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Abstract: We describe a model of artificial intelligence systems based on the dimension of the
probability space of the input set available for recognition. In this scenario, we can understand a
subset, which means that we can decide whether an object is an element of a given subset or not
in an efficient way. In the machine learning (ML) process we define appropriate features, in this
way shrinking the defining bit-length of classified sets during the learning process. This can also be
described in the language of entropy: while natural processes tend to increase the disorder, that is,
increase the entropy, learning creates order, and we expect that it decreases a properly defined entropy.
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1. Introduction

The purpose of this article is to present a certain view of understanding and (pattern)
recognition, based on the bit length of a unique but ordered coding that distinguishes
between objects belonging and not belonging to a given class. Once done, we will define
an entropy measuring the effectiveness of the concepts we use for classification, and show
that learning is equivalent to decreasing the entropy of the representation of the input.

One of the bottlenecks in today’s artificial intelligence (AI) algorithms is to concep-
tualize the unknown in a way which makes it automatically implementable by an AI. In
this respect, the borderline recognitions after a learning process also belong to the category
“unknown”. A flexible AI should be able to determine when it did not recognize something
and, accordingly, to run a safety protocol.

The person pushing a bicycle is neither a pedestrian nor a vehicle, still he or she
should not be overrun by an automatic self-driven car. To render to one of the pre-defined
classes an unexpected, so far unexperienced, and briefly unknown perception is neither
smart nor intelligent. Intelligence starts where such indefinite situations are recognized
and acted upon.

We model in the present article a finite universe of objects, each indexable (countable),
and referred to by an at most N bits long binary digital code. These 2N possible objects
can be divided into two categories in the simplest version: 2N1 belonging to a pre-defined
and recognized class, and all the 2N − 2N1 others to the unrecognized ones. This situation
is analogous to the division of phase space in statistical physics to a subsystem under
observation and to an unobserved environment. Since the best separation minimizes the
correlations among these two parts, the minimum in mutual information indicates the ideal
subsystem—environment partition. For infinitely large systems, this leads to the canonical
description, for example, by fixing the average energy in the subsystem being equal to that
of the reservoir system. In finite systems, there are fluctuations around this value, and the
temperature cannot be sharply defined.

The structure of this article is as follows. We start with the motivation that a compre-
hensive view of understanding and recognition is important for improving both natural
and AI systems. Next, we turn to a mathematical formulation of understanding supported
with proofs and examples. Then, we turn to the definition of the entropy of learning,
proposing a formula that is minimal in the optimally trained state of the intelligent actor.
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We also demonstrate how a scientific method of dealing with a few unknowns is opposed
to AI methods, where complex data must be handled in repeated steps. Then, learning
as a time evolution of bitwise arrangements will be pictured and related to phase space
shrinking—eventually to a concept of general entropy.

What Does Science Teach Us about Learning?

The learning process, during which new knowledge is acquired, is of primary impor-
tance in human evolution and societal development. Concepts of learning, understanding
and wisdom were and are anxiously debated in the history of philosophy [1]. In the natural
sciences, in particular in the modern ages when these became released from the oppression
of philosophy, understanding frequently appears as a simplification. Not that simplification
alone would be an understanding, but the fundamental relations, newly discovered, could
only be seen by paying the price of simplification. It is also an abstraction from unnecessary
circumstances-but which exactly are unnecessary is more clear after one has found the right
models.

In this vocabulary, knowledge is data, such as facts known about systems and pro-
cesses, eventually comprised into finite bit-strings, and understanding is the model which
is able to organize these facts in such a way to improve the speed and sharpness of our
predictions. These predictions form a basis for interaction, transformation and, in the end,
for technology. We declare an understanding when we divide the facts into two classes:
relevant and irrelevant ones. Relevant for an understanding of the behavior, and relevant
for being able to predict and influence future states of the piece of world under our study.

Complex systems are also often treated in science as collections of their simpler parts,
with subsystems described by shorter bit-strings. When the total is nothing more than a
simple sum of its ingredients, then analytic thinking triumphs. In some cases the “simple
addition” may be replaced by more sophisticated composition rules, but any rule which
defines a mathematical group or semi-group is associative. For associative rules, a formal
logarithm can be derived which is then additive [2]. Exactly the utilization of formal
logarithms defines a powerful generalization of the entropy concept: the group entropy [3].

