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Abstract: Motivated by observational evidence of the electromagnetic signal from the X-ray binary
system known as quasi-periodic oscillations in the light curves of astrophysical black holes or neutron
stars, we examined the general relativity and alternative theory of gravity in the strong gravity
regime. The orbital and epicyclic motion of test particles in general axially symmetric spacetime
was investigated. We provide a general description to derive the exact analytical expressions for the
fundamental frequencies, namely, Keplerian epicyclic (radial and vertical) frequencies of test particles
in an arbitrary axisymmetric and stationary spacetime. The detailed derivation of the expressions for
the orbital and epicyclic frequencies of test particles orbiting around the Kerr–Newman-NUT black
hole is also shown.

Keywords: fundamental frequencies; orbital and epicyclic motions; axially symmetric spacetime

1. Introduction

The observational evidence of the electromagnetic signals from an accretion disk sur-
rounding a gravitational compact object, in particular, so-called quasi-periodic oscillations
(QPOs) in the X-ray light curves of the astrophysical black holes [1,2] and neutron stars [3,4],
is an important tool to test spacetime in the strong-field regime. One of the interesting and
important topics in astrophysics is the oscillation of accretion disks around black holes,
in particular, after the discovery of the QPOs by the Rossi X-ray Timing Explorer (RXTE)
in neutron star X-ray binaries (see, e.g., [5]). Such observations allow estimation of the
radius of the innermost stable circular orbit, orbital, and epicyclic frequencies of particles
orbiting the compact objects. It has been discussed that the fundamental frequencies of the
corresponding kilohertz QPOs are in rational ratios of small integers, such as 3:2 [6–9].

It is widely believed that the QPO occurs due to particle motion or the collective
motion of matter in the close vicinity of the black hole; however, its physical origin has
long been debated. From the observational point of view, QPOs in the light curve of
the astrophysical objects can be observed in the spectrum of the Fourier transform of the
power intensity:

L̃(ν) =
1

2π

∫
dte−2πνtL(t) , (1)

where L(t) is the time-dependent luminosity of the X-ray source, and ν is the frequency
of the electromagnetic signal. Several QPO models suggest that it arises either from some
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instability in the accretion disk, in particular, oscillations of the mass accretion rate or
pressure [10–12], or a geometric oscillation that is related to relativistic precession due to
general relativity or theories of gravity [13,14]. The geometric meaning of the QPO in the
vicinity of the compact objects was explicitly studied in Ref. [15]. The practical formulae for
the epicyclic frequencies of test particles in an arbitrary spacetime were derived in [16,17].
Based on the orbital resonance model for twin peaks kHz, QPO in the quasars and micro-
quasars was discussed in [18,19]. The astrophysical application of the relativistic Keplerian
orbital frequency and epicyclic frequencies near the extreme and naked Kerr black holes
was studied in [20,21]. The quasi-harmonically oscillatory motion of the charged particle
around magnetized (non)-rotating black holes and it application on QPO oscillations was
investigated in [22–24].

The fundamental frequencies, namely, Keplerian and epicyclic frequencies, of test
particles orbiting around the gravitational object of mass M in the framework of the
Newtonian theory are found to be Ω = Ωr = Ωθ =

√
M/r3, while in the Schwarzschild

spacetime they can be reduced to Ωr = Ω
√

1− 6M/r and Ωθ = Ω =
√

M/r3, while in the
Kerr spacetime, the above expressions read [25]

Ωr = Ω

√
1− 6M

r
+

8a
r

√
M
r
− 3a2

r2 , (2)

Ωθ = Ω

√
1− 4a

r

√
M
r
+

3a2

r2 , (3)

Ω =
1

r
√

r
M + a

, (4)

where a is the spin parameter of the central object, i.e., |a| ≤ M.
In this paper, we are interested in investigating the fundamental frequencies, namely,

the Keplerian and epicyclic frequencies, of a test particle orbiting around Kerr-like black
holes. The paper is organized as follows. In Section 2, we show the detailed derivation
of the equations necessary for the orbital and oscillatory motion of the test particle in
arbitrary spacetime. In Section 3, we present the exact analytical expressions for the
fundamental frequencies in the Kerr-like spacetime. Finally, we summarize the obtained
results in Section 4.

Throughout the paper, we use a space-like signature (−,+,+,+), a system of units
in which G = c = 1 and restore the Newtonian gravitational constant and speed of light
when we need to compare the results with the observational data. Greek indices are taken
to run from 0 to 3, and Latin indices from 1 to 3.

