* universe

Article

Lensing Magnification Seen by Gravitational Wave Detectors

Giulia Cusin 1@, Ruth Durrer *(© and Irina Dvorkin 2

check for
updates

Citation: Cusin, G.; Durrer, R.;
Dvorkin, I. Lensing Magnification
Seen by Gravitational Wave
Detectors. Universe 2022, 8, 19.
https://doi.org/10.3390/
universe8010019

Academic Editor: B. P. Bonga

(Béatrice)

Received: 26 November 2021
Accepted: 20 December 2021
Published: 30 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Centre for Astroparticle Physics, Département de Physique Théorique, Université de Geneve,

24 quai Ernest-Ansermet, 1211 Geneva, Switzerland; giulia.cusin@unige.ch
2 Institut d’Astrophysique de Paris, Sorbonne Université, CNRS, UMR 7095, 98 bis Boulevard Arago,
75014 Paris, France; dvorkin@iap.fr
Correspondence: ruth.durrer@unige.ch

Abstract: In this paper, we studied the gravitational lensing of gravitational wave events. The
probability that an observed gravitational wave source has been (de-)amplified by a given amount
is a detector-dependent quantity which depends on different ingredients: the lens distribution, the
underlying distribution of sources and the detector sensitivity. The main objective of the present
work was to introduce a semi-analytic approach to study the distribution of the magnification of a
given source population observed with a given detector. The advantage of this approach is that each
ingredient can be individually varied and tested. We computed the expected magnification as both a
function of redshift and of the observedsource luminosity distance, which is the only quantity one can
access via observation in the absence of an electromagnetic counterpart. As a case study, we then
focus on the LIGO/ Virgo network and on strong lensing (u > 1).
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1. Introduction

The direct detection of gravitational waves (GWs) from inspiraling binary black holes
and neutron stars by the LIGO and Virgo experiments [1-11] has been one of the greatest
successes in experimental physics and observational astronomy in recent years. Not only
did it lead to unprecedented insights into black holes and especially neutron stars, but it
also allowed us to test general relativity (GR) and cosmology.

An interesting aspect is the fact that the clustered matter between the gravitational
wave source and the observer can amplify the observed signal. This may lead to an
underestimation of the distance to the source and therefore of its redshift which in turn
leads to an overestimation of the chirp mass [12]. The effects of gravitational lensing on the
apparent properties of detected sources and the possible identification of unique lensing
features were extensively studied [13-28]. The prospects of the lensing of gravitational
waves alone or in combination with other data as a probe of dark matter or of general
relativity have also been investigated [29-32].

In this paper, we sought to determine the probability that an event of a given strain
amplitude, or rather of a given signal-to-noise ratio (SNR) for fixed experimental character-
istics, is being significantly magnified by lensing. In particular, we studied the dependence
of the lensing probability and of the mean magnification on redshift and on the strain ampli-
tude (or SNR). Similar studies were already present in the literature [12,15,18,25,26,33-35].
The main difference with the present work is that, instead of full numerical simulations
with ray tracing, we presented semi-analytic formulae which can be applied to an arbitrary
lens and source distribution, maintaining full control of the modeling and transparency
of all physical effects. This allowed us to study the dependence of the result on the lens
and/or source distribution which is otherwise quite obscure. Our analysis can also be easily
adapted to an arbitrary experiment given the expected number of sources as a function
of their SNR and redshift. Moreover, unlike previous studies on this subject, we compute
the expected magnification as a function of redshift, but also as a function of the observed
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luminosity distance, which is the only quantity one can access observationally in the absence
of an electromagnetic counterpart. While in principle it is possible to determine the redshift
of an inspiraling binary black hole from the light curve, the LIGO/Virgo observations have
by far too large error bars to do this. Here, we assume the Planck concordance cosmology
to determine the redshift from the luminosity distance. If lensing is relevant, this redshift
is, however, not correct, as the inferred distance is affected by lensing. The advantage of
having a semi-analytic analysis is that it allows us to answer the question of whether it
is feasible that some or most of the observed LIGO/ Virgo events are strongly lensed, as
proposed in [16,17,27,36]. We show that, in order to achieve a significant lensing probability
for more than one of these events, one has to tweak the lens and source distribution in a
way that is in contradiction with the present observational constraints and with results
from simulations.

In this work, we focus on strong lensing. We are indeed interested in working out
the distribution of magnification y > 1 for sources visible by LIGO/Virgo/Kagra. The
magnification induced by a cosmological large scale-structure, which can also lead to
de-magnification, y < 1, is negligible for this study. For the distances of the LIGO/ Virgo
sources, it only leads to small corrections to the results presented herein. We modeled the
lenses as singular isothermal spheres (SISs) which is reasonable for galaxies. While SISs are
not realistic when considering lensing by individual clusters, they are roughly sufficient for
statistical purposes, as can be seen in the detailed study of [37,38]. The main advantage of
SISs is of course that they allow for analytic results. Note that we are only interested in the
magnification of the strongest image and not in the more detailed structure of the lensing
event such as the time delays or the relative strength of images.

We concentrate on transient sources, such as compact binary coalescences which can
be observed with LIGO/Virgo/Kagra [1-6,8-11]. The degeneracy between the intrinsic
chirp mass and redshift of such systems may pose interesting questions. Many of the binary
black holes (BBHs) detected by LIGO/ Virgo are much more massive than those known
from X-ray binaries in the galaxy (the latter have masses only up to ~25M) and in some
cases, BBHs detected in GW have masses well above 60M, [6,8]. Black hole (BH) masses
above ~25M, are expected in low-metallicity environments and are indeed predicted
by various stellar evolution models (e.g., [39-48]). However, standard stellar evolution
models struggle to explain masses in the so-called ‘pair-instability mass gap’ in the range
between ~60M and ~130M, where no BHs are expected to form [49]. An intriguing
possibility could be that the apparent high masses are the result of redshifting, implying
that at least some of the observed BBHs are high-redshift sources with low intrinsic masses
that underwent significant gravitational lensing [16].

A detailed analysis of the individual events in Ref. [33] concluded that the probability
of lensing for the sources observed by LIGO/Virgo runs O(1) and O(2) is vanishingly small,
with the consequence that BH population models can be reasonably informed by GW
observations to date [8,11,50]. In this work, we confirmed this finding with a statistical
analysis. We present predictions for the probability that an event observed by LIGO/Virgo
at a given distance has been magnified by a given amount: while the probability for more
than one event is very small (the probability that two events are magnified by more than a
factor 5 is approximately 101 for the typical distances of LIGO/Virgo events), it slowly
decays with increasing magnification, i.e., there is a non-negligible probability of having
extremely highly magnified events (the probability that an event at a distance larger than
2500 Mpc is magnified by a factor of more than 100 is approximately 10~7).

The remainder of this paper is structured as follows. In the next section, we present
the lens model and we derive expressions for the cross-section, optical depth and lensing
probability for a distribution of lenses. The results presented in this section are not new.
The optical depth for strong lensing was already derived in the pioneering works of
Turner et al. and later by Fukugita et al. and Oguri et al. [51-53]. Probability distributions
for different lensing properties were derived from numerical N-body simulations in [54,55].
Our results are in agreement with this work. In Section 3, we derive the expression for
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the probability that a source seen from a given observed distance was magnified by a given
factor and we compute the mean magnification and its variance both as a function of the
(unobservable) cosmological redshift and the observed distance which can be converted
into an ‘apparent’ redshift under the assumption of ACDM cosmology with Planck values
for the cosmological parameters. In Section 4, we introduce a numerical study for the
population of lenses and sources and we present numerical results for the magnification
as a function of both cosmological and observed redshift, for the LIGO/Virgo detector
network. We also compute the probability of magnification for a source with given observed
properties. In Section 5, we discuss our results and conclude. In a series of appendices,
we discuss a simple analytical model which is useful to understand the physics and we
present results for the mean magnification for different choices of source distribution.

