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Abstract: It is possible that astrophysical samples are polluted by some outliers, which might belong
to a different sub-class. By removing the outliers, the underlying statistical features may be revealed.
A more reliable correlation can be used as a standard candle relationship for cosmological study. We
present outlier searching for gamma ray bursts with the Partitioning Around Medoids (PAM) method.
In this work, we choose three parameters from the sample, with all of them having rest-frame spectral
time lag (τlag,i). In most cases, the outliers are GRBs 980425B and 030528A. Linear regression is
carried out for the sample without the outliers. Some of them have passed hypothesis testing, while
others have not. However, even for the passed sample, the correlation is not very significant. More
parameter combinations should be considered in future work.

Keywords: gamma ray burst: general; methods: statistical; stars: statistics

1. Introduction

Gamma ray bursts (GRBs) are astronomical phenomena detected at high energies.
Classification and correlation seeking may reveal the underlying physics. GRBs can be
classified as long GRBs (LGRBs) and short GRBs (SGRBs). SGRBs are likely associated with
compact binary coalescence events involving at least one neutron star [1,2]. Massive stellar
collapse is believed to generate the LGRBs [3–5]. However, there is no clear criterion for
this classification. Some GRBs could not be decisively classified in either class. On the other
hand, it is still possible that GRBs can be classified into more groups, such as intermediate
class giant flares from soft gamma ray repeaters. Outlier detection belongs to classification
analysis. The outliers may belong to an individual group.

There are various cluster analysis techniques, such as k-means, K-medoids, hierarchical
clustering, neural network clustering, and kernel principal component analysis [6–8].
Modak [9] conducted fuzzy clustering on GRBs from the final Burst and Transient Source
Experiment (BATSE) catalog and confirmed three groups. Partitioning Around Medoids
(PAM) is the most prominent method of K-medoids. We use the Euclidean distance as the
similarity measurement. The outliers are far away from the other data. We analyze the
outliers and seek the underlying linear correlation between different properties.

The data are based on the collection of Wang et al. [10]. We collect a full sample
including prompt emission, afterglow and host galaxy properties. We choose arbitrary
three parameters based on the rest-frame spectral time lag τlag,i to find the outliers, i.e.,
each combination of the physical parameters containing τlag,i, trying to find any possible
clues for the classification.

Spectral time lag is the time arrival difference between different energy bands for the
prompt emission light curves of GRBs. Spectral lag was first introduced by Norris et al. [11].
A cross-correlation function (CCF) can be used to quantify such an effect since the pulse
peaks at different energy bands are delayed. The method is widely used to calculate
spectral lag [12]. A positive spectral lag is when the high-energy photons arrive before the
low-energy photons, while a negative spectral lag is the opposite. Prompt intrinsic spectral
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evolution or the curvature effect of relativistically moving shocked shells is used to explain
the observed spectral lag [13,14].

Spectral time lag has been found to be correlated to several other quantities. The bolo-
metric peak luminosity and spectral lag have an anti-correlation found by Norris et al. [15],
later confirmed by Ukwatta et al. [12], Norris [16], Gehrels et al. [17]. Therefore, the lag is
an indicator of both GRB peak luminosity and time history morphology, with short-lag and
variable bursts having greater luminosities than long-lag and smooth bursts [16,18,19]. The
peak luminosity and spectral lag relation can be viewed as being closely related to the peak
luminosity and the variability relationship. Variability should be inversely proportional to
spectral lag, i.e., larger variability jets exhibit shorter spectral lags [20]. Using the internal
shock model, the peak luminosity–spectral lag relation and the peak luminosity–variability
relation can be caused by changes in observer’s viewing angle with respect to the jet
axis [21]. Bright GRBs are expected to have a larger Lorentz factor and smaller viewing
angles, meaning that the observer is viewing the GRB jet on the axis. The spectral lag should
be small due to the smaller emitting region [21]. Chen et al. [22] showed the distribution of
spectral time lags in GRBs. The distribution of spectral time lags in LGRBs is apparently
different from SGRBs, which implies different physical mechanisms. Yi et al. [23] confirmed
this result. Zhang et al. [24] also studied the spectral time lag of SGRBs and found that the
lags of the majority of SGRBs are so small that they are negligible or not measurable. Shao
et al. [19] carried out a systematic study of the spectral time lag properties of 50 single-
pulsed GRBs detected by Fermi. Shao et al. [19] provided a new measurement, which
is independent of energy channel selections, and the new results favored the relativistic
geometric effects for the origin of spectral time lag. Lu et al. [25] found the spectral time
lags are closely related to spectral evolution within the pulse. However, all of the statistics
related to the lags do not have very high significance. In this work, we try to find if there
are outliers and to see whether the statistics become more significant without the outliers.
We want to find more reliable correlations than the previous works. We hope to use the
reliable correlations as a standard candle and to constrain the cosmological parameters.

