The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime
Abstract
:1. Introduction
2. Formulations
2.1. Keplerian Frequency
2.2. Epicyclic Frequencies: 2D Oscillator Problem
3. The Fundamental Frequencies in Kerr-like Spacetime
The Novel Feature of Kerr–Taub-NUT Spacetime
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Johannsen Spacetime
Appendix A.2. The Hartle–Thorne Metric
References
- Miyamoto, S.; Kimura, K.; Kitamoto, S.; Dotani, T.; Ebisawa, K. X-ray Variability of GX 339-4 in Its Very High State. Astrophys. J 1991, 383, 784. [Google Scholar] [CrossRef]
- Takizawa, M.; Dotani, T.; Mitsuda, K.; Matsuba, E.; Ogawa, M.; Aoki, T.; Asai, K.; Ebisawa, K.; Makishima, K.; Miyamoto, S.; et al. Spectral and Temporal Variability in the X-ray Flux of GS 1124-683, Nova Muscae 1991. Astrophys. J. 1997, 489, 272–283. [Google Scholar] [CrossRef]
- Boutloukos, S.; van der Klis, M.; Altamirano, D.; Klein-Wolt, M.; Wijnands, R.; Jonker, P.G.; Fender, R.P. Discovery of Twin kHz QPOs in the Peculiar X-ray Binary Circinus X-1. Astrophys. J. 2006, 653, 1435–1444. [Google Scholar] [CrossRef]
- Van der Klis, M. Overview of QPOs in neutron-star low-mass X-ray binaries. Adv. Space Res. 2006, 38, 2675–2679. [Google Scholar] [CrossRef]
- Van der Klis, M. Rapid X-ray Variability. In Compact Stellar X-ray Sources; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 39–112. [Google Scholar]
- Abramowicz, M.A.; Bulik, T.; Bursa, M.; Kluźniak, W. Evidence for a 2:3 resonance in Sco X-1 kHz QPOs. Astron. Astrophys. 2003, 404, L21–L24. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Karas, V.; Kluzniak, W.; Lee, W.H.; Rebusco, P. Non-Linear Resonance in Nearly Geodesic Motion in Low-Mass X-ray Binaries. Publ. Astron. Soc. Jpn. 2003, 55, 467–471. [Google Scholar] [CrossRef]
- Kluzniak, W.; Abramowicz, M.A. Strong-Field Gravity and Orbital Resonance in Black Holes and Neutron Stars—kHz Quasi-Periodic Oscillations (QPO). Acta Phys. Pol. B 2001, 32, 3605. [Google Scholar]
- Remillard, R.A.; Muno, M.P.; McClintock, J.E.; Orosz, J.A. Evidence for Harmonic Relationships in the High-Frequency Quasi-periodic Oscillations of XTE J1550-564 and GRO J1655-40. Astrophys. J. 2002, 580, 1030–1042. [Google Scholar] [CrossRef]
- Tagger, M.; Pellat, R. An accretion-ejection instability in magnetized disks. Astron. Astrophys. 1999, 349, 1003–1016. [Google Scholar]
- Cabanac, C.; Henri, G.; Petrucci, P.O.; Malzac, J.; Ferreira, J.; Belloni, T.M. Variability of X-ray binaries from an oscillating hot corona. MNRAS 2010, 404, 738–748. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Molteni, D. Smoothed Particle Hydrodynamics Confronts Theory: Formation of Standing Shocks in Accretion Disks and Winds around Black Holes. Astrophys. J. 1993, 417, 671. [Google Scholar] [CrossRef]
- Stella, L.; Vietri, M. Lense-Thirring Precession and Quasi-periodic Oscillations in Low-Mass X-ray Binaries. Astrophys. J. 1998, 492, L59–L62. [Google Scholar] [CrossRef] [Green Version]
- Stella, L.; Vietri, M.; Morsink, S.M. Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-ray Binaries and the Relativistic Precession Model. Astrophys. J. 1999, 524, L63–L66. [Google Scholar] [CrossRef]
- Rana, P.; Mangalam, A. A Geometric Origin for Quasi-periodic Oscillations in Black Hole X-ray Binaries. Astrophys. J. 2020, 903, 121. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Kluźniak, W. Epicyclic Frequencies Derived from the Effective Potential: Simple and Practical Formulae. Astrophys. Space Sci. 2005, 300, 127–136. [Google Scholar] [CrossRef]
- Pachón, L.A.; Rueda, J.A.; Valenzuela-Toledo, C.A. On the Relativistic Precession and Oscillation Frequencies of Test Particles around Rapidly Rotating Compact Stars. Astrophys. J. 2012, 756, 82. [Google Scholar] [CrossRef]
- Török, G. A possible 3:2 orbital epicyclic resonance in QPO frequencies of Sgr A*. Astron. Astrophys. 2005, 440, 1–4. [Google Scholar] [CrossRef]
- Török, G.; Abramowicz, M.A.; Kluźniak, W.; Stuchlík, Z. The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars. Astron. Astrophys. 2005, 436, 1–8. [Google Scholar] [CrossRef]