Notation: In this paper, we set ¢ = 1 but keep the gravitational constant G. We define
0 and P as the lensed and the unlensed angular position of the source. The optical axis
connects the observer to the center of mass of the lens. We introduce a vector in the source
plane from the optical axis to the source, b = ds and a vector ¢ in the lens plane defined as
¢ = 6d,. This fixes the geometry. Here, dy = d(zy), dys = d(z4,zs) and ds = d(zs) are the
angular diameter distances from the observer to the lens, from the lens to the source and
from the observer to the source, respectively. These quantities are illustrated in Figure 1.
A glossary with a list of the main symbols introduced in this article and their corresponding
definitions can be found in Table 1.

Table 1. Glossary of the main quantities which we introduce and use in this paper.

Symbol Definition
Zs (cosmological) source redshift
Zy (cosmological) lens redshift
Ds luminosity distance to the source
D, luminosity distance to the lens
ds angular diameter distance to the source
dy angular diameter distance to the lens
dys angular diameter distance from the lens to the source
Zobs observed source redshift (inferred from standard ACDM assuming no magnification)
oy galaxy velocity dispersion
U magnification
At time-delay between multiple images
log lensing cross-section
(1, zs) optical depth for magnification by at least u for source at z;
p(u, zs) probability density of magnification for source at z;
P(> p,zs) probability of magnification by at least y for source at zs
Fim limiting flux of a given observatory
Olim limiting signal-to-noise ratio (corresponding to Fj,)
AN ps (Bim, Zs) # sources observed with liming flux F,, in a bin around z,
ANgbs (Fims Dobs) # sources observed with liming flux F,, in a bin around D
AN (u, Rim, zs) # sources that we see with liming flux Fj;;,, in a bin around zg, if the magnification is u
AN (1, Fim, Dobs) # sources that we see with liming flux Fj, in a bin around Dy, if the magnification is p
P (1) probability density that an observed source at (cosmological) redshift z is magnified by u

7Dobs (V)

probability density that an observed source at observed redshift z.,, is magnified by u
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Figure 1. Schematic representation of a gravitational lens: introduction of the relevant lengths
and angles.

2. Lens Modeling

We describe galaxies acting as lenses as singular isothermal spheres and we derive
expressions for the magnification between multiple images as a function of the geometrical
quantities entering the picture. Most of this section follows Refs. [51,52,56]. SISs are not a
very realistic lens model but since we are interested in statistical averages and not in the
detailed modeling of a single lens, the fact that individual lenses will in general be triaxial
is expected to average out. Furthermore, the neglected substructure may actually lead to
some additional magnification. In this sense, our model is rather conservative. However, a
recent numerical study has shown that the SIS model is surprisingly close to the observed
lensing probability [38]. Note also that our results are only sensitive to the magnification of
the most highly magnified image but not to the geometry or the number of images.

2.1. Basic Strong Lensing Quantities
The matter density of a singular isothermal sphere is given by

o2

p(r) = ﬁr 1)

where 0, denotes the velocity dispersion of the lens. Despite the singularity in the center
and the infinite total mass, this can be considered as a rather realistic mass distribution
for lensing by a galaxy (see [34,56]), where 05, is the velocity dispersion inside the galaxy.
Integrating along the line of sight, we obtain the surface density:

2
(6) = 5575 @
We introduce . = (47tG)~'ds/(dysd,) so that the convergence « is given by
x(0) = Z}_Ef) = 27105%%. (©)]
An SIS has a constant deflection angle given by
a(f) = 471(72% =20x(0) = ag . 4)

vds

We now rescale our variables by «(, defining the rescaled image and source positions
as x = 0/ap and y = B/ay, respectively. In terms of these rescaled variables, the lens
equation for the SIS simply becomes y = x — x/|x|. For y = 0, the solution is the Einstein
ring |x| = 1, and for y = |y| < 1, there are two solutions: one with x; = |x;| = 1+ y on the
same side of the line of sight as the source (positive parity); and one with x; = x| =1 —y
on the opposite side (negative parity). For y > 1, the second solution no longer exists. The
Jacobian of the lens map is:
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where we introduced the magnification y. Expressing the total magnification of a point
source at position y in terms of y, we find:

V(y)z{i,lffl)+”(x12):yyﬂ+lyy=m+uz=§, y<1, ©
L y>1.

2.2. Optical Depth and Lensing Probability

The impact parameter of the source (in the source plane) is given by |b| = b = pds; =
yaods. A source with an impact parameter smaller or equal to b was amplified by a factor
of at least i (y). Hence, the cross-section for amplification by more than a factor of 1 of the
stronger image from a SIS lens with velocity dispersion oy is:

o T(4m) oyds,
(1 —1)2

Note that this cross-section gives the area, centered along the line of sight of the lens,
within which a source at zs must lie so that it is amplified by a factor y; or larger by the
lens at zy. Expression (7) also remains valid for y > 1, where we have only one image with
magnification yq which tends to 1 when y — co.

In our study of the strong lensing of gravitational waves, we only considered one image
and not the sum of both since we expect to see a short burst of GWs which only comes from
one image. The second image is delayed in time, with a typical time delay of the order of a
few months (as can be seen in, e.g., [12]), which is much longer than the GW burst. Since we
are interested in magnification, we shall compute the cross-section for the stronger image.
This point has been neglected in the previous literature: in Equation (7), y ! = y; — 1is
usually replaced by y—! = u/2 = (1 + u2) /2 which is the correct expression for a static
situation in which both images are seen together. For strong amplification, pi1 ~ pp > 1—a
difference which reduces the cross-section by a factor of 4.

To compute the optical depth to the source of magnification by at least s, denoted by
T(u,zs), we need to know the physical density n(oy, z¢) of lenses (galaxies) with a given
velocity dispersion o, at redshift z,. We define the density function n(cy, z;) such that its
integral [ n(oy,z¢)do, simply gives the total density of lenses at redshift z;.

The optical depth for lensing with magnification > u (of the most strongly magnified
image in the case of two images) for a source at redshift z; is:

@)

‘7(}41/22/25/ U‘U) = an = 7T<yl¥0ds)

= dr (dy\?
T(y,zs):/o dzEd—Zz @ /U(y,zz,zs,av)n(av,zwday, (8)

where dr is the physical length element at redshift z,. Note also that we rescaled the
cross-section to the lens redshift, ¢ — o(d,/ds)?, since in Equation (8), we multiply by the
lens density at zy. Inserting this and (7) for the cross-section in Equation (8), we obtain:

(4, zs) =
_ @m)? s P(zzx(z)
= o1 Em) Lt PG o ), ©)

where x(z1, z2) denotes the co-moving distance from the redshift z; to z; and x(z) = x(0, z).
Equation (9) is the optical depth for magnification larger than p.

Often, only the strong lensing case is considered and the magnification from the two
images is added to give the total magnification. To do this, one has to replace 1/ (u — 1)?
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by 4/u?. As already mentioned above, we cannot do this herein since in the case of strong

magnification and double images, we expect a considerable time delay, so that typically, we

observe only one image at one given time. Here, we assume this to be the stronger image.

In the strong magnification case, u > 2, this difference is roughly a factor 4, while in the

limit y — 1 where 4 — 2 and the second image disappears, the two expressions agree.
The probability of having an event from redshift z; magnified by more than y is:

P(> ,25) = 1— exp(—(1,2,)) = [ " oz )dp, (10)

where p(j, z;) is the probability density for magnification by u:

d d
Plze) = = 2 P(> z) = —ﬁexp(—r(y,zs». (11)

To understand Equation (10), note that d7/dz is the scattering rate leading to a magni-
fication larger than y (per redshift). Hence the probability for magnification larger than
u satisfies the differential equation dP(> y,z)/dz = (1 — P)dt/dz with solution (10). The
factor (1 — P) is essential to keep the probability normalized also when 7 becomes large. In
the limit of small optical depth, P(> p,zs) = T(p, z5).