This paper is organized as follows. Section 2 outlines the statistical methods. Section 3
discusses the PAM results. Section 4 is the conclusion and discussions.

2. Statistical Methods

The parameters and samples are from our previous work [10]. We collected all the
possible data for 6289 GRBs in a big catalog [10], of which 165 GRBs were selected, as they
contained the required parameters. The parameters we used in this work include τlag,i (rest-
frame spectral time lag, in units of ms MeV−1), T50,i (duration of 25% to 75% γ-ray fluence in
rest-frame), T90,i (duration of 5% to 95% γ-ray fluence in rest-frame), TR45,i (defined in [26]),
variability2 (light curve variability from the definition of Reichart et al. [26]), Lpk,52 (peak
luminosity of 1 s time bin in rest-frame 1–104 keV energy band, in units of 1052 erg s−1),
Eiso,52 (isotropic γ ray energy in rest-frame 1–104 keV energy band, in units of 1052 ergs),
αBand (low-energy spectral index of the Band model), βBand (high-energy spectral index
of the Band model), Ep,Band,i (rest-frame spectral peak energy of the Band model, keV),
Ep,i (rest-frame spectral peak energy of the Band model and cutoff power law model,
keV), αcpl (low-energy spectral index of cutoff power law model), log tburst,i (rest-frame
central engine active duration in logarithm, in units of s) (defined in [27]), tradio,pk,i (rest-
frame peak time in radio band, in units of s), βX11hr (index in X-ray band at 11 h related
to the trigger time), age (in units of Myr), AV (dust extinction), host galaxy offset (the
distance from GRB location to the centre of its host galaxy, in units of kpc), Mag (absolute
magnitude in AB system at rest 3.6 µm wavelength), log SSFR (specific star formation
rate in logarithm, in units of Gyr−1), and NH (column density of hydrogen, in units of
1021 cm−2). We used the label “i” to mark the parameters in the rest-frame. We chose
three parameters, including τlag,i, for PAM analysis. For the spectral time lag, because
the energy band is different for different instruments, we divided the spectral time lag by
the difference of two energy band central values to get a unified quantity, which can be
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seen in Table 1 of Wang et al. [10]. For example, the spectral time lag for GRB 980425B
is 1.46 ± 0.18 s between 50–100 keV and 25–50 keV [20], and the redshift is 0.0085. The
central value of τlag,i is 1.46

1+0.0085 · ( 50+100
2 − 25+50

2 ) · 106 = 38605 ms MeV−1. The error of
τlag,i is 0.18

1+0.0085 · ( 50+100
2 − 25+50

2 ) · 106 = 4760 ms MeV−1. Similar to the suggestion in
Foley et al. [28], we removed the τlag,i for GRB 060218 because GRB 060218 has extremely
large lag, and it is an X-ray flash rather than a typical GRB.