Knowing the parts of a system and all of the interactions between those parts constitute
a complete analytic model. The subsystems being simple it is only a question of computing
power to make all possible predictions. Yet, we do not need them all, only the relevant ones.
The goal of a Theory of Everything, the ultimate string model meanwhile was shattered
by the enormous number of the possible ways it could be connected to reality, or at least
to its most prominent representative, the Standard Model in particle physics [4]. With a
slight extension, on the cost of phenomenological parameters, even gravity may be added
to the Standard Model [5]. Accepting two dozen unexplained parameters, in principle, the
Standard Model is understood and its predictions are experimentally verified. More worry
arises upon not detecting deviations from it. Therefore, the Standard Model itself needs
an explanation.

Computing power until the mid of 20th century was exhausted by formula writing
and solving with pencils and paper. Since the dawn of computers, machines took over
the bulk of computations with a speed surpassing all previous dreams. Even computer
simulations of complex systems with nonlinear chaotic dynamics arose and man-made
intelligent networks work by classifying complex data patterns. But one still doubts that
computing machines would understand what they compute.

How to understand then complex systems? Historically, the first attempt to treat
complex systems was by perturbation theory. This was doable even with paper and pencil
tools. A simplified problem, solved analytically, is varied by adding small perturbing effects
and the real behavior is determined by a series of further computations gradually. The
main limitation of this strategy appears when perturbation series become divergent, like
the quantum theory of strong interaction Quantum Chromodynamics (QCD) for processes
at low momentum transfer. For such processes a massive use of computer power seemed
to be the solution: as lattice gauge theory spread since the 1970s.
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Such large scale simulations provide bits and numbers which have to be interpreted.
These are virtual experiments not telling us more about the essentials than a real world
experiment—but with a lower cost and higher insecurity about their relevance. That
circumstance drives their proliferation. So why is it that knowing a bunch of numbers does
not mean understanding?

An important example from high energy physics is the missing proof of the existence of
a mass-gap in quantum Yang–Mills theory, declared to be one of the millennium problems
by the Clay Institute, despite the numerical evidence. In further examples, the underlying
level looks simpler, more understood, than the composite one: QCD looks theoretically
simpler than nuclear physics, the Schrödinger equation than chemistry, the structure of
amino acids than the mechanism of protein folding. Networks of simplified neurons are
also more easily simulated than thinking and other higher brain functions.

A further difference lies in the following: a scientific model is usually understood term
by term, all elements of basic equations represent separate physical actors. For example, in
hydrodynamics, the pressure, energy density, shear and bulk viscosity all have their separate
roles. In simulating complex dynamics, the individual terms are frequently just auxiliary
variables without any special meaning for the behavior of the entire system. Completely
different representations may yield the same result; in this way they are equally good.
What did we understand here?

We would like to mention now some challenges for the AI learning. Despite the over-
whelming popularity of deep neural networks (DNN) [6] and other machine learning (ML)
approaches, we do not grasp why a DNN performs better than the analytic, simplifying
method of science. In table games (chess, go, nine men’s Morris, etc.) or by face recognition,
DNNs are effective and are already faster than people, whose evolution prepared them for
face recognition. What is common and what is different in image classification and solving
Newton equations?

Mathematically, a feed-forward deep neural network is a series of functional mappings,
between the input x and output y in the form of y = N (x, W), whose parameters, W, weight
possible paths of signal propagation. Learning is then a re-weighting, at the end of which
the output y significantly and repeatedly differs for inputs belonging to one or another
class, that we wanted to teach the AI. Such algorithms mostly lead to the required result,
but still their performance does not seem to be based on a simplified model: their results
can be repeated by copying all weights to another AI, but lesser or erroneous copies ruin
the whole procedure soon.

Such problems reveal themselves when neural networks make errors unexpectedly.
The well-trained set of weights are also the most vulnerable ones to adversarial attacks.
Human knowledge, once learned, seems to be more robust against such pernicious ef-
fects. This leads us to a conclusion that present day AIs recognize and interpret their
environments differently.

The learned weights are not in a one-to-one relation to understanding: some networks,
if shown patterns in different order or trained from different initial states (reflecting a
various history of previous learnings), end up with different weights. Not even close to
each other. Is then DNN learning chaotic? An entropy producing process? That is hopefully
a false conclusion. Details of patterns must be unimportant for recognition. The basis for
functioning well is a distinction between the relevant and irrelevant combinations inside
the complex data sets.

