–60◦ 1634 116± 10 >3σ

Only sector No 1 in Figure 2 contains a quasi-periodical component with period ∆Dc =
101± 7 h−1 Mpc (kmax = 0.062± 0.005 h Mpc−1) at significance >3σ. The remaining five
demonstrate significant peaks at kmax = 0.054± 0.005 h Mpc−1, corresponding to quasi-
periodicity with a scale ∆Dc = 116± 10 h−1 Mpc.

The right panel in Figure 2 shows the radial power spectrum calculated using the
data of sector No 5 (black one in Figure 2). Note that the sector contains the north Galactic
pole (αnp = 192.86◦ and δnp = 27.13◦; see discussion in Section 6). In this case, we obtain
the most prominent peak among all six sectors at the same kmax as the other five. The
sample size is 3441 LRGs. The significance levels (also shown in the right panel) are
estimated using the LasDamas catalog within the same sector on the sky. The dashed
lines plot the significance levels 3σ and 4σ, while the narrow band plots the level 5σ also
calculated using (11) but for A (see Equation (7)) lying within a 1σ error interval (in this
case A ' 160± 4).

A single peak at k = 0.054 h Mpc−1 markedly exceeding 5σ is clearly visible in the
power spectrum. This can serve as an additional justification for using Equation (11) to
estimate the significance of separate peaks at different k as a result of independent random
fluctuations. Actually, smooth lines representing the significance levels on the right panel
of Figure 2 and in the following figures are the locus of single peaks at fixed significance,
calculated employing LasDamas data and the formulas (6)–(11) or their modifications
(see Sections 4 and 5). On the other hand, it can be shown following [42,46] as well
as [47,48] (and references therein) that the probability of occurrence of any number of
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random independent peaks for different k leads to levels of significance not too different
from that calculated with Equation (11)8.

On the other hand, the power spectrum of the total normalized distribution of LRGs
in all six selected sectors over the entire interval 0.04 ≤ k ≤ 0.3 h Mpc−1 does not contain
significant peaks. This is similar to the spectrum obtained for the whole rectangle region
and is plotted in the right panel of Figure 1. The small significance of the period 116 h−1 Mpc
is a consequence of the fact that these harmonics in the selected five sectors have different
phases and mutually extinguish each other.

Random appearance and disappearance of the quasi-periodicity during the rotation
of an observation field from sector to sector on the celestial sphere, as well as random
phase shifts between the selected sectors, might indicate the existence of a sparse and
ragged spatial structure at large cosmological distances. It may be assumed that radial
distributions within wide angular regions are only capable of tracing such a structure
indirectly. Below we develop a different approach for searching and analyzing such a
possible structure and assessing its significance.

4. Cartesian Coordinate System. Preferred Direction

In this section, we refer to all three samples of LRGs presented in Section 1, DR7-Full,
DR7-Dim and DR7-Bright, selected and described in [35] (see also [40]).

Let us move from spherical coordinates characterizing LRGs in Sections 2 and 3 to the
distribution of the LRGs in Cartesian CS:

Xi = D(zi) sin(90◦ − δi) cos αi (12)

Yi = D(zi) sin(90◦ − δi) sin αi

Zi = D(zi) cos(90◦ − δi),

where D(zi) is the radial comoving distance of i-th LRG with redshift zi, αi—its right ascen-
sion and δi—declination; in both the coordinate systems an observer is at the zero point.

Following the definitions of Section 2, we use the binning approach along the axis X,
and similar to calculations of NR(Dc), we can calculate a distribution NX(Xc), where Xc
is a central point of a bin, and ∆X is its width. For the sample DR7-Full, we fix the same
analyzed range 464 ≤ X ≤ 1274 h−1 Mpc containing the same Nb = 81 independent bins
with a width ∆X = 10 h−1 Mpc as it is used in (2) for D(z) (the intervals of DR7-Dim and
DR7-Bright are considered below).

By analogy with Equation (2), we calculate the normalized 1D distribution along an
axis X

NNX(Xl
c) =

NX(Xl
c)− SX√
SX

, (13)

where l = 1, 2, . . . ,Nb is also the numeration of bins, and SX is a mean value of the 1D
distribution NX(Xl

c) over all bins.
Using Equations (3) and (13), one can calculate the 1D power spectrum PX(km) replac-

ing in (3) Dl
c by Xl

c and NN(Dl
c) by NNX(Xl

c); in this case, km = 2πm/LX is a wavenumber,
m = 1, 2, . . . ,M is a harmonic number,M = bNb/2c is a maximal number (the Nyquist
number), and LX = 810 h−1 Mpc is the whole interval along the axis X (sampling length).