For the spectral parameters, the spectra are mainly fitted by three models: the Band
model, the cutoff power law (CPL) model and the simple power law (SPL) model [29]. The
Band model is a smoothly joint broken power law with the definition [30]:

N(E) =
{ A

(
E

100 keV

)α
e−

E
E0 , E < (α − β)E0,

A
(

E
100 keV

)β[ (α−β)E0
100 keV

]α−β
eβ−α, E ≥ (α − β)E0,

(1)

where α is the low-energy photon index, β is the high-energy photon index, A is the
coefficient for normalization, E is the energy of the photons, and E0 is the break energy.
Mostly, we used Ep instead of E0. Ep is the peak energy in the spectrum of E2N, and
Ep = (2 + α)E0.

In the previous work [10], we used αBand, βBand and Ep,Band as Band function spectral
parameters. αcpl and Ep,cpl were used to mark CPL model spectrum parameters. The
formula of SPL model is N(E) = AEαspl . In this paper, we used −αBand, −βBand and −αcpl
to stand for the opposite of spectral indices, as they become mostly positive numbers by
adding the ‘−’ sign.

Cluster analysis divides data into clusters that are meaningful, useful, or both. Cluster
analysis is the study of techniques for finding the most representative cluster prototypes. A
cluster is a set of objects in which each object is more similar to the prototype that defines the
cluster than to the prototype of any other clusters. There are a number of such techniques,
but two of the most prominent are K-means and K-medoids. The K-medoids method is
more robust than others in terms of outliers. The outliers are the smallest groups with a few
points in this paper. Partitioning Around Medoids (PAM) is the most prominent method of
K-medoids. In this paper, we use the PAM method of K-medoids for outlier detection [31].
In order to avoid the influence of different units, we apply data standardization to all the
parameters. We use the R language function Nbclust to calculate the best cluster number.
The detailed processes are the following:

• We calculate the best cluster number K and choose K initial centroids, where K is a
user-specified parameter, namely, the number of clusters desired. In this paper, the K
is 2 or 3;

• We use the Euclidean distance as a similarity measurement. We calculate the Euclidean
distance to the initial centroids of each point;

• Each point is then assigned to the closest centroid, and each collection of points
assigned to a centroid is a cluster;

• For every cluster, we calculate the Euclidean distance sum to the centroid of each
point, which are assigned to this centroid. Then, we obtain the sum of each cluster;

• For every cluster, we choose one point to update the centroid;
• Points are assigned to the updated centroids;
• For every cluster, we calculate the Euclidean distance sum to the updated centroid of

each point, which are assigned to this updated centroid. Then, we get the sum of all
the clusters;

• If the sum of all the clusters in the seventh step is smaller than the fourth step, we
update the centroids;

• We repeat the assignments and update steps until no point changes clusters, or equiv-
alently, until the centroids remain the same.

We tried all three parameter combinations including τlag,i. For every combination,
we used PAM method for outlier detection firstly. If we found outliers, we conducted
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linear regression among the three parameters including τlag,i without outliers. Some
combinations have obvious outliers and significant correlations, as shown in Section 3.1.
Some combinations only have obvious outliers, but no significant correlations can be found,
as shown in Section 3.2. Some combinations have no obvious outliers and no significant
correlations, and we do not show these results. We also consider all the error bars using the
MC method [32]. The results are shown in the next section.

3. PAM Results

We tried all the three combinations including τlag,i with the PAM method. The data
selection criterion was that the sample should have at least 10 GRBs. We used the R
language Nbclust package to calculate the best cluster number. The Nbclust package
provides 30 indices for determining the number of clusters, such as the Krzanowski–
Lai (KL) index [33], the Davies–Bouldin (DB) index [34], and so on. Charrad et al. [35]
showed more details regarding the Nbclust package. As shown in the upper panel of
Figure 1, number 2 has the maximum criteria. Therefore, the cluster number should be
2. However, the cluster number of Figures 9 and 10 is 3, as shown in Figure 9. Except for
Figures 9 and 10, the cluster number of other figures is 2 with the Nbclust package. We
did not show the others in this paper. We found 191 combinations with obvious outliers.
Though the PAM method can find the outliers, the rest of the sample in the PAM plot does
not show any meaningful message on the correlation or the clustering. Therefore, some
independent statistics should be applied to check the statistical property for the rest of
the sample. Linear regression is carried out with outliers removed. Only 8 combinations
have passed the hypothesis testing, which are displayed in Figures 1–8. However, for
the passed combinations, the correlation is not very significant. We use the adjusted R2