We want to describe an example of what understanding may mean for humans and
AI systems, respectively. Let us follow how a picture shown in Figure 1 exhibiting a girl
and her mother appears to a computer. The digital image, describing the pixel colors in
some coding, is a complete description at a given resolution, say 1 Megapixel. In the real
world image of the painting there were brush strokes and chemical paints instead of pixels.
That is the way how art copying works. A more economical and simpler procedure would
be to name the objects seen on the canvas and their relations.
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Figure 1. Pino Daeni: Summer Retreat.

The analytic method defines subsystems in the whole, naming a girl, a woman, clouds
and sand, a wind blown red dress, and so forth. Repeating this analysis to smaller and
smaller subsystems of subsystems one could reach beyond the one Megapixel description
in data size. However, not all details are necessary for recognition and categorizing; in
the human world, a depth of a few levels is sufficient. “Summer retreat”, the title of the
painting, comprises the relevant information in this case.

It is demonstrated by this example that the same thing can be analyzed in different
ways, attaching coordinates in the space of possible objects or possible positions and colors
of pixels, too. Both serve as an acceptable reconstruction of the same image. Understanding
means, however, that we select common features of all images inside a given collection of
them. Saying that the top left pixel is red can be less relevant than indexing it as a Pino
Daeni painting with a mother and her daughter on a beach.

By knowing what is common in several images, it is much easier to decide whether
a randomly drawn exemplar belongs to our cherished collection or not. Or asking for a
characteristic example from the chosen collection (category) of images, a drawing with
a cat passes the test while another one with a dog would not. AI systems must perform
exactly such jobs.

In all of these examples, recognition is mapped to a selection of subsets in a larger set.
We test the understanding by performing AI tasks: classification, regression, lossless data
compression, encoding.

There are preceding works in computer science dealing with the description of un-
derstanding. The hunt for mathematizing or at least algorithmizing the cognitive abil-
ities of humans dates back to the beginning of learning theory [7,8]: an approximately
correct model is defined mathematically. The closest to our approach is representation
learning [9,10] where the aim is to select an appropriate representation for complex inputs
which optimally facilitates the design of a machine learning architecture. Representations
can be disentangled using symmetry groups; for recent works, see [11].

There are several attempts to go beyond the limitations of present-day AI (for example
and for references cf. [12]).

The physics example is the use of one exact renormalization group (RG) [13]. In
computing science, RG methods were applied by [14,15] and in connection with Boltzmann
Machines in [16].

2. Our Mathematical Model Space

Before referring to mathematical definitions, detailed in [17], let us construct a little
example. In order to follow all steps we consider a three bit universe, containing 23 = 8
possible elements. Our analogon to the total phase space in statistical physics is now this
finite set,

Ω = {000, 001, 010, 011, 100, 101, 110, 111}. (1)

To be more precise, we have here a coordinatization (representation)

x : Ω→ B3, (2)
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where B = {0, 1} is a binary set. The elementary bits of an element ω ∈ Ω are x3(ω), x2(ω),
x1(ω), which corresponds to the “pixel-wise” representation of the set.

These 3-bit strings describe all possible cases (objects), which may occur for recognition.
Now we select our “cats”. Let all kinds of cats belong to the subspace

Ω1 = {001, 010, 100, 111}. (3)

This example is chosen in a smart way: (i) The number of cases are half of all possible ones;
this is reflected in the ratio of the respective cardinalities (sizes) |Ω1|/|Ω| = 1/2; (ii) the
number of set bits in the chosen subspace (value 1) are exactly the half of all bits, so Ω1 is
bit balanced; (iii) in this way both in the total set and in the subset, the expectation value of
a uniformly randomly chosen bit is 1/2.

Are these bits all independent? Are all elements (images) equally probable? The
answer is yes for the second question, but no for the first question. It can easily be checked
by looking for joint probabilities for two and three bits: whenever those factorize to a
product of one-bit-probabilities, there is no correlation. The probability that is relevant here
is the conditional probability for the Ω1 subset:

ProbΩ1(x1 = σ1, x2 = σ2, x3 = σ3) =
1
|Ω1| ∑

ω∈Ω1

δ(x1(ω) = σ1)δ(x1(ω) = σ1)δ(x1(ω) = σ1), (4)

where δ(a = b) = 1 if a = b and 0 otherwise (indicator function or Kronecker-delta).
In our example, Ω1 above, the two-bit probabilities factorize:

ProbΩ1(x1 = 1, x2 = 1) =
1
4

= ProbΩ1(x1 = 1) · ProbΩ1(x2 = 1) =
1
2
· 1

2
, (5)

and similarly for any further pairs of two bits in the sample Ω1. However, the coincidence
of all three bits in this set is also 1/4 (a single element from the four possible ones in our
subset), while the product of independent probabilities would be (1/2)3 = 1/8:

ProbΩ1(x1 = 1, x2 = 1, x3 = 1) 6= ProbΩ1(x1 = 1) ·ProbΩ1(x2 = 1) ·ProbΩ1(x3 = 1). (6)

The bits in this example are pairwise independent, but not entirely independent. In pattern
recognition of megapixel images it is also typical that on a few bit level they might seem
independent, but not as a whole.