- Török, G.; Stuchlík, Z. Radial and vertical epicyclic frequencies of Keplerian motion in the field of Kerr naked singularities. Comparison with the black hole case and possible instability of naked-singularity accretion discs. Astron. Astrophys. 2005, 437, 775–788. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Slaný, P.; Török, G. LNRF-velocity hump-induced oscillations of a Keplerian disc orbiting near-extreme Kerr black hole: A possible explanation of high-frequency QPOs in GRS 1915+105. Astron. Astrophys. 2007, 470, 401–404. [Google Scholar] [CrossRef]
- Kološ, M.; Stuchlík, Z.; Tursunov, A. Quasi-harmonic oscillatory motion of charged particles around a Schwarzschild black hole immersed in a uniform magnetic field. Class. Quantum Gravity 2015, 32, 165009. [Google Scholar] [CrossRef]
- Tursunov, A.; Stuchlík, Z.; Kološ, M. Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes. Phys. Rev. D 2016, 93, 084012. [Google Scholar] [CrossRef] [Green Version]
- Kološ, M.; Tursunov, A.; Stuchlík, Z. Possible signature of the magnetic fields related to quasi-periodic oscillations observed in microquasars. Eur. Phys. J. C 2017, 77, 860. [Google Scholar] [CrossRef]
- Nowak, M.A.; Lehr, D.E. Stable oscillations of black hole accretion discs. arXiv 1998, arXiv:astro-ph/9812004. [Google Scholar]
- Bambi, C. Probing the space-time geometry around black hole candidates with the resonance models for high-frequency QPOs and comparison with the continuum-fitting method. J. Cosmol. Astropart. Phys. 2012, 2012, 014. [Google Scholar] [CrossRef]
- Turimov, B.; Rayimbaev, J.; Abdujabbarov, A.; Ahmedov, B.; Stuchlík, Z. Test particle motion around a black hole in Einstein-Maxwell-scalar theory. Phys. Rev. D 2020, 102, 064052. [Google Scholar] [CrossRef]
- Dadhich, N.; Maartens, R.; Papadopoulos, P.; Rezania, V. Black holes on the brane. Phys. Lett. B 2000, 487, 1–6. [Google Scholar] [CrossRef]
- Kotrlová, A.; Stuchlík, Z.; Török, G. Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models. Class. Quantum Gravity 2008, 25, 225016. [Google Scholar] [CrossRef]
- Toshmatov, B.; Stuchlík, Z.; Ahmedov, B. Rotating black hole solutions with quintessential energy. Eur. Phys. J. Plus 2017, 132, 98. [Google Scholar] [CrossRef]
- Moffat, J.W. Black holes in modified gravity (MOG). Eur. Phys. J. C 2015, 75, 175. [Google Scholar] [CrossRef]
- Kološ, M.; Shahzadi, M.; Stuchlík, Z. Quasi-periodic oscillations around Kerr-MOG black holes. Eur. Phys. J. C 2020, 80, 133. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharyya, S. Does the gravitomagnetic monopole exist? A clue from a black hole x-ray binary. Phys. Rev. D 2018, 98, 043021. [Google Scholar] [CrossRef]
- Narzilloev, B.; Hussain, I.; Abdujabbarov, A.; Ahmedov, B.; Bambi, C. Dynamics and fundamental frequencies of test particles orbiting Kerr-Newman-NUT-Kiselev black hole in Rastall gravity. Eur. Phys. J. Plus 2021, 136, 1032. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Almergren, G.J.E.; Kluzniak, W.; Thampan, A.V. The Hartle-Thorne circular geodesics. arXiv 2003, arXiv:gr-qc/0312070. [Google Scholar]
- Boshkayev, K.; Rueda, J.; Muccino, M. Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries. Astron. Rep. 2015, 59, 441–446. [Google Scholar] [CrossRef]
- Urbancová, G.; Urbanec, M.; Török, G.; Stuchlík, Z.; Blaschke, M.; Miller, J.C. Epicyclic Oscillations in the Hartle-Thorne External Geometry. Astrophys. J. 2019, 877, 66. [Google Scholar] [CrossRef]
- Johannsen, T. Regular black hole metric with three constants of motion. Phys. Rev. D 2013, 88, 044002. [Google Scholar] [CrossRef]
- Hartle, J.B. Slowly Rotating Relativistic Stars. I. Equations of Structure. Astrophys. J. 1967, 150, 1005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turimov, B.; Rahimov, O. The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime. Universe 2022, 8, 507. https://doi.org/10.3390/universe8100507
Turimov B, Rahimov O. The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime. Universe. 2022; 8(10):507. https://doi.org/10.3390/universe8100507
Chicago/Turabian StyleTurimov, Bobur, and Ozodbek Rahimov. 2022. "The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime" Universe 8, no. 10: 507. https://doi.org/10.3390/universe8100507
APA StyleTurimov, B., & Rahimov, O. (2022). The Orbital and Epicyclic Frequencies in Axially Symmetric and Stationary Spacetime. Universe, 8(10), 507. https://doi.org/10.3390/universe8100507