to measure the goodness of the regression model. It indicates the percentage of variance
explained considering the parameter freedom. We also showed a small part of cluster plots
with obvious outliers but not passing the hypothesis testing in Figures 9–14. These figures
include all the outliers. In other words, the cluster plots with repeated outliers are not
displayed in this paper.

3.1. Remarkable Linear Regression Results without Outliers

The outlier analysis can be apparently shown in the figures. We list the results with
remarkable linear regression results in Figures 1–8.

Figures 1 and 2 show the outliers in the diagram of τlag,i, T90,i (and T50,i) and βBand,
respectively. Both T90,i and T50,i indicate the duration of the GRBs. Therefore, these two
analyses have similar behavior. GRBs 980425B and 030528A are the two outliers, which
can be clearly seen from these two figures. The spectral time lag for GRB 030528A is
12.5 ± 0.5 s between 100–300 keV and 25–50 keV [36]. The spectral time lag for GRB
980425B is 1.46 ± 0.18 s between 50–100 keV and 25–50 keV [20]. Because the energy band
is different, we divide the spectral time lag by the difference of two energy band central
values. τlag,i for these two GRBs are 43,215 ± 1729 ms MeV−1 and 38,605 ± 4760 ms MeV−1,
respectively, which are much larger than other GRBs. The detailed data for all the samples
can be seen in [10]. Notice GRB 980425B is the familiar burst, which is generally called GRB
980425 (see [10] for the explanation). From the right panels of these two figures, one can
see the two outliers have extraordinarily large lags, which should be the reason why they
are classified as outliers. From the linear regression results, one can see the spectral time
lag is proportional to duration of GRBs and anti-correlated to the spectral index β.
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Figure 1. The outlier plot for the three parameters, τlag,i, T50,i and βBand. The histogram is the result of
function NbClust, indicating the best cluster number is 2. The left panel shows the PAM result for the
clustering analysis. Notice the x and y axes (compnent 1 and 2) are the two principal components in
the PAM method and do not represent any combination of the three parameters. The right plot shows
the regression result of the physical parameters without outliers. The outliers are GRBs 980425B
and 030528A. The linear regression result is τlag,i = (654+150

−150)× log T50,i + (465+400
−270)× (−βBand)−

(300+400
−940). The adjusted R2 is 0.07. The red line is the best fit result, i.e., y = x.
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Figure 2. Similar to Figure 1, with the three parameters being τlag,i, T90,i and βBand. The outliers are
GRBs 980425B and 030528A. The linear regression result is τlag,i = (611+130

−130)× log T90,i + (503+430
−310)×

(−βBand)− (590+440
−1100). The adjusted R2 is 0.05.
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Figure 3. Similar to Figure 1, with the three parameters being τlag,i, Lpk,52 and Eiso,52. The outliers
are GRBs 980425B and 030528A. The linear regression result is τlag,i = (−1091+150

−160)× log Lpk,52 +

(684+120
−130)× log Eiso,52 + (703+37

−85). The adjusted R2 is 0.08.
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Figure 4. Similar to Figure 1, with the three parameters being τlag,i, T90,i and Eiso,52. The outliers are
GRB 980425B and 030528A. The linear regression result is τlag,i = (831+126

−115)× log T90,i − (311+80
−78)×

log Eiso,52 + (591+24
−58). The adjusted R2 is 0.07.
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Figure 5. Similar to Figure 1, with the three parameters being τlag,i, αBand and Lpk,52. The outliers
are GRB 980425B and 030528A. The linear regression result is τlag,i = (−1107+520