The complementer set, the “non-cat” images show the same property. For

Ω2 = {000, 011, 101, 110}, (7)

all two-bit joint probabilities factorize, but ProbΩ2(x1 = 1, x2 = 1, x3 = 1) = 0, since there
is no element with all bits set there. Moreover, the sets Ω1 and Ω2 = Ω\Ω1 are also not
independent of each other: the elements in Ω2 are the bitwise negations of the elements in
Ω1, just in a varied order.

Since the subsets Ω1 and its complement Ω2 are smaller than the total, they can be
mapped onto shorter codes. We may choose the index number in the above listings. For
the “cat” subset we obtain:

{001, 010, 100, 111} → {00, 01, 10, 11}, (8)

and for its complementary set (containing the bitwise negated elements) the same
indexing applies:

{000, 011, 101, 110} → {00, 01, 10, 11}. (9)

The new coordinates, yi ∈ {00, 01, 10, 11}, are coincidentally the first two-bit combinations
in the original subsets. It follows that the original images differ only in their third bits, that
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is, the relevant bit. On the other hand, there is no one-bit decision: the third bits are again
set or unset with equal probability.

The common set with two-bit strings finally has to be supplemented by a third bit
deciding whether “cat” or “non-cat.” We set an extra bit in the leftmost position if “cat”
and unset it otherwise. That is a bijection among the elements of the total set:

Ωnew = f (Ωold) (10)

occurs in a way that from the original set given in Equation (1), we obtain a re-ordered one,

{non, cat, cat, non, cat, non, non, cat} ↔ {non, non, non, non, cat, cat, cat, cat}. (11)

The subset for cats with the leading bit set is given in this example:

Ωnew
1 = {100, 101, 110, 111} (12)

together with its “non-cat” complement subset,

Ωnew
2 = {000, 001, 010, 011}. (13)

In the newly ordered total space, Ω, now the non-cat subset is listed first and the cat subset
second in the natural index order,

Ωnew = {000, 001, 010, 011, 100, 101, 110, 111}. (14)

After these replacements in the subsets, the first bit alone decides whether the element is a
cat or a non-cat. At the same time, these new subsets are totally decorrelated. We have for
Ωnew

1 the following one-bit, two-bit and three-bit probabilities:

ProbΩnew
1

(x1 = 1) = 1, ProbΩnew
1

(x2 = 1) = 1/2, ProbΩnew
1

(x3 = 1) = 1/2,

ProbΩnew
1

(x1 = 1, x2 = 1) = 1 · 1/2 = 1/2,

ProbΩnew
1

(x2 = 1, x3 = 1) = 1/2 · 1/2 = 1/4,

ProbΩnew
1

(x1 = 1, x3 = 1) = 1 · 1/2 = 1/2,

ProbΩnew
1

(x1 = 1, x2 = 1, x3 = 1) = 1 · 1/2 · 1/2 = 1/4, (15)

proving total independence. The same applies for the complement subset, as it is easy
to verify. One concludes that the perfect learning reduced the bit-correlations to zero in
both subsets. The change in the entropy of the cat subset is also reflected in the change
of the random bit expectation value. In the cat subset originally, it was E(x |Ωold

1 ) = 1/2,
while in the learned state it is increased to E(x |Ωnew

1 ) = 2/3. For the complement non-cat
subset, one obtains accordingly a decrease of this bit expectation value from 1/2 to 1/3.

Summarizing the lesson from this example, learning is equivalent with an ordering
among the permutations describing all possible orders (i.e., indexing) of the objects in an
AI universe. After selecting and resetting the significant bits, the number of possibilities
inside the subsets (cat and non-cat in the present example) shrinks.

