The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars
Abstract
:1. Introduction
1.1. About
1.2. Phases of Brahmavarta Initiative
2. Pre-Initiative Phase
2.1. Martian Administration on Earth (MADE)
2.2. Settlement Site
2.2.1. Selection Criteria
2.2.2. Proposed Settlement Sites on Mars
2.2.3. Characteristics of the Selected Site
- Arcadia Planitia is flat and smooth, which allows for the construction of the base easier [13]. The subsoil terrain and excess ice are important resources for the base. Its low elevation provides good thermal conditions and solar power. This state is named Hastinapura.
- Valles Marineris is an ideal location because of the temperatures (203 K in winters and 313 K in summers), and it is believed that there may be spring-like deposits running beneath the deep canyon, where groundwater could burst through onto the surface [14]. It has a lower radiation level (15 rem/year) and low altitude. This state is named Kiskintha.
- Utopia Planitia is a huge, ~3300 km diameter basin that formed by impact early in Mars’s history [15]. This city is named Indraprasta.
- Jezero is located close to the Martian equator, providing warmer temperatures than at the poles [16]. There is also evidence of hydrated minerals [17,18]. The availability of water is high, and loss of water from the surface can be minimal due to low elevation as well as a flat ground surface for easy infrastructure development. This city is named Dvaraka.
2.3. Dawn of Brahmavarta
3. Settlement Phase
3.1. Brahmavartans’ Arrival
3.2. Brahmavarta’s Architectural Concept
3.2.1. Brahmavarta’s Layout
3.2.2. Sector Layouts
3.2.3. Brahmavarta’s Vernacular Architecture
3.2.4. Living Quarters
3.2.5. Infrastructure Materials
3.3. Transportation
3.3.1. Long and Short Distance Ground Travel
3.3.2. Unmanned Aerial Vehicles
3.3.3. Martian Hopper
3.4. Brahmavarta’s Life Support System
3.5. Electricity Production
3.6. Food Production and Waste Management
3.7. Internet
3.8. Manufacturing Industries
3.9. Communication
3.10. Terraforming Mars
4. Self-Sustaining Phase
4.1. Initial Investment
4.2. Profitable Operations
4.2.1. Asteroid Mining
4.2.2. Research Visits
4.2.3. Tourist Visit
4.2.4. Deuterium Generation
4.2.5. Lunar Dust
4.2.6. Broadcasting
4.3. Future Scope and Economic Viability
Cost Plan
5. Social and Political Model
5.1. The Brahmavarta Congress (TBC)
5.2. Smart Card System
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The term refers to the area as the place where the “good” people are born. The name can be translated to “holy land”, “sacred land”, “abode of gods”, and “the scene of creation” |
2 | The Citizens of Brahmavarta |
References
- Reasenberg, R.D.; King, R.W. The rotation of Mars. J. Geophys. Res. Solid Earth 1979, 84, 6231–6240. [Google Scholar] [CrossRef]
- Folkner, W.M.; Dehant, V.; Le Maistre, S.; Yseboodt, M.; Rivoldini, A.; Van Hoolst, T.; Asmar, S.W.; Golombek, M.P. The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Rev. 2018, 214, 1–16. [Google Scholar] [CrossRef]
- Taylor, G.J. The bulk composition of Mars. Geochemistry 2013, 73, 401–420. [Google Scholar] [CrossRef]
- Jakosky, B.M.; Lin, R.P.; Grebowsky, J.M.; Luhmann, J.G.; Mitchell, D.; Beutelschies, G.; Priser, T.; Acuna, M.; Andersson, L.; Baird, D. The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev. 2015, 195, 3–48. [Google Scholar] [CrossRef]
- Owen, T.; Biemann, K.; Rushneck, D.; Biller, J.; Howarth, D.; Lafleur, A. The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 1977, 82, 4635–4639. [Google Scholar] [CrossRef]
- Kleinböhl, A.; Schofield, J.T.; Kass, D.M.; Abdou, W.A.; Backus, C.R.; Sen, B.; Shirley, J.H.; Lawson, W.G.; Richardson, M.I.; Taylor, F.W. Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. Planets 2009, 114, E10006. [Google Scholar] [CrossRef]
- Heldmann, J.L.; Marinova, M.M.; Lim, D.S.; Wilson, D.; Carrato, P.; Kennedy, K.; Esbeck, A.; Anthony Colaprete, T.; Elphic, R.C.; Captain, J. Mission architecture using the SpaceX starship vehicle to enable a sustained human presence on Mars. New Space 2022, 10, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C. SpaceX starship lands on Earth, but manned missions to Mars will require more. Engineering 2021, 7, 1345–1347. [Google Scholar] [CrossRef]