−670)× (−αBand)−
(969+150

−150)× log Lpk,52 + (2737+230
−570). The adjusted R2 is 0.14.
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Figure 6. Similar to Figure 1, with the three parameters being τlag,i, βBand and Lpk,52. The outliers are
GRB 980425B and 030528A. The linear regression result is τlag,i = (602+640

−370)× (−βBand)− (804+240
−180)×

log Lpk,52 + (165+520
−1400). The adjusted R2 is 0.21.
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Figure 7. Similar to Figure 1, with the three parameters being τlag,i, Ep,Band,i and Lpk,52. The outliers
are GRB 980425B and 030528A. The linear regression result is τlag,i = (2197+410

−390)× log Ep,Band,i −
(1552+220

−230)× log Lpk,52 − (3810+360
−950). The adjusted R2 is 0.22.
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Figure 8. Similar to Figure 1, with the three parameters being τlag,i, Ep,i and variability2. The
outlier is GRB 980425B. The linear regression result is τlag,i = (−1927+490

−500)× log Ep,i − (7501+3600
−3200)×

variability2 + (7613+570
−1400). The adjusted R2 is 0.16.
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βBand. The histogram is the result of function NbClust, indicating the best cluster number is 3. The
right panel shows the PAM result for the clustering analysis. The introduction of every parameter is
in Section 2. The one outlier is 080319B. The four outliers are GRBs 080721A, 090926A, 091127A and
130408A.
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Figure 10. Similar to the right panel of Figure 9. The left panel shows PAM clustering with the three
parameters being τlag,i, Mag, and βBand, while the outliers are GRBs 080319B and 081221A. The right
panel shows PAM clustering with the three parameters being τlag,i, Age, and AV, while the outliers
are GRB 980425B and 030528A.
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Figure 11. Same as Figure 10. The left panel shows PAM clustering with the three parameters being
τlag,i, TR45,i, and Eiso,52, while the outliers are GRB 980425B and 030528A. The right panel shows
PAM clustering with the three parameters being τlag,i, log tburst,i, and Age, while the outlier is GRB
100621A.
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Figure 12. Same as Figure 10. The left panel shows PAM clustering with the three parameters being
τlag,i, tradio,pk,i, and Age, while the outliers are GRBs 010921A, 031203A, and 050416A. The right
panel shows PAM clustering with the three parameters being τlag,i, NH, and αBand, while the outlier
is GRB 080319B.
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Figure 13. Same as Figure 10. The left panel shows PAM clustering with the three parameters being
τlag,i, host galaxy offset, and αcpl, while the outliers are GRBs 031203A and 060502A. The right panel
shows PAM clustering with the three parameters being τlag,i, βX11hr, and Eiso,52, while the outliers
are GRBs 050416A, 060604A, 060605A, 080319B, and 100621A.
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Figure 14. Same as Figure 10. The left panel shows PAM clustering with the three parameters being
τlag,i, log SSFR, and host galaxy offset. The outliers are GRBs 031203A and 060505A. The right panel
shows PAM clustering with the three parameters being τlag,i, T50,i, and log tburst. The outliers are
GRBs 060607A, 080721A, 090926A, 091127A, and 130408A.

Without the two outliers, one finds τlag,i = (−1091+152
−164)× log Lpk,52 + (684+118

−129)×
log Eiso,52 + (703+37

−85). Considering Lpk,52 ∼ Eiso,52/T90, this relationship is actually show-
ing that the lag is anti-correlated to the total energy, i.e., with higher total energy, the lag
is shorter.

The indication from Figure 3 is identified in Figure 4. It directly shows the proportional
correlation to T90 and the anti-correlation to Eiso,52.

Figure 5 introduces a new parameter, the spectral index α. The lag is positively
correlated to α, i.e., with bigger α, the lag is larger. Remember the anti-correlation to β as
shown in Figures 1 and 2, i.e., with smaller β, the lag is larger. Notice that in general, α > 0,
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and β < 0, which means the sharper the slope of the spectrum, the larger the lag. This is
confirmed in Figure 6, where again τlag,i is anti-correlated to β.