Now, we generalize the concept of understanding, as detailed in ref. [17]. The finite
but huge embedding set Ω contains the subset Ω1 whose elements we will identify as
recognized. Rearranging the elements of the big set in a way that the subset elements are
in a common block, i.e., having assigned a new position by the leading relevant bits set
to the value 1, and for all of the others unset, that is, value 0, is a coordinatization. This
coordinatization is bijective, hence in principle reversible and therefore entropy conserving.
The mappings ξ : Ω → BN , with B containing the alphabet 0 or 1 in the digital case
and N being the minimal length of bit-strings when counting for all elements (2N is
the smallest supremum for |Ω|), are coordinatizations. There are |Ω|! = (2N)! possible
coordinatizations, the number of all permutations of 2N elements.
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Accordingly, in Ref. [17], the following definitions were given:

def.: A complete model of a subset of all possible images, C ⊂ X, is a bijection to an N-
bits string, whose coordinates (single bits) are totally independent. The ProbC(x =
σ) probabilities are either deterministic, showing the value of zero or one, or are
uniformly distributed—for irrelevant bits.

Similar notions are defined for an ensemble of disjoint sets. Relevant and irrelevant
bits are defined as follows:

def.: The deterministic (zero or one) bits in the ’cat’ set C are overall relevant coordinates,
def.: while partially relevant coordinates are those independent bits that are either deter-

ministic or uniformly distributed for all Ca and C, but at least in one subset, they
are deterministic.

def.: Irrelevant coordinates are those independent coordinates that are uniform distributed
in all subsets which are ’cats.’

A permutation of either the irrelevant or the relevant coordinates among themselves,
maintaining probability distributions, will not change a complete model. If one pro-
vides a complete model of the subset C ⊂ X, we define that as understanding in the
present framework.

In the above cited Ref. [17], it was proven that a complete model always exists, as well
as a common complete model for pairwise disjoint sets.

We can also demonstrate, following Ref. [17], that knowing a complete model makes
all AI tasks trivial:

• Classification: In order to find elements from disjoint subsets and put them apart, the
partially relevant bits have to be inspected. Moreover, if the leading bits disagree with
those of the union set, then one immediately concludes that the shown image is not an
element of any pre-determined class: an outlier is identified.

• Regression: i.e., obtaining parameters of a function from noisy function values can
also be treated as a classification problem. Let, e.g., the sets Ω(a, b) contain the noisy
functions around the smooth one with parameters a and b. A pair (xi, yi) belongs to
Ω(a, b) if the probability, derived by using a model of the noise, is maximal. Finally,
once a common complete model is learned, one decides about any further point pair
by inspecting the partially relevant bits. These also indicate if the found numerical
values do not fit in any of the classes. The AI may understand when it does not
understand. Will that imply intelligence or awareness?

• Decoding: the AI task is to single out a random ‘cat,’ a random element in Ωi. Since
the relevant bits are constant over Ωi, one performs:

x−1(σrelevant, σirrelevant = random uniform) ∈ Ωi. (16)

The distribution of irrelevant coordinates being uniform, this chooses among the
elements with equal probability.

• Data compression: By knowing that the relevant bits are all the same for the cats, it
suffices to keep the irrelevant ones, compressing the required length of bit-strings this
way. This compression is lossless and can be undone.

We note here, following Ref. [17], that model building and understanding in natural
sciences also can be viewed as separating relevant and irrelevant information, compressing
this way the amount of data necessary for classification. By evaluating experimental
results and by planning new experiments, the researcher’s goal is to disentangle relevant
information from the irrelevant ones.

A serious step towards a deep understanding also occurs when correlations appear
between physical quantities, assumed to be independent at first glance.
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3. Entropy of a Representation

As we have discussed, learning is a process by which we try to find a coordinatization,
where the coordinates are independent, and where the number of relevant coordinates is
maximal. When we have understood a subset, that is, when we can provide a complete
model for that, we have organized all information in the most ordered and most compact
way. On the other hand, if we made mistakes with random changes in the coordination,
then the effectiveness of the representation would be worsened, proving that random bit
changes can lead the system out of the most ordered, learned status.

This suggests that we can associate an entropy to the representation of the system,
which is minimal in the optimal, learned state, and which grows with random processes. In
this sense we want to speak about the entropy of the cognitive system [18] rather than the
entropy of the physical system containing the cognitive system (i.e., we speak about the
entropy of the software and not of the hardware). As another approach, we note that, in
the completely trained system, the information is stored in such a way that the redundant
and synergetic information are minimal [19], and we try to define an entropy concept that
successfully represents this expectation. We mention here that the information entropy
can be converted into units of physical entropy, too. It has been used for the assessment of
complexity in a number of natural objects (hardware) in Ref. [20].