Note that, while our formula also holds if there is only one image, # < 2, it cannot
describe the de-magnification which happens when a beam (from a GW or a light source)
crosses an under-density. An SIS is always an over-density. Therefore, our formulas are
restricted to u > 1.

The probability density and probability defined in this section only depend on the lens
model and lens distribution but not on the distribution of sources or on the sensitivity of
the instrument. They are detector-independent functions which depend on the cosmological
source redshift, which is a quantity that cannot be accessed observationally (without
assuming the existence of an optical counterpart) as it is degenerate with the (unknown)
magnification. The physically interesting quantity is rather the probability that a source
that we observe from a given observed distance has been magnified by a given amount. We
introduced this quantity in the next section and we will see that it depends on both the
distribution of sources and the specifications of a given instrument.

3. Inclusion of Lensing Selection Effects

In this section, we derive expressions for the probability that a given source observed
from a given distance has a magnification y, as a function of both redshift and observed
source distance. Several ingredients enter the computation: the probability distribution
of magnification given a lens population p(y,z) given by Equations (9) and (11), the
underlying source population and the sensitivity curve of a given instrument. As an
instrument has finite sensitivity, highly magnified sources are easier to detect than non-
magnified ones: hereafter, we dub these effects lensing selection effects. These results are
valid for a generic distribution of magnification p(y, z), in particular, they also stay valid
when one adds weak lensing contribution to the distribution of strong lensing studied in
this work. We will come back to this point in the discussion session.

3.1. Magnification Distribution as Function of Redshift

Compact binary coalescences can be detected using matched filtering techniques,
where a model of the signal, which depends on the physical parameters of the source, is
matched against the observed signal (see [9] for a description and further references). For a
given detector sensitivity and a given template bank used to perform the matched filtering,
the obtained SNR p can be related to a false alarm rate (FAR), which in turn sets a threshold
for detection. For example, the O3a LIGO/ Virgo catalog [9] includes sources with the FAR
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below 2 y~!. For simplicity, we will work directly with a limiting SNR pj;, and assume
that the signal is detected if p > Py, Where the SNR p is defined by [57]

2
% = 4/ mdf = /pz(f)df- (12)

Here, S, (f) is the noise of the detector at frequency f, as can be seen in [58].

If an event is magnified by u > 1, we observe it even if without magnification, its
SNR would have been pjin, /\/} < plim- It follows that in the presence of magnification,
the total number of objects which we expect to see from a redshift bin dz is given by the
following convolution:

N s (2, p1im) = [ dpep (0, 2)N (1, 2), (13)
0

where p(jt,z) is the distribution of lensing magnification as a function of cosmological
redshift and:

(o]

AN (u,z) = dz/ N(p,z)dp, (14)
Plim/ /F

is the number of sources that we see from redshift z in the presence of magnification p.

In Equation (14) N(p, z) is the number density of sources as a function of redshift and p.

We denote by p the SNR of a source computed assuming no lensing effects. The mean

amplification of a source at redshift z is:

Ny ,2)AN (1, z
Jo A p(u,2)aN (1,2)
Note that (15) is the first moment of the probability distribution of magnification:
AN (u,z
Pz(n,z) =Cp(p,z) 755 ) , (16)

where C is a normalization constant. Equation (16) depends on three basic ingredients:
(i) distribution of magnification p(y, z); (ii) distribution of sources as a function of redshift
and luminosity (or analogously p); (iii) sensitivity curve of a given experiment which
determines pjj, .

For sufficiently high u, p(u,zs) ~ —dt/du « p~3, while the number of sources
which we see with magnification y or more from a redshift bin around z;, defined in
Equation (14), becomes independent of y for large values of u. Indeed, in the presence of
very high magnification, we simply see all sources that are present. This last statement is
general and does not depend on the details of the distribution of sources. It follows from
the physical assumption that there exists a minimum value for the intrinsic luminosity
emitted, Lyin, and once y is such that Ly, /¢ < Lmin, we see all sources and the luminosity
integral no longer depends on p. The probability of having magnification bigger than
u for a given source redshift is given by the integral of the probability distribution of
magnification, Equation (16), from a minimum value y. We denote this quantity as P, (> u).
For large values of magnification P, (> p) o u~2, the variance of the distribution, defined
by Var(u) = (u?) — (u)?, is log-divergent. We stress that this is a general property of the
probability distribution of magnification in strong lensing. It does not depend on the details
of the distribution of sources, nor on the details of the lens distribution. Moreover, it also
applies to the case of transient electromagnetic sources lensed by galaxies. Of course, this
divergence is not physical. When the magnification becomes very large, y is very small and
the geometric optics treatment adopted here breaks down. Nevertheless, this indicates that
the distribution has a significant tail with large magnification. Even though, as we shall see,
the probability for a magnification of, e.g., 10, is very small; it is not exponentially small as
it would be for a Gaussian distribution, but it only decays as a mild power law.
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3.2. Magnification Distribution as Function of Observed Distance

The functions determined thus far, however, are not observable as we typically do not
know the intrinsic cosmological redshift of a GW event. We usually infer it by assuming
that the observed luminosity distance is the one of the background universe without
magnification. This is of course not true when magnification is relevant. We therefore
rewrite (13) and (15) as functions of the observed luminosity distance which is directly
extracted from observations. It is given by

Dops (zs, 1) = Di;;“ : (17)

The number of sources that we can see from an observed luminosity distance Dps +
dDgps/2 is obtained from (13), rewriting all quantities as functions of the observed dis-

tance and replacing the redshift bin dzs by (dDgps/dzs) ~'dDgps = /f(dDs/ dzs) 'dDyps.
This gives:

dNObS(DObS/plim) = /O d.up(lulzs(DobS/V))dN(V/ Dobs)r (18)
where:
dN(IuI Dobs) = dDobsD>{T:) / N(p/ ZS(DobS/ V)) dp' (19)
s\~s plim/\/ﬁ

is the number of sources which we see from a luminosity distance Dgps £ dDop,s/2, with
magnification y. In these expressions, zs(Dobs, #) = zs(Ds = \/HDgbs) is the cosmological
redshift that corresponds to the observed distance Dyps = /##Ds(zs). Not to be confused
with the redshift inferred by an observer who assumes that D is the luminosity distance
of the background universe (without magnification). This latter, which we denote by zps,
is given by Ds(2zops) = Dops- In Equation (19) D (zs) = dDs/dzs. The average amplification
as a function of the observed luminosity distance is therefore:

<]/l>(D b ) = foood]/l]/lp(l,[’ DObs)dN(V/ Dobs)/dDobs
. fooody P(ﬂ/ Dobs)dN(,ur Dobs)/dDobs

which of course depends on the threshold pjy,, i.e., on the detector sensitivity. In full
analogy with Equation (16), we introduce the probability distribution of magnification as a
function of the observed luminosity distance of the source:

, (20)

dN(ﬂ/ Dobs)

, 21
dDobs ( )

Pobs(yl Dobs) =C p(]/l, Dobs)
where C is a constant of normalization which is given by the denominator of (20).
Equations (13)—(16) and Equations (18)—(21) are the main results of this section.