Figure 7 shows a positive correlation between the lag and the peak energy of GRBs.
Another new correlation is shown in Figure 8, which is the anti-correlation between the lag
and the variability. Because GRB 030528A does not have the value of variability2, we just
have one outlier as shown in Figure 8. Both of them have larger adjusted R2, indicating
that the correlation is more reliable.

3.2. Remarkable Outliers without Significant Linear Regression

Figures 9–14 show the remarkable outliers without significant linear regression (with
p-value greater than 0.05), which are clearly obvious. In some of these figures (e.g., right
panel of Figures 10 and 11), one can see that the sample without outliers shows apparent
linear correlations. However, one cannot deduce an intrinsic correlation of the physical
parameters, as the PAM method only identifies the outliers into apparent large distances.

From these figures, we found more outliers for different combinations of three pa-
rameters. The outliers are GRBs 980425B, 010921A, 030528A, 031203A, 050416A, 060502A,
060604A, 060605A, 060607A, 080319B, 080721A, 081221A, 090926A, 091127A, 100621A, and
130408A in different cases.

We also show the distribution of τlag,i in Figure 15; the outliers are not obvious. Though
the quantities are clearly larger for these GRBs, from the distribution itself, they could be
inside a single distribution function. Only when they are combined with other parameters
do the outliers become obvious. To show the distribution more obviously, we choose the
logarithmic scale. However, to avoid the negative numbers, we put them in an independent
panel, as shown in Figure 15. We also did not consider the error bars in the distribution, as
that may arise the positive-negative value problem.
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Figure 15. The distribution of rest frame spectral time lag τlag,i. The left panel shows the GRBs
with positive values in logarithmic scale. The right panel shows the ones with negative values in
normal scale.

4. Discussion and Conclusions

By performing the PAM method on the GRB data, we expect to find some outliers. By
removing the outliers, we then expect to find inner correlations with the remaining sample.
In this work, we chose the spectral time lag selected sample together with other parameters,
and we found that, in most cases, the outliers are GRBs 980425B and 030528A. This is mainly
because they are the two GRBs with the largest spectral lags. However, there are also other
outliers in other combinations. That means the value of the lag is not the only criterion.
In some combinations of other two parameters, there are weak correlations obtained by
removing the outliers, while there are also others having no correlations. As there are no
strong correlations, we can not get very conclusive results from those correlations yet. We
expect more combinations can reveal some underline correlations. Once we find tighter
correlations, some of those correlations could be used as standard candle relations and
could be used for more reliable cosmological studies.
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It is interesting that the outliers are always GRBs 980425B and 030528A for those
combinations having correlations (see Figures 1–8), while the others have more outliers.
The reason for this is not clear yet. GRBs 980425B and 030528A both have very large τlag,i.
In Figures 9–14, most outliers are not GRBs 980425B and 030528A. This is because not all
the combinations include GRBs 980425B and 030528A. On the other hand, GRB 980425B is
a low-luminosity burst [37], and GRB 030528A is an X-ray-rich burst [38]. They are both
special GRBs.

With the accumulated data, one can perform both classification and correlation analysis
on the data. One can also first classify the GRBs into several subgroups and look for the
correlation for each subgroup. These processes may reveal the underlying nature. Outlier
analysis is similar to the classification, while to find the outliers, which is the minority in
the whole sample. Those outliers may indicate some special feature of the selected GRBs,
which may reveal an independent origin (but much smaller samples), or a very different
radiation mechanism. More outlier criteria (more parameter combinations) may reveal
that in different aspects. For example, the soft γ ray repeaters may lie in the sample of
conventional GRBs from compact binary mergers or the collapse of massive stars and may
be classified as outliers with a certain set of correctly selected parameters. If the outliers
are real strangers, one may want to remove them from the whole sample. By omitting the
outliers, the remaining sample may obey some laws, which can also be used to study the
physics of GRBs. With the remaining sample, one may want to do a similar classification
and correlation analysis. In the future, more comprehensive study, new patterns might
be revealed.
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