Then, we rotate the coordinate axes XYZ at certain Euler angles so that the new axis
X′9 would be oriented in a certain direction (α′ and δ′) relative to the initial Equatorial CS.
Performing a sequence of such rotations, we search for the X0-axis along which the 1D
power spectrum calculated for all six sectors in total displays the most significant peak at a
scale ∼ 116 h−1 Mpc.

To control the uniformity of statistics for different directions of X, we fix the same
boundaries of the rotated axes, e.g., 464 ≤ X ≤ 1274 h−1 Mpc for the sample DR7-
Full. This condition strongly limits the area of analyzed directions 160◦ ≤ α ≤ 200◦

and 20◦ ≤ δ ≤ 40◦ inside the rectangle. The same angular limits are set for the other two
samples to ensure the same conditions in all cases under study. Employing the modification
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of Equation (3) described above, we calculate the 1D Fourier transform FX(km) and the
power spectra PX(km) for each direction of X.

Actually, we deal with a discrete analog of so-called 3D Radon transform (e.g., [49])
applied to selected data, i.e., we summarize all the points from a subsample whose projec-
tions fall into each bin given along X. Thereafter, we exploit the two main properties of the
Radon transform (i) translation invariance, which allows one to transfer the projections of the
Cartesian galaxy coordinates on the given axis X to another axis X̂ parallel to the original
one, (ii) linearity, which allows one to summarize the projections obtained for individual
sectors in the sky into the total sum of projections to get a single Radon transform for the
entire sample.

We start with an orientation of the X-axis along a direction with coordinates α = 160◦

and δ = 20◦ (lower left corner of the indicated region) and rotate the axis X′ sequentially,
shifting the right ascension or declination with a step 1◦. Note that such rotations of the
moving CS require only two Euler angles, αEu = ∆α and βEu = ∆δ, where ∆α and ∆δ are
respective rotation angles. As a result, one can find an axis X0 with Equatorial coordinates
α0 and δ0 in the sky along which the 1D distribution of the Cartesian coordinate projections
shows the maximum peak amplitude at k ∼ 0.05–0.06 h Mpc−1.

Table 1 gives the main characteristics of the subsamples used to find directions X0 and
to estimate the significance level of the main peak in each case. For all three subsamples,
we perform rotations of the X-axis at fixed boundaries, Xmin and Xmax (different for each
sample), providing uniformity of statistical conditions in different directions10.

Figure 6 represents three distribution functions NX(X0) calculated as a number of
cumulative projections on the axes X0 (see Table 1) of Cartesian LRG coordinates registered
through six sectors shown in the left panel of Figure 2. It is seen that all three curves have a
quasi-oscillating character, i.e., represent an alternation of peaks and dips, the positions of
a number of such features being mutually consistent.
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Figure 6. Three different distribution functions NLRG ≡ NX(X0) as a number of cumulative projec-
tions on a selected axis X0 (α0, δ0; see text) of the Cartesian LRG coordinates detected through six
sectors (windows) in the sky shown in Figure 2. Characteristics of all three samples, DR7-Full (black
line), DR7-Dim (green line) and DR7-Bright (blue line), are given in Table 1.

The results of our calculations of the 1D power spectrum are represented in Figures 3–5.
The first two of them are based on data of the sample DR7-Full, while the third one—on
data of the subsamples DR7-Dim and DR7-Bright. The first and third ones relate to all six
sectors discussed above. The left panel in Figure 3 shows three confidence areas (shades of
gray) on the sky indicating peak amplitudes (for the same scale 116 h−1 Mpc) exceeding
the significance levels 3σ (light gray), 4σ (darker gray) and 5σ (dark), respectively. The max-
imum value of the peak is achieved along the direction of X0 with coordinates α0 = 176◦

and δ0 = 24◦ (small white square).
The right panel represents the power spectrum PX(k) calculated for normalized 1D

distribution (13) of the LRG Cartesian coordinate projections on the X0-axis with α0 and
δ0 indicated above; the respective sample size is 13,872 LRGs. Two dashed lines show
significance levels 3σ and 4σ, while the narrow band (taking into account error bar ±1σ)
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corresponds to the level 5σ (in the case of Figure 3, we get A = 156 ± 6), which are
calculated in the same manner as described in Section 2 with the use of LasDamas catalog
(“lrgFull-real”) for the same six sectors in the sky. We compute the NLD = 80 power
spectra PLD

X (k) produced for the normalized distributions (13) along the axis X0. As a
result, one can see that the dominant peak of our special interest far exceeds the level of 5σ
and demonstrates an amplitude of about 100. This amplitude is noticeably larger than the
similar peak in Figure 2.