From Equation (19), it follows that dA (i, Dops) /dDgps o /fi for p >> 1 as both the
lower integration bound and D tend towards constant asymptotic values for large magnifi-
cation p. The probability density p(u, Dops) in (21) also depends on p through the observed
luminosity as we defined p (i, Dops) = p (1, 2s(y/HDobs))- Recalling that p(p, zs) o p =3, it
follows that p(p, Dyps) will have a milder decay with magnification. Indeed, for a fixed
Dobs and p > 1, p(p, Dops) = p(#, 2s(\/#Dobs)) also receives contributions from redshifts
higher than z;(Dgps) and therefore the lensing probability is higher. The exact scaling of
p(#, Dops) with i depends on the details of the lens distribution.

We anticipate here some results that we will obtain in Section 4.1 when considering a
realistic model for the galaxy distribution and evolution. For a realistic distribution with
co-moving number density of lenses which reproduces observations (or hydrodynamical
simulations calibrated to observations), we find that p(y, Dyps) & p~%. The value of «
increases from 2 to 3 as we increase the observed luminosity distance from ~300 Mpc to
5000 Mpc, where it saturates to the asymptotic value & = 3. It follows that the probability
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distribution (21) scales as Pyps (1) & u~*+1/2 and its integral from y to infinity behaves

as Pops (> ) o« p~**3/2 for large values of p. It follows that, for any fixed value of
Dgps, the variance of the distribution diverges as u~**7/2. We stress that this is a general
property of the probability distribution of magnification (for different observed redshift),
independent from the details of the distribution of sources. Moreover, it also applies to
the case of strongly lensed sources of electromagnetic radiation. Furthermore, in that
case, the variance of the distribution of magnification (for a given observed redshift or
luminosity distance) is divergent. We observed that for realistic models of lens distribution,
the mean of (21) also diverges for small observed distances where & ~ 2. The fact that the
variance of the distribution diverges is due to the presence of extremely highly magnified
sources, i.e., sources aligned along the lens—observer direction for which the magnification
u — oo, as can be seen in Equation (6). This is also at the origin of the divergence of the
mean of the magnification at small observed distances. Physically, the magnification tends
to a finite value and as mentioned above, the presence of the divergence is due to the
geometric optics approximation, which breaks down in the vicinity of caustics, where wave
effects need to be taken into account. The fact that the mean of the magnification diverges
only for small observed distances is due to the fact that, if a given source is very highly
magnified, it appears to be at a small observed distance Dp,s. We will get back to this point
in Sections 4 and 5.

4. Numerical Results

In this section, we model the redshift distribution and redshift evolution of lenses
(galaxies) using fits to hydrodynamical simulations. We also model the distribution of GW
sources using a phenomenological model of the binary BH population. We then compute
the distribution of magnification as a function of the cosmological source redshift and of
the observed one. We focus on the case of the two LIGO/ Virgo detectors.

4.1. The Lens Distribution

We model the number density of galaxies (lenses) as a function of the velocity dis-
persion oy, taking into account the evolution of galaxies with redshift. We used the re-
sults of Torrey et al. [59], based on the Illustris hydrodynamical simulation, to describe
the number density of galaxies as a function of their velocity dispersion. The Illustris
simulation [60-62] is a cosmological hydrodynamical simulation run in a periodic box of
size L = 106.5 Mpc, dark matter mass resolution of mpy = 6.3 10 M and baryon mass
resolution of mp,, = 1.3 x 10°M,. Tllustris includes prescriptions for gas cooling, star
formation and feedback, chemical evolution of the interstellar medium and supermassive
black hole growth and feedback. While many of these physical processes are described
with sub-grid models, the simulation was calibrated to match the present day stellar mass
function and the cosmic star formation rate history, and was shown to reproduce the
observed stellar mass function out to a high redshift. Torrey et al. [59] calculated the cumu-
lative velocity dispersion function of the Illustris galaxies N(> 0, z), where the velocity
dispersion oy is the three-dimensional standard deviation of the stellar velocity within the
stellar half-mass radius of the galaxy, and provided fitting functions for this distribution.
We use the values in Table 6 in the ArXiv version of Ref. [59], and the fit is [63]:

log o N(> 00, 2) = A(z) + a(z) (logyg 00 — ¥(2)) +

+ Blz) (101 00 — 7(2))? — (0 10773) (22)
where the numerical value of 03, is to be taken in units of km/sec. We stress that, here,
o, represents the redshift-independent velocity dispersion. The functions A, a, f and «y are
polynomial functions of redshift given in Appendix A. While these simulations cannot
resolve sub-structures smaller than 10° M, we expect these to have a relatively small effect
on the total magnification (in Ref. [38]; it was found that a resolution of approximately
101 My, is sufficient for a good estimation of the total magnification). From the comparison
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with the simulations, we expect the fit to be accurate within a factor of at least 2. We define
the co-moving number density of galaxies as

n°™m(oy,z) = —Z7N(> 0p,2) . (23)
v

The result for different redshifts is shown in Figure 2.

1074}

n(g,) Mpc™2 (km/s)™"

100 200 300 400
g, (km/s)
Figure 2. Co-moving number density of galaxies as a function of the velocity dispersion o, for
different redshifts. The color codeis: z = 0,1,2,3,4,5, 6 from black to red. The figure is obtained from
fits to the Illustris simulation of [59].

The analysis of the Illustris simulation [59] which we use here revealed a very mild
evolution in the galaxy velocity dispersion function for redshifts 0 < z < 2, and a significant
evolution beyond z = 2. Interestingly, the level of redshift evolution of the velocity
dispersion function was found to be much lower than for the stellar mass function.

It is important to stress that the galaxy velocity dispersion distribution function that
we use in this work depends on galaxy build-up and therefore the details of the baryonic
physics implementation in the Illustris simulation. However, the analysis in [59] found that
the median number density evolution of galaxies is nearly identical when traced using the
stellar velocity dispersion of dark matter halo mass. It is therefore reasonable to assume
that the results are relatively insensitive to the specific implementation of baryonic physics,
and mostly depends on the dark matter halos, whose evolution is a rather robust outcome
of the simulation.

4.2. Results for Magnification Probability Density

In Figure 3, we plot the (normalized) lensing probability density as a function of
the magnification for different redshifts. On the left hand panel, we present curves
for fixed-source redshifts, while in the right hand panel, we fix the observer distance
Dobs = D(zs)/\/#. Note that the probability distribution is always strongly peaked at
u == 1. We stress that both optical depth and probability density only depend on the lens
model and on the model for the distribution of lenses, but they are observatory-independent
and they do not depend on the distribution of sources. Similar results have been obtained
in the past, as can be seen in [38,54,55,64] and are in good quantitative agreement with
our findings.
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Figure 3. (Left) Lensing probability density p(y, z) as a function of magnification for z = 0.6,1,2,3
(from bottom to top) using the Ilustris result (22). (Right) Lensing probability density p(y, Dops)
as a function of magnification for D,s = 500, 1000, 2500, 4500 Mpc (from bottom to top) using the
Tlustris result (22). For a sufficiently high redshift, p(y, z) scales as 3 as mentioned in the text. The
thin solid line on the left panel illustrates this scaling.