We start from the Shannon entropy formula, which is defined for a general n bit
system as

SShannon(x, Ω1) = −
1

∑
σ1,...,σn=0

ProbΩ1(x1 = σ1, . . . , xn = σn) log2 ProbΩ1(x1 = σ1, . . . , xn = σn). (17)

In the present case, all configurations of Ω1 are equally probable, therefore ProbΩ1(x1 =
σ1, . . . , xn = σn) = 1/|Ω1| if the given bit configuration is in Ω1, and 0 otherwise. Therefore
we find:

SShannon(x, Ω1) = log2 |Ω1| = N1. (18)

This entropy depends only on the number of elements in the subset, independent of
the representation. Indeed, this is the goal of this definition: it represents the minimal
information needed to describe the Ω1 subset.

The joint probabilities usually do not factorize: there is a correlation between the
individual bits, as we have seen earlier. In general, we expect that the bitwise distribution
functions overestimate the information content of the system; by neglecting the nontrivial
correlation between them. Thus, we may conjecture the inequality:

SShannon(x, Ω1) ≤ Sindep(x, Ω1), (19)

where Sindep is the form obtained by substituting ProbΩ1(x1 = σ1, . . . , xn = σn) = ∏n
i=1

ProbΩ1(xi = σi); after simplifications we find:

Sindep(x, Ω1) = −
n

∑
i=1

1

∑
σ=0

ProbΩ1(xi = σ) log2 ProbΩ1(xi = σ). (20)

This formula already depends on the representation. From an information theory point of
view, its content suggests that the sum of information coming from individual bits is larger
than the minimal information that describes the studied subset, if the information carried
by the bits are not independent. The equality in the relation (19) occurs exactly in the case
if in the given representation, the individual bit information is independent, then the joint
probabilities indeed factorize.

This means that, in the complete model, where only the individual bits counting
for differences inside the subset are independent, the representation entropy is minimal
(maximizing only over the least subset). This leads us to formulate the main proposal of
this paper:
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Proposal 1. The entropy characterizing the representation x : Ω→ BN over the subset Ω1 ⊂ Ω is

Srepr(x, Ω1) = −
n

∑
i=1

[pi log2 pi + (1− pi) log2(1− pi)] (21)

where pi = ProbΩ1(xi = 1) and therefore 1− pi = ProbΩ1(xi = 0). The minimal value of Srepr
is the Shannon entropy log2 |Ω1|. A process that decreases the representation entropy leads us
towards a well learned state (to a complete model).

Let us demonstrate how this works in the case of our three-bit example. Here |Ω| = 8
and |Ω1| = 4, thus the value of the Shannon entropy is 2. We already calculated the
one-bit probabilities in the complete model in (15): p1 = 1/2, p2 = 1/2 and p3 = 1. The
representation entropy of the complete model,

Srepr(x, Ω1) = −
2

∑
i=1

[
1
2

log2
1
2
+

1
2

log2
1
2

]
+ [1 log2 1 + 0 log2 0] = 2, (22)

is therefore indeed equal to the Shannon entropy. The representation entropy of the original
choice, cf. Equation (3), with p1 = p2 = p3 = 1/2 is:

S = −
3

∑
i=1

[
1
2

log2
1
2
+

1
2

log2
1
2

]
= 3, (23)

which is larger than the Shannon entropy. In this example, altogether we have (8
4) =

70 representations, thus we can calculate the representation entropy for all of them, and
verify that indeed only the independent cases possess minimal entropy. There are 6 such
cases: the relevant bit can be the 1st, 2nd or 3rd, and its value can be 0 or 1.

In general, if we have N bits in total, and N1 bits for representing Ω1, the number of

all representations is given by ( 2N

2N1). Among these vastly large number of representations
the number of the complete models is ( N

N1
)2N−N1 , because we have to choose the N − N1

relevant bits in ( N
N−N1

) = ( N
N1
) ways, and each relevant bit can be either 0 or 1, yielding the

factor 2N−N1 .
Practically, a representation is manifested as a vector of weights in a neural network.

We can measure the representation entropy by approximating the bitwise distributions
on a trial set. Then we can compare two representations, and we can move towards the
minimum. Note that in this process there is no reference to what the image describes.