Fourier analysis of these quasi-periodical components carried out separately for each
selected sector shows that phases of the two most significant sectors (No 3 and 5 in the left
panel of Figure 2, see also Table 2) get closer relative to the case of radial distributions. This
phase convergence provides a major contribution to the cumulative spectrum of the six
sectors in total.

Figure 4 is organized similarly to Figure 3 but represents the results of calculations
of 1D power spectra produced for the whole rectangle region shown in the left panel of
Figure 1. The direction of the maximum amplitude of peaks in the power spectra PX(k) is
only slightly shifted relative to the case of the six sectors in Figure 3, i.e., α0 = 175◦ and
δ0 = 27◦.

The right panel represents the 1D power spectrum calculated along X0 for a sample of
57,099 LRGs. One can see a strong peak at the same period 116± 10 h−1 Mpc but with an
amplitude a bit lower than in the previous case. The significance levels (dashed lines and a
narrow band) are constructed similar to the right panel in Figure 3 using LasDamas catalog
(“lrgFull-real”) but for the whole rectangle region in the sky. This means that the proposed
periodical structure oriented along X0 can manifest itself even for the entire rectangle area
under consideration (cf. with the right panel of Figure 1).

In both Figures 3 and 4, we can notice a smaller but also significant peak at lower
k < 0.05 h Mpc−1 and two significant peaks at k <∼ (0.15–0.2) h Mpc−1 in Figure 4.
These features may indicate a more complex character of the structure under discus-
sion than a single periodical dependence on X but with a dominant role of the one
highlighted component.

Figure 5 is organized in the same way as in the right panels in Figure 3 and deals only
with the data of six chosen sectors. The figure is plotted for relatively more homogeneous
samples DR7-Dim and DR7-Bright; the latter contains relatively fewer statistics. With
this in mind, we slightly extended the low boundary of the X0-projections in the case of
DR7-Bright (at fixed z = 0.16 as noted in the note 10), to increase the amplitude of the
peak. However, we can argue that such variations of the boundary do not diminish the
significance of the peak below 4σ.

Moreover, following [50], we applied the jackknife procedure for the calculation of
power spectrum error bands, obtained for DR7-Bright data (right panel). The stripe takes
into account random variations of the data used for the calculation of the power spectrum.
It can be seen that the errors cannot drastically affect the main peak significance.

Let us note that when considering the sample DR7-Bright, we do not use the reduction
procedure (4) for calculating significance levels in the right panel of Figure 5, because
the trend DR7-Bright turns out to be quite similar to the trend of mock LD data (catalog
“lrg21p8-real”) selected under the same spatial conditions. This confirms the assumption
that the reduction procedure introduced in Section 2 does not significantly affect the
position and magnitude of the main peaks in the power spectra.

It is also worth noting that, based on the DR7-Bright sample, we compare two NX(X0)
distributions constructed for the six sectors, as indicated in Figure 6, and for the entire
rectangular region shown in Figure 1. Both distributions are similar and represent an
alternation of peaks and dips; however, the amplitudes of these peaks and dips for the
six sectors turned out to be a bit larger, which indicates some advantage of these sectors
in tracing an assumed structure. The correlation coefficient of two curves is 0.51, which
exceeds level 4σ for the considered volume of samples.
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We can summarize that the celestial coordinates of the axes X0 are quite close in all
four cases under consideration (see Table 1). Moreover, the position and significance of the
peaks in the right panels of Figures 3 and 4 and in both panels of Figure 5 are also mutually
consistent. Thus, noticeable changes in the statistics and homogeneity of the samples do
not significantly change the results, confirming their robustness.