4.3. Compact Binary Population

We focused below on BBH events and assumed that their masses are in the range of
[5,50] M, [8,50]. We further assume that their formation rate is proportional to the cosmic
star formation rate (SFR), for which we use the following parametric form [65]:

(1 PR 24
((Z))_ a—b+b-e“(z—zm)' ( )

with A = O.24M@/yr/Mpc3, Zm = 2.3, a = 2.2 and b = 1.4 which peaks at z;,,. Note
that we use this parameterization in the redshift range [0, 20] even though it was derived
using observations up to z = 9. We define an efficiency parameter € to describe the
fraction of mass in BBH that merges within the age of the Universe that form out of a given
stellar population. Moreover, we assume a delay time {41,y between the formation of the
progenitor star and the coalescence of the BBH, where the latter is distributed as

Py(tgelay) & tgjlay , (25)

in the range [fmin, tmax] With tmin = 50 Myr and fmax equal to the age of the Universe. We
also assume that the mass of the primary BH is distributed as

P(my) o< mi®, (26)

in the range [5,50] M with & = 2.35, while the mass of the secondary BH is uniformly
distributed in the range [5,m1] so that p(my) = const. in this range and p(my,my) =
p(my)p(my) [50]. Note that this mass distribution is independent of redshift. We assume
zero spins for all BHs. The merger rate is then given by the following integral over the
delay time distribution:

dR
dmydmydz
dv
= €Tops /T(t(z) - tdelay)p(mllmZ)Pd(tdelay)m : (27)
. elay

We calculate the SNR of each merger using Equation (12). We use the PhenomB
inspiral-merger-ringdown waveforms to calculate the strain [66] and we use the noise
power spectral density publicly available from [67,68]. We consider the event observable
if it has p > pim = 10. The normalization parameter € was obtained by comparing the
number of observable events in our model to the number of events observed during the
first two LIGO/Virgo observational runs O1 + O2; note that the most recent merger rate
from the O3 LIGO/Virgo catalog is on the low end but consistent with the O1 + O2 rate:
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dR
Nobs = / — dmydmydz 28
s Ty zyz10 dmydmadz (28)

The merger rate per unit redshift and SNR is then calculated from Equation (27).

In Figure 4, we show the number of GW events per unit of SNR in different redshift
bins. At low redshift, the slope and the width of the curves are constant; while at high
redshift, the curves develop a low-SNR tail. The reason for this can be understood from
Figure 5 where we plot the characteristic strain of BBH mergers with two different values
of chirp mass (left and right panel) and for different redshifts, together with the O2 LIGO-
Hanford detector noise (black solid) and the ET detector noise (black dashed). At low
redshift, the SNR of high-mass events is always bigger than the one of low-mass events
due to their higher amplitude. At high redshift, however, the sharp increase in the noise
curve at low frequencies reduces the SNR of high masses more than the one of low masses
which have higher frequencies so that the situation becomes actually reversed and low
masses have a higher SNR. This leads to a spread of the SNR for different events over a
large range. Of course, for all masses at high redshift, the SNR is very small and they can
only be observed if they are highly magnified:

Zs p
1000 r-\ — 001 7.01 10t — 034
s ‘ — 0.05 — 10.76 1000 — 048
g 10 ‘| — 011 — 1252 g 0 — 097
e v
é‘ — 026 3 1.93
2 0.100 Z 1
z 1.01 g 10 — 387
— 251 1 7.75
0.001
— 4.01 o4 10.97
-1 0 1 2 3 5.01 0

2 4 6 8 10 12— 47.14
logiop Zg

Figure 4. (Left) Number of events per unit of log;;SNR. Each line corresponds to the number of
events in a redshift bin z & 0.025 and the values of redshift are listed in the legend on the right. (Right)
Number of events per unit of redshift. Each line corresponds to the number of events in a bin of
signal-to-noise log;;SNR=£0.015 and the values of p are listed in the legend on the right of the figure.

4.4. Probability of Strong Lensing for LIGO/Virgo Events

In Figure 6, we present the number density of magnified objects that we observe from
a distance D¢ as a function of magnification. We plot this quantity for three different
values of D,g. In the right-hand panel of Figure 6, we multiply each line of the left-hand
panel by the probability density of lensing as a function of magnification to obtain the
(normalized) probability distribution of magnification for objects observed from different
distances, Dgps, i.e., Equation (21), as a function of magnification. Note that, while the
number of objects which can be seen by the given survey (with fixed magnification) is
somewhat lower for D,g = 3000 Mpc than for Dgp,s = 500 Mpc, the probability of seeing
such objects is higher for Dy, = 3000 Mpc than for Dy, = 500 Mpc. This is due to the
fact that p(p, Dgps) is monotonically increases with Dy, as can be seen in Figure 3. For
the product of p(p, Dops)dN /dDgps, the increase in p wins over the decrease in N for
Dgps = 3000 Mpc.

In Figure 7, we plot the same quantities for different values of the cosmological redshift
of the source. At a low redshift, d\/dz tends towards a constant at high magnification
since we see all events (black curve, left panel). The product p(z, )dN /dz nearly tends
towards a constant at high redshift which indicates that d\'/dz grows similarly to y® at
high redshift (blue dashed curve, right panel).
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Figure 5. We fix in each panel a value of the chirp mass and we plot the strain for sources with

that mass and in different redshift bins. The solid black curve is the O2 strain sensitivity of the
LIGO-Hanford detector [67], and the dashed—dotted curve is the strain sensitivity of the Einstein
Telescope [69].
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Figure 6. (Left) Number of events per unit of Mpc~! visible if the magnification is y as a function
of p, for different observed luminosity distances: Dgps = (500,3000,4500) Mpc, indicated by red,
black and orange curves, respectively. This quantity is given by dN /dDg, in Equation (19). (Right)
The same quantity is multiplied by p(, Dyps) to obtain the probability distribution of magnification
in Equation (21) per unit of observed distance. The little peaks in the red line come from the fact
that when fixing Dops = Ds(2s)//#t, we pick up contributions from different z;, as can be seen in
Figure 4. These are numerical artifacts from our binning of (dN/dlog;, o dzs)(p, zs).
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Figure 7. (Left) Number of events visible if the magnification is p per unit of redshift as a function of
u, for different cosmological redshift: z = (0.6, 1,2, 3) indicated by black, red, green, blue lines, respec-
tively. This quantity is given by d N /dzs in Equation (14). (Right) The same quantity multiplied by
p(u, zs) to obtain the probability distribution of magnification (per unit of redshift) in Equation (16).

In Figure 8, we present the results for the average amplification factor as a function
of the cosmological redshift and luminosity distance of the sources (left panel) and as a
function of observed redshift and luminosity distance of the sources (right panel). No
sources are observable beyond 5500 Mpc. (This can be understood by computing the
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probability of seeing a source from a given observed distance, i.e., integrating p(j, Dops)
over y. The probability of seeing an object from a distance bigger than 5000 Mpc is smaller
than 10~7.) The minimum amplification needed to detect sources from a redshift z; and
with a given pmax(zs) > plim 1S given by

2
,umin(zs) = (th) ’ (29)

POmax

hence, we can see sources from a maximum observed distance given by

max ;) D(zs) _ D(Zs)Pmax(Zs).
obs v/ Hmin Plim

For low redshifts, z; < 2, and we can work out the scaling of this quantity with
redshift using a simple analytical approach, as can be seen in Appendix C. The probability
Pops (> 1) that an object that LIGO/ Virgo observes from a distance Dp,s was magnified
more than y is presented in Figure 9 for different values of D as a function of p.

(30)
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Figure 8. (Left) Amplification factor for events observable by LIGO/Virgo, as a function of the
cosmological redshift (and luminosity distance) of a source. (Right) Amplification factor for events
observable by LIGO/ Virgo as a function of the observed redshift (luminosity distance) of a source.
As explained in the text, no events are observed after 5500 Mpc, independently from the value
of magnification.
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Figure 9. Probability that a given GW event observed by LIGO/ Virgo has a bigger magnification
than a given value y, as a function of y, for different observed distances.

5. Discussion and Conclusions

Due to cosmological expansion, the frequencies of gravitational waves are redshifted.
Since the frequencies of the GW signal from BBH mergers are degenerate with the mass, the
quantity that we directly measure from the signal is the redshifted chirp mass
M; = (14 z)M, where M is the intrinsic (true) chirp mass of the binary at a redshift
z. The estimated luminosity distance can be converted into a redshift estimate (by choosing
a cosmological model), which can, in turn, be used to estimate the intrinsic chirp mass M
of the binary. The unknown lensing magnification will bias our estimation of the intrinsic
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mass and the distance (or equivalently, the redshift) of the binary. Therefore, lensed binaries
will appear as a population at a lower redshift and with higher masses. The question is
whether this effect is relevant for a given population of GW sources or whether it can
be neglected.