2. Formulations

The Lagrangian for a test particle is given by

L =
1
2

gαβ ẋα ẋβ , ẋα =
dxα

ds
, (5)

where ẋα is the four-velocity of a particle normalized as ẋα ẋα = −1. From the Lagrangian
(5), the geodesic equation is easily derived as

ẍα + Γα
µν ẋµ ẋν = 0 , (6)

where Γα
µν are the Christoffel symbols defined as Γα

µν = 1
2 gαβ

(
∂µgνβ + ∂νgµβ − ∂βgµν

)
,

and ∂α denotes a partial derivative with respect to xα. There are two conserved quantities
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associated with the coordinates t and φ, the specific energy and specific angular momentum
are found as

Pt =
dL
dṫ

= gtt ṫ + gtφφ̇ = −E , Pφ =
dL
dφ̇

= gφφφ̇ + gtφ ṫ = L , (7)

which allows finding ṫ and φ̇ as

ṫ = −
Lgtφ + Egφφ

gttgφφ − g2
tφ

, φ̇ =
Lgtt + Egtφ

gttgφφ − g2
tφ

. (8)

Now, using the normalization of the four-velocity, one can obtain the following equation:

grr ṙ2 + gθθ θ̇2 + V(r, θ) = 0 , (9)

where V(r, θ) is defined as

V(r, θ) = 1 +
E2gφφ + 2ELgtφ + L2gtt

gttgφφ − g2
tφ

= 1 + E2gtt − 2ELgtφ + L2gφφ . (10)

The constants of motion, E and L, are limited by the following condition, V(r0, θ0) = 0,
where r0 and θ0 are, respectively, the stationary point of the function at which the conditions
∂rV(r, θ) = 0 and ∂θV(r, θ) = 0 can be found. Note that at the stationary point, test particles
orbit around the black hole in a circular trajectory with four-velocity of ẋα = (ṫ, 0, 0, φ̇).
In this case, using the normalization of the four-velocity once again, one can obtain the fol-

lowing expression: ṫ = 1/
√
−gtt − 2Ωgtφ −Ω2gφφ and φ̇ = Ωṫ. Consequently, the specific

energy and specific angular momentum in (7) can be rewritten as

E = −(gtt + Ωgtφ)ṫ = −
gtt + Ωgtφ√

−gtt − 2Ωgtφ −Ω2gφφ

, (11)

L = (gtφ + Ωgφφ)ṫ =
gtφ + Ωgφφ√

−gtt − 2Ωgtφ −Ω2gφφ

, (12)

where Ω = dφ/dt is an angular velocity measured by a distant observer, the so-called
Keplerian frequency of test particle.

2.1. Keplerian Frequency

To derive the explicit expression for the Keplerian frequency of a test particle, one uses
the geodesic Equation (6). Considering circular motion with four-velocity ẋα = ṫ(1, 0, 0, Ω),
the radial equation (i.e., α = r) of (6) takes the form: ∂rgtt + 2Ω∂rgtφ + Ω2∂rgφφ = 0,
and the solution of the above equation with respect to the Keplerian frequency, Ω, can be
expressed as

Ω = −
∂rgtφ

∂gφφ
±

√(
∂rgtφ

∂rgφφ

)2

− ∂rgtt

∂rgφφ
, (13)

where “+” and “−” are responsible for the retrograde and regrade rotations of the test par-
ticles. It is more common to express the Keplerian frequency in arbitrary axially symmetric
and stationary spacetime. A very similar expression can be found in [26]. The sign in front
of the square root indicates the retrograde and prograde motion.

One has to emphasize that there is another angular velocity that arises due to the angu-
lar equation (i.e., α = θ) of (6), which can be expressed as ∂θ gtt + 2Ω̃∂θ gtφ + Ω̃2∂θ gφφ = 0.
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The solution of the equation is responsible for the frequency due to rotation or Gyroscope
frequency. The explicit expression for the Gyroscope frequency reads

Ω̃ = −
∂θ gtφ

∂θ gφφ
±

√(
∂θ gtφ

∂θ gφφ

)2

− ∂θ gtt

∂θ gφφ
. (14)