In support of this statement, we introduce two auxiliary panels in Figure 7 showing
weak dependence of the results on the degree of sample homogeneity. Indeed, the left
panel of Figure 7 shows the effect of the window Fourier transform on the power spectrum
obtained for the same distribution of the Cartesian coordinate projections on the axis
X0 as in the right panel of Figure 3. As a window function, we use the Hann function
(e.g., [50,51]):

Wl =
1
2

[
1− cos

(
2πXl

c
LX

)]
, (14)

notations on the right-hand side are the same as in Equation (13).
Function (14) smooths the distribution of objects (points) along the edges of considered

intervals, thereby suppressing the influence of sample inhomogeneities (visible, e.g., in
Figure 6 for DR7-Full data) and smoothing out spurious periodicities induced by the
boundaries of the intervals (e.g., [50]). On the other hand, this function strongly suppresses
some of the useful information and, in particular, reduces traces of the periodic structure,
if it is present, in the power spectrum (e.g., [51]).

We multiply the function (14) by the normalized distribution Equation (13), perform
the Fourier transform of this product and construct the power spectrum following the
modification of Equation (3) for projections onto the X-axis, as described above. Similarly,
to obtain the significance levels shown in the left panel of Figure 7, we perform the same
window Fourier transform of the one-dimensional distribution derived from the LasDamas
data (the same catalog “lrgFull-real”).
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Figure 7. (Left panel): Same as the right panels in Figure 3 but with the inclusion of the Hann
function (14) in the calculations of the window Fourier spectra (using the same DR7-Full data).
(Right panel): Same as in the right panel of Figure 3 but using the data of SDSS DR12 related
to the same six sectors in the sky. The green curve is the 1D power spectrum calculated for the
extended interval 464 ≤ X ≤ 1844 h−1 Mpc (0.16 ≤ z ≤ 0.72) of projections of the Cartesian
galaxy coordinates on the axis X0 (α0 = 176◦ and δ0 = 27◦, see Table 1) corresponding to the
maximum peak at kmax = 0.054 h Mpc−1. The black curve is also a 1D power spectrum with the
same kmax but calculated for the smaller interval 464 ≤ X ≤ 1274 h−1 Mpc (0.16 ≤ z ≤ 0.47)) used
in Figures 3 and 4; in this case, X0 is oriented along direction α0 = 175◦ and δ0 = 25◦; the sample
sizes for both sets of data are also shown. The significance levels 3σ, 4σ and 5σ (dashed lines ) are
calculated for the extended sample of SDSS DR12 (see Section 5).
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Comparing the left panel in Figure 7 with the right panel in Figure 3, one can notice
the significant single peak at the same kmax = 0.054 h Mpc−1 but its amplitude is greatly
reduced due to the influence of the window function on the power spectrum. However,
the significance levels are also greatly reduced (slightly less than the peak amplitude), and
the resulting significance does not fall below 4σ, i.e., the peak remains quite significant.

5. Traces of Spatial Structure in SDSS DR12

To verify the results of Section 4, we probe the existence of a quasi-periodical structure
on the basis of significantly expanded statistics of cosmologically distant galaxies accu-
mulated in SDSS DR12. We consider these calculations as pure preliminary ones because
here we do not take into account nonhomogeneity and selection effects of used data, do
not study the wider sky area available for DR12, and in particular, are not looking for
additional special sectors in the expanded region with significant spectral features, etc.
Such calculations are the subject of future work. Here our task is only to establish whether
there are contradictions between power spectra obtained along certain directions for quite
different statistics presented in DR7 and DR12.

We employ the data of DR12 accumulated only for the northern hemisphere in the sky
and collected in two files:

galaxy_ DR12v5 _ LOWZ _ North.fits.gz ,
galaxy _ DR12v5 _ SMASSLOWZE3 _ North.fits.gz

which are available in the Science Archive Server11. A description of the catalogs DR12 can
be found, e.g., in [52–54].

One can produce calculations similar to those that are performed to plot Figure 3 using
data related to the same six sectors in the sky, as presented in Table 2. We consider both an
extended interval of redshifts 0.16 ≤ z ≤ 0.72 (SMASSLOWZE3) and the same (shorter)
interval 0.16 ≤ z ≤ 0.47 (LOWZ) as it is studied in Sections 3 and 4. However, now our
total sample contains 106,136 galaxies for the extended interval and 38,880 galaxies in the
shorter interval (instead of 13,872 LRGs in Figure 3).