In this article, we proposed a semi-analytical approach to study the lensing of gravi-
tational waves by galaxies. The framework we propose can be applied to any detector or
detector network once the strain noise of the observatory is known. We presented results for
the probability of strong lensing for BBH visible by LIGO/Virgo, as a function of the redshift
and magnification and for the average amplification as a function of cosmological redshift
and observed distances. The numerical results are in good qualitative agreement with a
simple model (valid for low redshift sources) that we present in a series of appendices.

Results for the probability that a source with cosmological redshift zs is magnified by
yu are presented in Figure 3 as a function of both the cosmological and observed redshift (or
rather distance) of the source. We stress that this result does not depend on the properties
of the distribution of sources, nor on the specifics of a given observatory. The probability
is small, but it slowly decays as a function of magnification. More specifically, for large
values of magnification, the probability as a function of cosmological redshift scales as
p(u,zs) o< u~3. This scaling is independent of the lens distribution model. The probability
density, as a function of the observed distance, p(y, Dobs) = p(#,2s(\/#Dobs)), has an even
slower decay with magnification, as can be seen in the right panel of Figure 3. Indeed, for
a fixed Dops and pt > 1, p(p, Dops) = p(i, 2s(\/HDops) ) takes contributions from a higher
redshift than zs(D,ps ) and is therefore larger. The exact scaling of p(u, Dops ) with u depends
on the details of the lens distribution. For a realistic distribution with a co-moving number
density of lenses which fits numerical simulations (Illustris), we find that p(y, Dgps) o p~*.
The value of a increases from 2 to 3 as the observed luminosity distance varies from ~300
Mpc to 5000 Mpc where it saturates to the asymptotic value & = 3.

Selection effects related to the sensitivity curve (and hence to the horizon) of a given
detector network enter into the game when computing the probability that a source that we
can observe with a given observatory has a given magnification. This probability distribution
Pops (1) is defined in Equations (16) and (21) as a function of the cosmological redshift of
a source and as a function of the observed luminosity distance, respectively. We focused
on the LIGO/Virgo network in our analysis. Plots of the distribution of magnification
for different cosmological redshifts and observed luminosity distances are presented in
Figures 6 and 7 (right panels). The distribution highly peaks at = 1 for low observed
distances but it has more and more power at higher magnification as we move towards
higher redshift or observed distances. The integral of this distribution multiplied by u gives
the average magnification expected for a given observed distance and the given experiment.
For the LIGO/Virgo observatory, this is shown in Figure 8.

The probability distribution of magnification Py, (#) for a given observed distance
scales as Pops (i) o« u~*t1/2 and its integral from y to infinity behaves as Pgps(> 1)
u~%+3/2 for large values of u with a € [2,3]. The probability Pups(> #) is presented in
Figure 9 for different values of Ds. From this scaling, it follows that the mean of the magni-
fication at small observed distances, which have & < 2.5, diverges at large y. This is due to
the presence of rare but extremely highly magnified sources, i.e., sources aligned along the
lens—observer direction for which the magnification y — oo, see Equation (6). It also follows
that, for any fixed value of Dy, the variance of the distribution diverges as u~%*7/2. We
stress that this is a general property of the probability distribution of magnification, which is
independent from the details of the distribution of sources. Moreover, it also applies to the
case of strongly lensed sources of electromagnetic radiation. Furthermore, in that case, the
variance of the distribution of magnification (for different observed redshift) is divergent.
Physically, the magnification tends to a finite value and as mentioned above, the presence
of the divergence is due to the geometric optics approximation, which breaks down in the
vicinity of caustics, where wave effects need to be taken into account. Nevertheless, this
indicates that the distribution has a significant tail with large magnification. The fact that
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the mean of the magnification only diverges for small observed distances is due to the fact
that highly magnified sources appear to have small distances, Dops = Ds//Ji- In Figure 8,
we present the results for the average amplification as a function of the cosmological and
observed redshift of a source. A cut-off in y was introduced to compute the mean for
sources at low distances D,,s < 1000 Mpc. We checked that our cut-off choice is such that
increasing its value does not significantly affect the result. The average magnification, as a
function of the observed redshift, is very close to 1 for a low redshift and it starts growing
from zqpg = 0.5, reaching the maximum value of 40 at a redshift 0.8 where we stop seeing
sources, i.e., where the horizon of the observatory (computed to allow for the presence of
magnification) lies.

In a series of appendices, we present a semi-analytic model which allows us to study
the impact of changing the underlying astrophysical model for both BBH and lens distri-
bution on the resulting magnification distribution. Using this model, we verified that the
average magnification (mildly) depends on the details of the source population, but that
the qualitative picture of Figure 8 is expected to be valid—independently from the details
of the chosen astrophysical model.

Let us finally derive some consequences for the LIGO/Virgo O1, O2 and O3 obser-
vations. The 74 published observed BBH (or binary black hole-Neutron star) events have
distances of D, € [300,5300] Mpc. Assuming that the sensitivity has not significantly
changed between O2 and O3, from the right panel of Figure 9, it follows that (for our
modeling) the probability that one of them was magnified with a magnification of 10 or
bigger is Pgyps(> 10) ~ 0.5. (In Figure 9, the steep drop of the curves to the flatter slope
happens between 1 < u < 1.01.) However, the probability that the magnification of one
of them is bigger than 100 is not much smaller, namely Pyps(> 100) ~ 0.03. In order to
infer that most or at least several of the observed events originated from cosmological
redshifts z; ~ 1-2, these would have to be magnified by a factor of approximately 100.
While this is not improbable, for one of the events to be substantially magnified, it would
require very significant changes in the lens population, which are in contradiction with
both the observations and numerical simulations, indicating that this cannot be the case for
several events, details of which can be found in Appendix B. Another possibility would be
a very significant change in the source distribution which would have to be approximately
1000 times larger at zs ~ 1-2 and correspondingly smaller at z ~ 0. This, however, is at
very strong odds with stellar evolution models. We therefore conclude that even though the
lensing of GW observations will be relevant in the future, e.g., for the analysis of standard
sirens, we cannot reasonably "tweak’ galaxy population models or stellar evolution models
so that we can conclude that most of the observed LIGO/Virgo detections are strongly
lensed, as proposed in [16,17,27,36].

The framework used in this analysis is flexible and can be adapted to study the strong
and weak lensing of sources in any frequency band, and it can be applied to any detector
network. In this work, we have focused on the case of the LIGO/Virgo network. We
stress that while for the case of LIGO/Virgo, the contribution of weak lensing is negligible,
this is not the case for instruments with a sensitivity such that the peak of the redshift
distribution of sources is typically within the instrument horizon. In this case, the weak
lensing contribution to the distribution of y has to be added using, e.g., the results of ray
tracing simulations. Then, a p(y, z) which describes both weak and strong lensing can be
used to derive the corresponding distribution of P (y) and Pyps(y) (including selection
effects) following the procedure illustrated in this work, as can be seen in, e.g., [70], for
a recent analysis of the weak and strong lensing of massive black hole binaries visible
by LISA.
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Appendix A. Fit to the Illustris Simulation

The functions A, «, § and v of the fitting formula used in Section 4.1 to describe the
evolution of galaxy as a function of redshift and velocity dispersion [63] are modeled as

A=A+ A1z + Axz?, (A1)
X = ag + 01z + apz?, (A2)
B = Bo+ P1z + Paz*, (A3)
Y =7+mz+ 727 (A4)

In the following table, we list the values of the coefficients.