2.2. Epicyclic Frequencies: 2D Oscillator Problem

Now, we focus on the epicyclic motion of the test particles along the circular orbit.
In this case, the particles can oscillate with radial and vertical frequencies (Ωr, Ωθ) around
the stationary points (r0, θ0), so-called epicyclic frequency. In the present paper, we provide
the detailed derivation of the expressions for the epicyclic frequencies of the test parti-
cles orbiting around the rotating black hole. The epicyclic frequencies can be calculated
by considering a small perturbation around the stable circular orbit of particles along the
radial r → r0 + δr and tangential θ → θ0 + δθ directions. Then, the function V(r, θ) in
Equation (10) can be expanded as [27]

V(r, θ) = V(r0, θ0) + ∂rV(r, θ)
∣∣∣
x0

δr + ∂θV(r, θ)
∣∣∣
x0

δθ + ∂r∂θV(r, θ)
∣∣∣
x0

δrδθ

+
1
2

∂2
r V(r, θ)

∣∣∣
x0

δr2 +
1
2

∂2
θV(r, θ)

∣∣∣
x0

δθ2 +O
(

δr3, δθ3
)

' 1
2

∂2
r V(r, θ)

∣∣∣
x0

δr2 +
1
2

∂2
θV(r, θ)

∣∣∣
x0

δθ2 , (15)

where x0 = (r0, θ0). Here, we have used the following facts: (i) the first term of (15)
vanishes due to the limiting condition of the constants of motion (i.e., V(r0, θ0) = 0), (ii)
on the other hand, the first order derivatives ∂rV(r, θ) = ∂θV(r, θ) = 0 can be removed
from the condition of of the stability of V(r, θ), and (iii) finally, the terms proportional to
the second order derivatives remain as shown in Equation (15). Before moving further,
one has to replace the derivative with the affine parameter s to time t (i.e., d

ds = ṫ d
dt )

in Equation (9), in order to obtain the observable frequencies in the radial and vertical
directions. Taking into account all the facts mentioned above and after performing simple
algebraic manipulations, the harmonic oscillator equations for the displacements δr and δθ
can be obtained as

d2

dt2 δr + Ω2
r δr = 0 ,

d2

dt2 δθ + Ω2
θδθ = 0 , (16)

where Ωr and Ωθ are, respectively, the radial and vertical angular frequencies of particle
measured by a distant observer, defined as

Ω2
r =

1
2grr ṫ2 ∂2

r V(r, θ) , Ω2
θ =

1
2gθθ ṫ2 ∂2

θV(r, θ) . (17)

Finally, the explicit expressions for the epicyclic frequencies in the arbitrary axially
symmetric spacetime of a test particle take the form:

Ω2
i =

1
2gii

(
∂2

i gtt + 2Ω∂2
i gtφ + Ω2∂2

i gφφ

)
+

2gtφ

gii
(∂igtt + Ω∂igtφ)(∂igtφ + Ω∂igφφ)

+
gtt

gii
(∂igtt + Ω∂igtφ)

2 +
gφφ

gii
(∂igtφ + Ω∂igφφ)

2 , i = (r, θ) , (18)
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and alternatively, they can be rewritten as

Ω2
i =

1
2gii

(gtt + Ωgtφ)
2∂2

i gtt +
1

2gii
(gtφ + Ωgφφ)

2∂2
i gφφ

+
1
gii

(gtt + Ωgtφ)(gtφ + Ωgφφ)∂
2
i gtφ . (19)

For the static spherically symmetric spacetime (i.e., gtφ = 0), the epicyclic frequencies
can be easily found as

Ω2 = − ∂rgtt

∂rgφφ
, (20)

Ω2
r =

1
2grr

(
g2

tt∂
2
r gtt + Ω2g2

φφ∂2
r gφφ

)
=

1
grr

[
1
2

(
∂2

r gtt + Ω2∂2
r gφφ

)
+ gtt(∂rgtt)

2 + gφφ(Ω∂rgφφ)
2
]

, (21)

Ω2
θ =

1
2gθθ

(
g2

tt∂
2
θ gtt + Ω2g2

φφ∂2
θ gφφ

)
=

1
gθθ

[
1
2

(
∂2

θ gtt + Ω2∂2
θ gφφ

)
+ gtt(∂θ gtt)

2 + gφφ(Ω∂θ gφφ)
2
]

. (22)

3. The Fundamental Frequencies in Kerr-like Spacetime

Now, we apply the obtained expressions (18) or (19) for given spacetimes. In Boyer–
Lindquist coordinates xα = (t, r, θ, φ), the Kerr-like spacetime (Appendix A.1) is given as

ds2 =− ∆
Σ

(
dt− a sin2 θdφ

)2
+

Σ
∆

dr2 + Σdθ2 +
sin2 θ

Σ

[
(r2 + a2)dφ− adt

]2
, (23)