At first, we consider the extended redshift interval. As in the previous section, we
choose the initial Cartesian CS and produce a lot of CS rotations within the same area in the
sky 160◦ ≤ α ≤ 200◦ and 20◦ ≤ δ ≤ 40◦, as in Section 4. In this case, we restrict ourselves
to a fixed interval 464 ≤ X ≤ 1844 h−1 Mpc along each direction, similarly to how it is
done for the DR7 data. For each direction of the X′-axis, we also calculate the discrete
analog of Radon transform, i.e., we summarize all the galaxies from a volumetric sample
whose projections of the initial (fixed) Cartesian coordinates fall into a given bin along the
rotating axis. In such a way, we obtain a 1D distribution NX(Xc), where Xc is the central
point of a bin and, using Equation (13), produce the normalized distribution NNX(Xc).

This allows us to calculate the power spectra PX(k) for various X′-axes and to find
the direction of the maximum peak amplitude at kmax = 0.054 h Mpc−1. An example of
such calculations for the direction of the maximum amplitude (α0 = 176◦ and δ0 = 27◦) is
shown in the right panel of Figure 7 by the green curve. One can see that these coordinates
are fairly close to the similar α0 and δ0 in Figure 3 (see also Table 1). The curve manifests a
moderately high amplitude of the peak with a significance of ∼4σ.

Three dashed lines in the right panel of Figure 7 show significance levels 3σ, 4σ and
5σ, respectively. The calculations of these levels are carried out on the basis of the total
sample (106,136 galaxies) by constructing a large number (NX = 861) of power spectra for
various directions of X′ evenly covering the area in the sky under investigation. Following
Section 2, we obtain an averaged power spectra 〈PX(k)〉, and using the Equations (5)–(7),
(10) and (11), where all indices LD are replaced by X, we calculate the significance levels
plotted in Figure 7 (right panel).

For comparison, the black curve demonstrates another example of the power spectrum
calculations in the same interval 464 ≤ X ≤ 1274 h−1 Mpc as it was used in Section 4.
In this case, the full number of galaxies related to all six sectors reaches 38,880. As a result,
we obtain a slightly different direction of the maximum amplitude (α0 = 175◦ and δ0 = 25◦)



Universe 2021, 7, 289 15 of 20

at the same kmax = 0.054. One can see that the amplitude of the dominant peak at the same
kmax increases by approximately two times. On the other hand, the decrease of the peak
amplitude for the extended interval of X could be a consequence of the limited size of the
quasi-periodical structure (if it exists) along the X-axis.

Thus, our preliminary analysis of DR12 data confirms an appearance of the significant
feature at 0.05 < k < 0.07 in the power spectra and thereby the possibility of existence
of the quasi-periodic component oriented along the highlighted directions. Let us note
that the narrow bunch of directions X0 found in our study passes through the origin of CS
(observer) by construction. However, we suppose that the real axis of periodicity could be
(quasi-) parallel to the found axis (bunch of axes) and probably be shifted in space, so that
the Radon transform does not change (see Section 4).

6. Conclusions and Discussion

The focus of this work is the search for traces of the anisotropic quasi-periodic structure
in the spatial distribution of cosmological distant galaxies and application of a proper
method for assessment of its significance. Summarizing the results obtained in Sections 3–5,
we can hypothesize that at the considered redshifts, mainly at 0.16 ≤ z ≤ 0.47 (see also
Table 1 for details), a large elongated quasi-periodic structure could exist with characteristic
scale ∆X = 116± 10 h−1 Mpc.

In order to specify the main axis of the structure, we perform the discrete 3D Radon
transformations along various axes X and calculate the power spectra for corresponding
1D distributions. One can imagine that the real axis of quasi-periodicity (if it exists) can
be parallel to this axis but arbitrarily shifted in space. Such an approach may be treated
as an application of the computer tomography elements to the analysis of the large-scale
inhomogeneities of the matter (e.g., [55]) and possible signs of their quasi-periodicity.

Along special directions located within the narrow intervals of equatorial coordi-
nates α0 ' 175–177◦ and δ0 ' 22–27◦, the structure is likely to have a maximum scale of
>∼800 h−1 Mpc. Our estimations show that a signal-to-noise ratio for the dominant spatial
oscillations averaged over all selected directions indicated in Table 1 turned out to be ∼2.0,
while a density contrast is ∼0.112.