i i=0 i=1 i=2

Aj 7.391498 5.729400 —1.120552
K —6.863393 —5.273271 1.104114
Bi 2.852083 1.255696 —0.286638
Vi 0.067032 —0.048683 0.007648

Appendix B. Analytic Description of Lens Distribution

If there was no evolution of lenses, we would expect the physical number density of
galaxies to scale with redshift as (0, z) « (14 z)3, hence:

| dovatn(n,z) = (1+2)°N(od), (A5)
0
where N is the present galaxy density:
N = / doyn(oy,z =0), (A6)
0

and (0%) is the mean of the velocity dispersion to power 4. Let us now assume that, in
the considered redshift range, it is legitimate to neglect evolution, and hence the physical
density scales with the expansion of the Universe. We postulate this law of evolution, not
because it is very realistic, but because it allows us to analytically integrate the optical
depth. However, as we shall see in the next section, for low redshifts to which present
gravitational wave experiments are sensitive, this model is actually quite good.
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Neglecting evolution, the factor 1/(1 + z)? in (9) cancels out and using x(z,zs)" =
—H(z)~!, we obtain:

m(4m)>(cH)N 1

7( = o 242
M, Zs) P G=12 Jo x(Xs = X)°x
_ m(4m)*(o5)Nx3
=~ (A7)

Crude estimates for N and ¢, are (our value of ¢ is one of large galaxies and N is
obtained by simply dividing o, = Qmpc by the mass of a large galaxy, Mgy ~ 102M.)

N=10°H;, (0}) = (150km/s)* ~5x 107, (A8)
As we set ¢ = 1, we have Hy = h/(3000 Mpc). With this, we obtain:

0.001

0.4
r(y,zsmw_l)z(Hox(zs))?’[ )

109H3 5 x 10~ 14

] . (A9)

for the optical depth.

This analytic model gives a result for optical depth in good agreement with the one
obtained in Section 4.2 considering a more realistic distribution of lenses, which evolves
with redshift (fractional deviations of a few percent). For our simple model, we find for the
probability density of magnification as a function of the cosmological source redshift:

p(u,zs) = mexp(—m>, where (A10)
o4
pi() = 0.001<Hox<zs>>3[10§H85X<13>_14]. (AT1)

Already from this expression, it is clear that we cannot achieve a significant probability
of amplification at low redshifts. With this probability distribution, the mean magnification
for a source from redshift zs is (j(zs)) = 1+ \/7tp1(2s). To obtain a non-negligible proba-
bility for magnification by a factor of 50 or more, which is needed to explain the observed
GW events as highly magnified events from redshift z; ~ 1-2, we require that p; 2 1000.
The factor Hyx/(zs) in Equation (A11) becomes of order unity at redshift z; ~ 1.5 and then
very slowly grows up to Hox(zs) ~ 2 at z; ~ 10. This requires a galaxy density which
is more than 10° times higher than 10°HJ or ¢, > 4500 km/s or a combination of both
such that:

N (7)

10°. A12
10°H3 (150 km/s)* ~ (AL2)

These possibilities are very strongly ruled out by present astronomical observations and by
numerical simulations, as can be seen, e.g., in Section 4.

To have some intuition regarding the role of the redshift evolution of the galaxy
velocity dispersion function, we compare the results obtained in Section 4 using the Illustris
simulation to a non-evolving lens distribution. For this, we use the distribution function (22)
for z = 0, assuming no redshift evolution. We then have:

n" v (oy,z) = (1+ z)3ncom((fv,z =0). (A13)

The comparison is shown in Figure Al. The result is valid for arbitrary magnification p.
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Figure Al. Relative difference between the probability with and without redshift evolution. The
result is valid for arbitrary magnification y.

At low redshift, 0 < z < 2, the non-evolving distribution actually has somewhat less
galaxies with low-velocity dispersion, which are the most numerous ones, and therefore the
evolving distribution leads to a higher probability for magnification than the non-evolving
one, 0P > 0. At higher redshift z > 4, the loss of lenses in the evolving distribution becomes
more relevant and 6P changes sign. However, the difference between the evolving and
non-evolving distribution is never larger than 10% for redshift z < 6. This tells us that our
results are quite insensitive to the redshift evolution of the lenses.

Appendix C. Analytical Description of BBH Population

In this appendix, we work out an analytic model to describe the number density of
sources as a function of the emitted gravitational-wave strain amplitude (or the SNR for a
given detector configuration) and as a function of redshift. As a first step, we review the
derivation of the SNR of a binary system of compact objects at fixed redshift as a function
of the component masses and of the noise power spectral density of the instrument(s).
We introduce the SNR per unit frequency p for a binary that merges at redshift z; and is
observed in a narrow frequency band around f as [57]

2
P(f2) =41 'é;)” wtd (';3), (A14)

where S, (f) is the noise power spectrum of a given detector network, with a dimension of
Hz ! and h(f,zs) is the Fourier transform of the strain, with dimensions Hz L. The total
SNR in the frequency band of a given detector is simply the integral of Equation (A14)
over that band. In Equation (A14), we defined the received flux per unit of frequency as
F(f,zs). Hence, there is a one-to-one mapping between flux and SNR. For a single binary
system, the SNR from the inspiral phase integrated over observed frequency is given by [57]
(neglecting the merger and ringdown phases and writing the quantities upon which the
SNR explicitly depends:)

P lzom, M) = o & (ML (20, m) (A15)

,m, 96,74/3 DZ(ZS) z 7/3\4s, ’

where M, = M(1 + z;) is the redshifted chirp mass of the system, m = my + m; is the
total mass and the integral over frequencies can be approximated by

fisco/ (1+zs)
fr/3(zs,m) = /O

af[f7Psuh] (A16)

with dimension [f;/3] = [Hz]~'/3, while @ (with 0 < @ < 16) is a geometrical factor that
depends on the inclination of the binary and on the antenna pattern of the detector. Aver-
aging over all angles, one finds that @2 = 64/25. We do not need this explicit expression
in what follows and the interested reader is referred to [57] for details. In Equation (A16),
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the upper integration bound is given by the (redshifted) frequency corresponding to the
innermost stable circular orbit (ISCO) of the system, i.e., the frequency at which we consider
the inspiraling phase of the system to end in our approximation. It is defined as [58]

1 3
6v/6(27r) Gm

where m is again the total mass of the binary system. This frequency is not the frequency
where the signal is maximal, but it is the frequency beyond which we can no longer trust
the quadrupole formula used for the SNR estimate in Equation (A15). It is therefore a
conservative estimate of the SNR which has contributions from higher frequencies, e.g.,
the coalescence frequency is typically approximately 3 fisco. However, we follow here the
standard procedure as detailed in [57]. We rewrite the parameterization (A15) in a way
which will be useful for what follows:

Mg

fISCO = ~ 22 kHz (T}’Z) ’ (A17)

pz(zs,./\/l,m) =

M3 Mpc 2 £7/3(zs,m)
103902 7/3\Zss 5/3
=77-107"0 (M@) (D(Zs)> =V (14257 (A18)

Let us understand the redshift dependence: from Equation (A16), we see that if
fisco/ (1 +zs) > fmax, then f;,3(zs) does not depend on redshift. Here, with fmax, we
denote the maximum frequency a given detector is sensitive to (i.e., the frequency above
which the noise becomes very large) and it is fixed by the form of the spectral noise in
Equation (A16). This is determined by the condition:

(1+Zs) < fISCO -~ (2.2.1(HZ> (M@) ‘ (A19)

f max f max m

If this condition is verified for a given source, then (A16) is redshift independent.