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2m(r)r + a2, a is a spin of the black hole, and m(r) is
the mass function included the black hole parameters, and for the Kerr black hole, m(r)
should be equal to m(r) = M. Without losing generality, our detailed analyses showed that
the stationary point of the function V(r, θ) was located at the equatorial plane, θ0 = π/2.
Using the explicit expressions (18) or (19) and (13), the epicyclic and orbital frequencies of
the test particles in the Kerr-like spacetime can be determined as

Ωr = Ω

√
1− 6m

r
− 3a2

r2 + 4m′ − (r2 − 2mr + a2)m′′

m− rm′
+

8a
√

m− rm′

r3/2 , (24)

Ωθ = Ω

√
1− 4am

r3/2
√

m− rm′
+

a2

r2

(
1 +

2m
m− rm′

)
, (25)

Ω =
1

r
√

r
m−rm′ + a

. (26)

Using these expressions, one can determine the fundamental frequencies of test
particles orbiting around the rotating black holes characterized by the mass function
m. In Table 1, the mass functions for some of the well-known rotating black holes are listed;
however, they might be extended to any other Kerr-like solutions (Figure 1).
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Figure 1. The schematic picture of the orbital and epicyclic motion of a particle around a black hole.
The quantities νr, νθ , and νφ represent the radial, vertical, and orbital frequencies of the test particle,
respectively. Here, the definitions of νi are given as νi = Ωi/2π with i = (r, θ, φ).

Table 1. The mass function for some of the rotating black holes.

Spacetime m(r)

Kerr M
Kerr–Newman M−Q2/2r

Kerr-brane [28,29] M + Q∗/2r
Kerr-Quintessential [30] M− cr−3ω

Kerr-MOG [31,32] (1 + α)M + α(1 + α)M2/2r

The Novel Feature of Kerr–Taub-NUT Spacetime

The Kerr–Taub-NUT spacetime is one of the vacuum solutions of the Einstein field
equations for the rotating black hole parameterized by the gravitomagnetic monopole
moment n in addition to the mass and spin of the black hole. It is described by the metric

ds2 =− ∆KNT

ΣKNT
(dt− χdφ)2 +

ΣKNT

∆KNT
dr2 + ΣKNTdθ2 +

sin2 θ

ΣKNT
[(ΣKNT + aχ)dφ− adt]2 , (27)

with ∆KNT = r2 − 2Mr + a2 − n2, ΣKNT = r2 + (n + a cos θ)2, and χ = a sin2 θ − 2n cos θ.
It is worth noting that there are three main differences between the Kerr–Taub-NUT and
Kerr spacetime. (i) The Kerr–Taub-NUT spacetime is asymptotically not flat unlike the
Kerr spacetime; in particular, the non-diagonal component of the metric tensor tends to
infinity at a large distance; (ii) it is a regular vacuum solution for the rotating black hole,
which can be checked by determining the Kretschmann scalar at the origin for a non zero
gravitomagnetic monopole moment, i.e., K = 48(n2 −M2)(n + a cos θ)−6; and (iii) another
interesting feature of the Kerr-NUT-Taub spacetime is that a test particle cannot orbit at the
equatorial plane unlike that in the Kerr spacetime. Therefore, considering the oscillatory
motion of test particles at the equatorial plane is meaningless. However, such cases have
been considered by several authors, for instance, [33,34]. Indeed, one can consider particle
motion at the equatorial plane in the Kerr–Taub-NUT space, and the angular frequency can
be determined as [33]

Ω =
1

r2+n2√
Mr+n2(2−M/r)

+ a
. (28)

However, one needs to keep in mind that the angular frequency Ω̃ in Equation (14)
takes a form:

Ω̃ =
a

a2 + (n2 + r2)
(

1−
√

∆
∆−a2

) , (29)
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which is always real. It turns out that the test particles orbiting around a Kerr–Taub-NUT
black hole have an additional frequency along the Keplerian frequency, and the total
frequency can be considered as Ω + Ω̃. Note that the frequency Ω̃ is always a complex
form in the Kerr-like spacetime if we calculate directly from Equation (14). This is another
interesting feature of the Kerr–Taub-NUT spacetime, which differs from the Kerr one.
Regarding the radial and vertical oscillation of a test particle, equation (9) reduces to

grr ṫ2 d2

dt2 δr +
1
2

∂2
r V(r, θ)δr + ∂r∂θV(r, θ)δθ = −∂rV(r, θ) , (30)

gθθ ṫ2 d2

dt2 δθ +
1
2

∂2
θV(r, θ)δθ + ∂r∂θV(r, θ)δr = −∂θV(r, θ) , (31)