Among currently known large-scale structures in the spatial distribution of matter, the
structure proposed here can be compared to the so-called Great Walls. To our knowledge,
up to now a few Great Walls have been reliably established, and their number is constantly
growing. These are the CfA Great Wall [56], Sloan Great Wall [57,58], BOSS Great Wall [59]
and Saraswati wall-like structure [60]. One can also refer to such objects as the supergalactic
plane [61] in the local Universe, as well as the Sharpley Supercluster (e.g., [62,63]), and the
recently revealed South Pole Wall [64].

The structure proposed in the present work is about two or more times larger along
the major axis than the appropriate scales of the Great Walls. Relative to z, the proposed
structure is situated somewhere between the BOSS (0.43 < z < 0.71) and the Sloan
Great Walls (0.04 < z < 0.12), and includes redshifts (z ≈ 0.3) of the Saraswati Wall.
The major axis of the assumed structure is directed relatively close to an area in the sky
(152◦ <∼ α <∼ 170◦, 44◦ <∼ δ <∼ 58◦) where the Boss Great Wall is located. The peculiarity
of the structure discussed here is in its quasi-periodical character with low amplitude (or
overdensity), which could be revealed only by specific techniques such as the anisotropic
Fourier analysis employed in the present work.

In this regard, the question arises about the largest allowable scales of cosmological
structures (huge superclusters and voids between them) consistent with the generally
accepted ΛCDM cosmological model (e.g., [60]) with its extensive observation base. A
possible answer to this question was given in [65], where it was shown that the largest struc-
tures of relatively low density can reach several hundred Megaparsecs without conflicting
with the isotropy and uniformity of the ΛCDM model. However, in the literature, there
is evidence (e.g., [66]) that the size of inhomogeneities in the distribution of cosmological
matter can be much larger. Our estimates also show significantly larger dimensions of the
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anisotropic quasi-periodic structure. It means that the compatibility issue of such a scale
with the currently dominant ΛCDM model remains open.

The same applies to the question of origin of the structure that we assume. It is
quite likely, as suggested in [30], that the origin of anisotropic quasi-regular structures is
associated with phase transitions during the inflation epoch or immediately after it. A
possible way of solving the problem of the emergence of quasi-periodic structures in the
early Universe was indicated in a recent work [67].

In addition, let us note that sector No 5 represented in the left panel of Figure 2 (see also
Table 2) contains the direction to the north Galactic pole. In principle, the structure assumed
here might be consistent with the pencil-beam quasi-periodicity at a scale ∼130 h−1 Mpc
found in the pencil-beam surveys near both Galactic poles (see [17] and a few references in
the Introduction). It should be mentioned, however, that these results were criticized in the
literature (e.g., in [68–70]) and perhaps the significance of periodicity was overestimated
by the authors, who used the statistics available to them.

Actually, our analysis is different from the pencil-beam treatment, although in princi-
ple it may not contradict it. We analyze the projection of a volumetric array of points (LRGs)
on selected directions, whereas the pencil-beam analysis has been produced for the distri-
bution of galaxies along a set of narrow observational cones. Note that the directions along
which there are significant peaks in the power spectra do not coincide with the direction
to the Galactic pole. Moreover, the significant peak, Figure 4 shows the power spectrum
calculated for a large number of LRG projections observed in the whole rectangular area in
the sky, i.e., for LRGs collected from a huge spatial volume.

The structure proposed in the present work has a ragged character and can only
appear in certain directions; moreover, different directions may trace over different visual
space periodicities, as was found, e.g., in [29,30]. Nevertheless, two types of periodicities
(one based on the pencil-beam analysis and the other one discussed in this article) might be
interconnected, such as two different probes of the same complex quasi-regular structure.

Another point worth mentioning here is the closeness of the scale obtained in this
work to both the characteristic scales of the quasi-regular structure formations and the
BAO phenomenon (see Introduction). In our case, we are most likely dealing with an
oriented anisotropic structure similar to those obtained in [17,29,30]. Moreover, it seems
to be plausible that the quasi-regular structure could manifest itself as several observed
oscillations in space with a fixed scale (e.g., [17,23,30]), exactly as we find in this work.

As for the BAO, one can expect (see, e.g., [6]) that the primary perturbations in real
space, associated with oscillations in k-space, could spread relative to their original centers
(scattered isotropic) only within one acoustic wavelength. Such a concept of BAO has been
confirmed to a certain degree by the calculations of [33]. Nevertheless, it is also possible
that the proximity of the scales (for all their differences) of both types of phenomena under
discussion is not accidental, and they have common progenitors in primary perturbations
at the early stages of the Universe evolution.