This leads to a general unsupervised learning strategy: we show images to the AI,
then, by minimizing the representation entropy, it will be able to tell what the common
features of the shown set are by setting the relevant bits. For example, to train a self-driving
car we shall equip a normal car with a camera that records the images that belong to the
“normal” view. Then, as the AI learns what a “normal” condition means, it will recognize if
something is “abnormal.” The advantage of this process is that we do not have to tell what
can cause a misfunction, because the AI learns what “normal” means, and automatically
classifies any other images as potential danger.

4. How Many Relevant Bits?

Scientific models have typically just a few relevant bits; psychologists claim that a
person can keep at most seven different concepts simultaneously in mind. In contrast to
that, the typical AI learning, recognizing and classifying task meets a huge number of both
relevant and irrelevant bits.

We may even compare images and science models, by presenting an input set of 0 or
1 pixels.

In the Ising model, binary states are fixed along a chain or array and pairwise interac-
tions are assumed, c.f. Figure 2. In statistical physics modeling, one averages over a large
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scale with Boltzmann weights, e−βH , with a parameter β and a Hamiltonian, H, describing
the interaction energy of aligned and misaligned spins of elementary magnets. Only the
relevant quantities occur in this modeling process: the value of the parameter β, the number
of misaligned pairs (01 and 10 bit pairs), and the total number of set bits, describing the
overall magnetization. Setting white for 0 and black for 1, one produces the typical image.
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Figure 2. One bit pixel images obtained from a) magnetic Ising model fluctuations, and b) a black
square on white background

In the Ising model, binary states are fixed along a chain or array and pairwise in-
teractions are assumed. In statistical physics modeling, one averages over a large scale
with Boltzmann weights, e−βH , with a parameter β and a Hamiltonian, H, describing
the interaction energy of aligned and misaligned spins of elementary magnets. Only the
relevant quantities occur in this modeling process: the value of the parameter β, the number
of misaligned pairs (01 and 10 bit pairs), and the total number of set bits, describing the
overall magnetization. Setting white for 0 and black for 1, one produces the typical image.

For the ’artistic’ picture of a single, arranged black square, we may have the same
number of set and unset bits, the overall recognition, however, differs a lot. When an AI
has to recognize and single out the square, which in the Ising model is a very improbable,
yet not impossible configuration, then a number of irrelevant bits will be studied first.

For compressing the data of the square, only a few bits of information are needed,
e.g., the coordinates of a corner and the side lengths. The bits needed for compression
are the irrelevant bits. For the description of this image, the pixel information is not too
informative, since the image is very correlated. So, while for the Ising model the color of
each pixel is relevant, in case of the black square, a serious re-coordinatization is needed:
instead of pixels, we speak about a “square,” a nonlocal object from the point of view of
the pixels.

Either the relevant or the irrelevant coordinates are a few, one has an enormous
compression possibility and by that a good chance for understanding. That is the basis for
the hope that by applying AI methods, most importantly image recognition algorithms, we
may learn new information about physical (and chemical, biological, ecological, medical,
economical, social) problems of high complexity.

In typical image recognition tasks both the relevant and irrelevant coordinates are
numerous, therefore, only their collective effect carries distinctive meanings. Various deep
neural networks with vastly differing weight factors can have similar performance on a
given image set.

In natural learning, to start with, the complete subset which has to be learned is
unknown. In smaller sets almost all parameters (describing bits) can be relevant. Later,
getting inputed with a large number of examples, the set growth, and the number of
irrelevant bits grow with this process, too. For recognizing N irrelevant bits, we have to see
about 2N images.

The time evolution of the bits during the learning process includes the variation
of irrelevant bits. Their versatility describes the speed of learning. The never changing
coordinates are not needed to be remembered: all are the same all of the time. Biological
learning is very probably accompanied by a lossy compression. Since a lossy compression
is irreversible, the entropy must change.

In supervised learning, the relevant coordinates are told explicitly, either by laws or
one by one. That accelerates the learning, but it will not change the nature of the lossy
compression. Thus, a large number of unannotated inputs has to be applied and trained
according to the measure of relevance, and to the time variability of a given coordinate.
This way we do not transplant our own knowledge to the AI; it will build its own system
of notions and understanding of its inputs.

Figure 2. One bit pixel images obtained from (a) magnetic Ising model fluctuations, and (b) a black
square on white background.

For the ’artistic’ picture of a single, arranged black square, we may have the same
number of set and unset bits, the overall recognition, however, differs a lot. When an AI
has to recognize and single out the square, which in the Ising model is a very improbable,
yet not impossible configuration, then a number of irrelevant bits will be studied first.