We already mentioned that particles cannot be located in the equatorial plane (i.e.,
θ0 6= π/2) in the Kerr–Taub-NUT spacetime. However, to obtain the oscillatory motion
of particles in the equatorial plane (i.e., θ0 = π/2), equations for the radial and vertical
oscillations can be rewritten as

d2

dt2 δr + Ω2
r δr + γrδθ = Fr(r) , (32)

d2

dt2 δθ + Ω2
θδθ + γrδr = Fθ(r) , (33)

where

Ω2
r =

(1− aΩ)2(a2 − 4M2 + 6Mr− n2 − 3r2)+ 4r2Ω2(∆− a2)− 8arΩ(1− aΩ)(r−M)

(n2 + r2)
2

+
(1− aΩ)

[
8r
(
∆− 2a2)(1− aΩ)(r−M)− 2

(
∆− a2)(aΩ

(
∆− 8r2)− ∆

)]
2(n2 + r2)

3

−
4a2r2(a2 − ∆

)
(aΩ− 1)2

(n2 + r2)
4 − ∆Ω2

n2 + r2 , (34)

Ω2
θ =

a4(1− aΩ)2

n2 + r2 −
∆(1− aΩ)2(a2(5n2 + r2)− 4∆n2)

(n2 + r2)
2

− a(1− aΩ)
(

3a2Ω− a− 2∆Ω
)
+ aΩ(3aΩ− 2)

(
n2 + r2

)
+ Ω2

(
n2 + r2

)2
, (35)

γr =
8∆nrΩ

(
a2 − ∆

)
(aΩ− 1)

(n2 + r2)
3 −

4a∆n(aΩ− 1)2(M
(
n2 − 3r2)− 3n2r + r3)

(n2 + r2)
4 (36)

γθ =
8nrΩ

(
a2 − ∆

)
(aΩ− 1)

(n2 + r2)
3 −

4an(1− aΩ)2(M
(
n2 − 3r2)− 3n2r + r3)

(n2 + r2)
4 , (37)

Fr =
2∆(aΩ− 1)2(M

(
r2 − n2)+ 2n2r

)
(n2 + r2)

3 − 2∆rΩ2

n2 + r2 , (38)

Fθ = 2n(1− aΩ)
(

∆− a2
)(

a
1− aΩ
n2 + r2 − 2Ω

)
− 2anΩ2

(
n2 + r2

)
. (39)

It is easy to check that, in the absence of the NUT parameter, one can obtain Fr = Fθ =
γr = γθ = 0, while Ωr and Ωθ represent the epicyclic frequencies in the Kerr spacetime.

4. Conclusions and Future Prospects

In this work, we discussed the fundamental frequencies, namely, the orbital, radial,
and vertical epicyclic frequencies of massive particles following circular orbits in the
spacetime generated by generic stationary and axisymmetric black holes (as well as neutron
stars) with arbitrary parameters. We derived the explicit expressions for the orbital, radial,



Universe 2022, 8, 507 8 of 11

and vertical frequencies of test particles around rotating and static black holes in terms of
the arbitrary metric coefficients.

We showed that test particles orbit around Kerr-like black holes in the equatorial plane
(θ0 = π/2), and the expressions for the fundamental frequencies can be expressed in terms
of the mass function. This method allowed us to test the general relativity and alternative
theory of gravity with the QPO of the disk surrounding the black holes and constraining the
black hole’s parameters. We also showed that this method was applicable for the complex
spacetime metric with several parameters, for example, the Johannsen solution (A1), which
describes the generalized Kerr spacetime.

We studied the fundamental frequencies of test particles in Kerr–Taub-NUT spacetime,
and we showed that the test particles do not follow the oscillatory motion in the equatorial
plane, unlike Kerr spacetime. As we mentioned before, there are three main differences
between the Kerr–Taub-NUT spacetime and the Kerr one: (i) it is asymptotically not flat;
(ii) it is a regular vacuum solution for the rotating black hole; and (iii) test particles cannot
orbit at the equatorial plane, unlike in the Kerr spacetime. In addition, we showed that the
test particles had an additional orbital frequency Ω̃ that affected the Keplerian frequency.