In any case, our hypothesis requires further detailed statistical studies, including an
analysis of systematic errors that can lead to distortions of power spectra. This is especially
true for DR12 data (Section 5), which must be used with great care. Our approach could be
justified to some extent by the fact that the use of several samples with varying degrees of
data heterogeneity and with varying degrees of accounting for systematic effects, leads
to stable results. Nevertheless, it should be remembered that even with good statistics,
low-quality data can lead to unreliable conclusions (see, e.g., [71]). In any case, all the
effects considered here require further research, including the use of other catalogs of
observational data. Moreover, these studies should be extended also to other areas in the
sky, including the region of the south Galactic pole.
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Notes
1 https://cosmo.nyu.edu/eak306/SDSS-LRG.html, accessed on 5 July 2021.
2 Note that instead of the radial distribution function NR(D), one can use a comoving number density n(D) = NR(D)/dV, where

dV is a comoving differential volume, which is a variation of the conventional value n(z) (e.g., [35,40]). In this case, Equation (2)
can be written as NN(D) = (n(D)− 〈n〉)/σ(n), where σ(n) = σ(NR)/dV, σ is the mean squared deviation.

3 The bin width ∼10 h−1 Mpc is selected for convenience. It was specially verified that further results do not depend on bin sizes
within an interval ∼1–10 h−1 Mpc, if we are interested in scales ∼100 h−1 Mpc.

4 http://lss.phy.vanderbilt.edu/lasdamas/mocks/gamma, accessed on 5 July 2021.
5 The divergence of both the trends was discussed in [35]; the authors used similar scaling of the smoothed LD curve in their

Appendix A.
6 Here, we mean so-called ensemble averaging. However, as it is shown in Paper II, the ensemble averaging of the radial power spectra

is equal to an averaging over many power spectra calculated for numerous radial distributions built relative to different centers,
i.e., so-called volume averaging.

7 In fact, the approach of [42,46] is true in many cases, e.g., for radial distributions of absorption systems, as it will be shown in
future work.

8 In fact, one can consider a set of many independent wavenumbers km; m = 1, 2, . . . ,Mk , where Nb = 81 andMk = 40 (see
text under Equation (3)), and treat any of the spectral peaks P(km) as a result of Gaussian noise. Then, one can estimate the
so-called false alarm probability, Pr(Pmax ≥ P∗) = P0 = 1− βMk , where β ≡ F (Pk ≤ P∗k ) is defined in Equation (11), i.e., P0 is
probability of at least one of many possible peaks Pmax = p0 being equal to (or above) a maximal level P∗. Using the formula
p0 = −λ−1 ln[1− (1−P0)

1/Mk ] ([42,46]) at k = kmax = 0.054 one can obtain that the confidence level (1−P0) = 0.9999994
(significance 5σ) corresponds to p0 ' 74.0. Thus, the calculated value of the peak amplitude in the right panel of Figure 2
Pmax = 79.3 lies noticeably higher than p0.

9 Hereafter, denotation X′ instead of general denotation X indicates the axis rotating together with the rotation of the CS.
10 Note that the relationship between the boundaries of z and X is ambiguous. Using this ambiguity, we shift the lower bound

Xmin of the sample DR7-Bright to 424 h−1 Mpc relative to 464 h−1 Mpc fixed in the other two cases of DR7 data, thereby slightly
expanding the interval X with the same z ≥ 0.16. On the other hand, the upper boundaries of DR7-Dim and DR7-Bright are
also shifted relative to the Xmax = 1274 h−1 Mpc accepted for DR7-Full because these subsamples correspond to lower zmax,
i.e., ≤0.36 and ≤0.44, respectively.

11 https://data.sdss3.org/sas/dr12/boss/lss/, accessed on 5 July 2021.
12 For these estimates, we use a modification of Equations (7) and (9) of [42] which we specially tested by simulations, namely,

the averaged density contrast 〈δ〉∼〈
√

4P(kmax)/NLRG〉 and signal-to-noise ratio 〈S/N〉∼〈
√

4P(kmax)/Nb〉, where P(kmax) is
an amplitude of the main peaks in the power spectra at k = kmax, NLRG is a volume of samples, and Nb is a number of bins
accepted for each direction X.
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