From a comparison with numerical models for source formation and evolution (see
Section 4), we find that the maximum SNR that we receive from a given redshift z; can be
effectively written as

(1425)* 0 f73(z6) "2, (A20)

Mumax \*/® Mpc
pon(e) = A(57) 5

and similarly for the minimum value:

.\ 5/6 ~
Mmm) MPC (1+Zs)5/6f7/3(25)1/2, (A21)

Pmin(zs) - A( M@ D(ZS)
where f7/3(z5)!/? is obtained using the average ISCO frequency in Hz, rescaled with
redshift, as the upper cutoff in the integral (A16), i.e., the ISCO frequency for the average
total mass m. We introduced a constant A = 1.4 x 107! which corresponds to the square
root of the numerical factor in Equation (A18) multiplied by the square root of @* = 64/25.
We denoted by M pin and Mpax the minimum and maximum value of the chirp mass
(for a given mass distribution), respectively. We observed that for redshifts that satisfy the
condition (A19), Equations (A20) and (A21) simply scale with redshift as (1 + z5)%/°D(zs) .

As a second step, we need a parameterization for the number of sources per unit of
SNR as a function of SNR and of redshift. The number density of sources per unit of chirp
mass (and as a function of redshift) is given by

N(zs, Mc) & R(zs, M) & p(Mc), (A22)

where R is the merger rate for a binary system with chirp mass M. at redshift zs;, which
in turn is proportional to the distribution of chirp masses (with a redshift-dependent
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pre-factor). For simplicity, we assume it to be monomial, p(M.) « M, M We now
convert the number density (A22) into a number density per unit of SNR. Neglecting the
mass dependence of the ISCO frequency, as we did in (A20) and (A21), we can simply
invert (A18) and we obtain for the distribution of sources as a function of SNR:

Ny(zs)p™"  for pmin(2s) < o < Pmax(2s),
_ p\Zs
N(p.zs) = { 0 otherwise, (A23)

with v = (68p — 1)/5 and N,(zs) which is a redshift-dependent function. For exam-
ple, the distribution of masses in the astrophysical model discussed in Section 4 is such
that the resulting distribution of chirp masses is (independent on redshift) p(M,) «
M732 Then, N (p,25) o p’3'6, which is the scaling of the curves in Figure A2. Note that
when comparing this figure to the scaling derived here, one needs to keep in mind that

dN/dp = p~1dN/dlogp.

107 107
104 104 "=~
% 10 3 10 ] —— 00125
S 8 ——— 0.0475
3 ) )
Z oot : 0.01 1 ——o.1075
hel
105 1075 | —— 02575
1.0075
108 107 1 —— 25075
1 -1 0 1 2 3
log1op 10g10p

Figure A2. Comparison between the analytic model for source distribution presented in Appendix C
and the numerical simulations of Section 4.3, for different redshifts 0.0125 < z < 2.5075. The dashed
line represents the scaling given in Equation (A23) with y = 3.6.

Appendix D. Analytic Derivation of the Average Magnification

The number of sources which we see from redshift z; with our limiting SNR py;,, if
magnified by , is:

PZ(ZS) —
N(ptim, 1) = No(z:) [ dpp

Xlim

SR -GE) e

where ajiy, = max(0iim/ /7, 01(2s)) and we set p1 = Pmin, P2 = Pmax- We assume that
Plim/ \/# < p2(2s). If this is not the case, then N (pjim, zs, #) = 0. We assume here that y # 1
but the case v = 1 can be easily worked out following steps similar to the ones performed
below. The result without magnification is simply N(pjim,zs,1). The total number of
sources which we see is therefore:

N(ptim, zs) = /1 dpup(p, zs)N(Otim, Zs, 1) - (A25)
With a bit of algebra, this can be rewritten as

No =+l —y+1y | Np | —9+1 p(oum/02)?
N(Ptim,2s) = Fpl(pl% —p27+)+7’1{p27+ fl(Pl p2) dup(p,zs)

(A26)

—r+1 im/01)* im/01)? 7-1
—py TP gz + [ (e, zs) (32 }
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where the redshift dependence in p1 > and N, is understood. We eventually want to compute
the average magnification. For this, we need to compute:

M(plim, 2s) = /1 dpp p(p, zs)N(Qtim, 25, 1), (A27)

which can be done with similar steps as above, yielding:

M(oim ) = 325 (07" = oy T+ Yy {Pz [ gy, 24
—py f(an/pl) dupp(,zs) + [ phm//(gl dﬂﬂp(ﬂ,zs)<¥z)7_l} / (A28)
where ji depends on the source redshift and is defined as
i(zs) = /100 dppup(p, zs) - (A29)
The average magnification is now given by the ratio of (A28) over (A24):
(1) (2s) = M(p1im, 2s)/ N (0tim/ Zs) - (A30)

The computation of the average magnification presented in this section relies on the
assumption that we can replace the mass dependence of the ISCO frequency appearing
in the expression of the SNR (A18) by an average. From a comparison with the numerical
models of Section 4, it turns out that this approximation is well justified for low redshift
sources (zs < 2 when considering the sensitivity curve of the LIGO/Virgo detectors).
The comparison is shown in Figure A2. As already explained, the average magnification
does not depend on the scaling of the number of events with redshift, i.e., on Ny(zs) in
Equation (A23). To compare with a realistic population model, in Figure A2, we recon-
structed this dependence fitting the numerical model, i.e., N,(zs) o p~3. For high redshift
sources, a simple analytic derivation of the average magnification is not possible, but
the relation (A18) can be numerically inverted to find the chirp mass and the average
magnification can be numerically computed as a function of redshift.

Appendix E. Analytical Results for the LIGO Detector(s)

Our analytic model for the distribution of sources has four free parameters: (v, Mmnin,
Mmax) defining the distribution of chirp masses and pj;, (or equivalently S,) which gives
the minimum SNR for detection, and depends on the detector network chosen. We focus
now on the case of the LIGO detectors and we compute the average magnification for
different choices of the parameters (77, Mmin, Mmax). For definiteness, we consider the
noise curve of the LIGO-Livingstone detector for the O2 run. The sensitivity for O3 is
slightly better. In Figure A3, we plot the spectral noise of the LIGO-Livingstone detector
that we find to be well described by the fitting function Sg;(f) given by

Seie(f) = As {(30@&)% + 1} exp [ﬁs <log<150fHZ>>21 , (A31)

with log,, As = —46.3, a; = —7.8 and Bs = 0.4.
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Figure A3. Spectral noise curve for the LIGO-Livingstone detector [71]. The red curve is the fit given

in Equation (A31).

We analyze the dependence of the average amplification on the details of the astro-
physical model. In particular, we want to explore the dependence on the distribution
of the component masses and on the upper cut-off in the distribution. We assume that
the primary BH mass is distributed as p(m) o m;* in the range [5, X] M where both «
and X are parameters that we vary. We consider two cases: « = 2.35 and &« = 1.5. The
corresponding normalized distribution of chirp masses is polynomial in the chirp mass, i.e.,

p(M;) ox M, PM with Bm = 3.2and By = 2.1, respectively. As explained in the previous
section, for a sufficiently small redshift, the scaling of the number density of sources per unit
of signal to noise is given by (A23) with v = —1/5(1 — 6B ); hence, v = 3.6 and 2.3 for the
two values of «, respectively. In Figure A4, we show results for the average magnification
as a function of redshift for the two models considered and for two different values of the
upper cut-off in the mass distribution. The result for the average amplification in Figure A4
is in excellent agreement with the one we found using a realistic model for source formation
and evolution for low redshift sources (as can be seen in Figure 8, left panel).

150~ : : : 140
120f
100f
80f
60f
40t
20}

0,

100

<p(zs)>
<p(zs)>

501

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Figure A4. (Left) Average magnification for « = 2.35 (y = 3.6) for two different upper cut-offs in
the distribution of the primary mass. (Right) Average magnification for « = 1.5 (y = 2.3) for two
different upper cut-offs in the distribution of the primary mass.
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