For compressing the data of the square, only a few bits of information are needed,
e.g., the coordinates of a corner and the side lengths. The bits needed for compression
are the irrelevant bits. For the description of this image, the pixel information is not too
informative, since the image is very correlated. So, while for the Ising model the color of
each pixel is relevant, in case of the black square, a serious re-coordinatization is needed:
instead of pixels, we speak about a “square,” a nonlocal object from the point of view of
the pixels.

Either the relevant or the irrelevant coordinates are few; one has an enormous com-
pression possibility and with that a good chance for understanding. That is the basis for
the hope that by applying AI methods, most importantly image recognition algorithms, we
may learn new information about physical (and chemical, biological, ecological, medical,
economical, social) problems of high complexity.

In typical image recognition tasks, both the relevant and irrelevant coordinates are
numerous; therefore, only their collective effect carries distinctive meanings. Various deep
neural networks with vastly differing weight factors can have similar performance on a
given image set.

In natural learning, to start with, the complete subset which has to be learned is
unknown. In smaller sets almost all parameters (describing bits) can be relevant. Later,
getting inputed with a large number of examples, the set growth, and the number of
irrelevant bits grow with this process too. For recognizing N irrelevant bits, we have to see
about 2N images.

The time evolution of the bits during the learning process includes the variation
of irrelevant bits. Their versatility describes the speed of learning. The never changing
coordinates do not need to be remembered: all are the same all of the time. Biological
learning is very probably accompanied by a lossy compression. Since a lossy compression
is irreversible, the entropy must change.

In supervised learning, the relevant coordinates are told explicitly, either by laws or
one by one. That accelerates the learning, but it will not change the nature of the lossy
compression. Thus, a large number of unannotated inputs has to be applied and trained
according to the measure of relevance, and to the time variability of a given coordinate.
This way we do not transplant our own knowledge to the AI; it will build its own system
of notions and understanding of its inputs.
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Some bits may seem relevant while they are not, e.g., due to an unfortunate sampling
that underrepresents or overrepresents features. Superstition may work this way, and the
future AI reaching its performances in understanding its input world comparable to ours,
might become superstitious.

Another possibility of a false understanding occurs when one omits a bit as irrele-
vant, which is in fact relevant. Deterministic chaos may appear as a genuine underlying
randomness in the universe. This randomness seems unexplorable and unpredictable, as
frequently assumed by miscalulations of the financial markets. Identifying this error and
promoting the corresponding coordinate to a relevant one in our descriptive model is the
“aha” effect of sudden understanding.

5. Conclusions

In this article we presented a bitwise picture of understanding and classification. The
AI tasks were viewed based on categorization as identifying relevant and irrelevant bits in
bitstring codes of set elements, most prominently images. Relevant bits have a deterministic
value, 1 for the selected set and 0 for the non-set. Irrelevant bits have a random value with
a uniform distribution of ones and zeros.

The result of learning is a coordinatization, a re-arrangement of bits where the relevant
ones constitute a block. This can be described as a bijection from the original indexing
(original showing order of training images) and therefore does not change the original
Shannon entropy.

However, we propose considering another quantity, the representation entropy, whose
construction assumes bitwise independence among irrelevant bits. Its value coincides with
the Shannon entropy only in a completely learned state, when the probability of all bits
in fact factorizes. The actual representation entropy is larger before learning and reaches
its minimal value after a complete understanding. This quantity may serve as a basis of
algorithmic strategies for unsupervised learning; its decrease would gradually lead to a
state of decorrelated single bits, providing, in this way, a maximal compression of code
length to remember. The most intriguing novel element in this strategy is to teach AI
systems to recognize that they do not recognize certain images. This can then be a basis for
automatic switching to safety protocols, like stopping self-driving cars.

The relevant–irrelevant coordinatization is not unique. The bitwise independence in
the learned state only restricts it. Whenever the number of either relevant or irrelevant bits
are just a few, humans can build models of understanding easily. Having a huge number of
both types of coordinates on the other hand cries out for using AI algorithms to disentangle
cats form non-cats.

Finally, we note that our concept about ML as a reduction of the number of random
bits by identifying a subset of pictures may show some analogy to classical compositional
data analysis [21]. However, the entropy reduction associated with the learning process is a
stand-alone concept, not requiring the complexity and intricacies of that mathematical field.
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