It is well known that the QPO in neutron star X-ray binaries is practically well de-
scribed and studied, in particular, after the detection of electromagnetic signals by the
Rossi X-ray Timing Explorer (RXTE) telescope. Several papers have been published on
the theoretical approach of the fundamental frequencies of particles in the Hartle–Thorne
metric (A5) (Appendix A.2), which describes the spacetime around the rotating neutron
star with quadruple moment (see, e.g., [35–37]). Indeed, the Hartle–Thorne spacetime
contains complex terms, and it is difficult to derive the fundamental frequencies in this
spacetime; therefore, researchers created the coordinate transformation to derive the ap-
proximated expressions for the fundamental frequencies. However, based on the results,
in particular, using Equation (19), the exact expression for the epicyclic frequencies can be
directly obtained.

The present paper mainly explored the practical expressions for the fundamental
frequencies of particles orbiting in stationary and axisymmetric spacetime. In the future,
we plan to constrain black holes and neutron star parameters with QPO in the X-ray binaries
based on the results of this paper.
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Appendix A

Appendix A.1. The Johannsen Spacetime

Now, we focus on testing the Johannsen spacetime by determining the fundamental
frequencies of the test particle. It is similar to the general form of the Kerr spacetime, as
described in the following metric [38]:

ds2 =− Σ̃∆
B2

[
A3(θ)dt− aA4(θ) sin2 θdφ

]2
+

Σ̃
∆A5(r)

dr2 +
Σ̃

A6(θ)
dθ2

+
Σ̃ sin2 θ

B2

[
A1(r)(r2 + a2)dφ− aA2(r)dt

]2
, (A1)

where B = A1(r)A3(θ)(r2 + a2)− A2(r)A4(θ)a2 sin2 θ, and Σ̃ = Σ + f (r) + g(θ). Notice
that the ∆ function is the same as in the Kerr spacetime. In general, it is impossible to find
the stationary points of the function V(r, θ) in the background geometry (A1). However,
for specific choice of the profile functions

A1(r) = 1 +
∞

∑
n=3

α1n

(
M
r

)n
, A2(r) = 1 +

∞

∑
n=2

α3n

(
M
r

)n
, (A2)

A5(r) = 1 +
∞

∑
n=2

α5n

(
M
r

)n
, f (r) = r2

∞

∑
n=3

εn

(
M
r

)n
, (A3)

A3(θ) = A4(θ) = A6(θ) = 1 , g(θ) = 0 , (A4)

one can find that the stationary points of the function V(r, θ) are located at the equatorial
plane θ0 = π/2. One has to emphasize that the Johannsen spacetime is characterized by a
series of parameters, α1n, α3n, α5n, and εn along the mass and spin of the black hole, and it
is applicable to the phenomenological calculations in black hole astrophysics.

Appendix A.2. The Hartle–Thorne Metric

We also have checked that the test particles orbit around the equatorial plane in the
Hartle–Thorne spacetime, which is given by the metric [39]:

ds2 = −
(

1− 2M
r

)[
1 + 2k1P2(cos θ)− 2J2

r2

(
1− 2M

r

)−1
(2 cos2 θ − 1)

]
dt2

+

(
1− 2M

r

)−1
[

1− 2
(

k1 −
6J2

r2

)
P2(cos θ)− 2J2

r2

(
1− 2M

r

)−1
]

dr2

+ r2[1− 2k2P2(cos θ)](dθ2 + sin2θdφ2)− 4J
r

sin2 θdtdφ , (A5)

where

k1 =
J2

Mr3

(
1 +

M
r

)
+

5
8

(
Q

M3 −
J2

M4

)
Q2

2

( r
M
− 1
)

, (A6)

k2 = k1 +
J2

r4 +
5
4

(
Q

M2r
− J2

M3r

)(
1− 2M

r

)−1/2
Q1

2

( r
M
− 1
)

, (A7)

and Q1
2(x) and Q2

2(x) are the associated Legendre functions of the second kind. Here, M is
the mass, J is the angular momentum, and Q is the quadruple moment of the neutron star. It
shows that the the fundamental frequencies of the particle around a neutron star, described
by the Hartle–Thorne spacetime, can be immediately determined using expressions (13)
and (18).
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