- Anekwe, L. Mars ship almost ready. ScienceDirect 2019, 243, 5. [Google Scholar] [CrossRef]
- Klem, M.D.; Smith, T.D.; Wadel, M.F.; Meyer, M.L.; Free, J.M.; Cikanek, H.A., III. Liquid oxygen/liquid methane propulsion and cryogenic advanced development. In Proceedings of the 62nd International Aeronautical Congress, Cape Town, South Africa, 3–7 October 2011. [Google Scholar]
- Melcher, J.C.; Morehead, R.L. Combustion stability characteristics of the project morpheus liquid oxygen/liquid methane main engine. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014; p. 3681. [Google Scholar]
- Hargitai, H. Mars Climate Zone Map Based On TES Data. In Proceedings of the 41st Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; p. 1199. [Google Scholar]
- Bramson, A.M.; Byrne, S.; Putzig, N.E.; Sutton, S.; Plaut, J.J.; Brothers, T.C.; Holt, J.W. Widespread excess ice in arcadia planitia, Mars. Geophys. Res. Lett. 2015, 42, 6566–6574. [Google Scholar] [CrossRef]
- Nedell, S.S.; Squyres, S.W.; Andersen, D.W. Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus 1987, 70, 409–441. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W., III. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res. Planets 2000, 105, 11999–12022. [Google Scholar] [CrossRef]
- Goudge, T.A.; Mohrig, D.; Cardenas, B.T.; Hughes, C.M.; Fassett, C.I. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus 2018, 301, 58–75. [Google Scholar] [CrossRef]
- Horgan, B.H.; Anderson, R.B.; Dromart, G.; Amador, E.S.; Rice, M.S. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 2020, 339, 113526. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Fassett, C.I.; Schon, S.C.; Head, J.W., III; Des Marais, D.J.; Grant, J.A.; Murchie, S.L. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 2008, 1, 355–358. [Google Scholar] [CrossRef]
- Roman, M.C.; Kim, T.; Prater, T.J.; Mueller, R.P. NASA centennial challenge: 3D-Printed Habitat. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5279. [Google Scholar]
- Zubrin, R.M.; Muscatello, A.C.; Berggren, M. Integrated Mars in situ propellant production system. J. Aerosp. Eng. 2013, 26, 43–56. [Google Scholar] [CrossRef]
- Mukundan, A.; Patel, A.; Saraswat, K.D.; Tomar, A.; Kuhn, T. Kalam Rover. Flight Testing. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1047. [Google Scholar]
- Mukundan, A.; Wang, H.-C. Simplified Approach to Detect Satellite Maneuvers Using TLE Data and Simplified Perturbation Model Utilizing Orbital Element Variation. Appl. Sci. 2021, 11, 10181. [Google Scholar] [CrossRef]
- Daniels, T.L.; Keller, J.W.; Lapping, M.B.; Daniels, K.; Segedy, J. The Small Town Planning Handbook; The American Planning Association: Washington, DC, USA, 2007. [Google Scholar]
- Butturini, M.; Marcelis, L.F. Vertical farming in Europe: Present status and outlook. Plant Fact. 2020, 1, 77–91. [Google Scholar]
- Chen, C.-W.; Tseng, Y.-S.; Mukundan, A.; Wang, H.-C. Air Pollution: Sensitive Detection of PM2.5 and PM10 Concentration Using Hyperspectral Imaging. Appl. Sci. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Mukundan, A.; Tsao, Y.-M.; Kim, Y.; Lin, F.-C.; Wang, H.-C. Recent Advances in Counterfeit Art, Document, Photo, Hologram, and Currency Detection Using Hyperspectral Imaging. Sensors 2022, 22, 7308. [Google Scholar] [CrossRef]
- Mukundan, A.; Huang, C.-C.; Men, T.-C.; Lin, F.-C.; Wang, H.-C. Air Pollution Detection Using a Novel Snap-Shot Hyperspectral Imaging Technique. Sensors 2022, 22, 6231. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, A.; Feng, S.-W.; Weng, Y.-H.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-P.; Mukundan, A.; Chen, W.-C.; Wu, M.-T.; Hsieh, S.-C.; Wang, H.-C. Design of a Lab-On-Chip for Cancer Cell Detection through Impedance and Photoelectrochemical Response Analysis. Biosensors 2022, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-J.; Mukundan, A.; Tsao, Y.-M.; Huang, C.-W.; Wang, H.-C. Identification of Early Esophageal Cancer by Semantic Segmentation. J. Pers. Med. 2022, 12, 1204. [Google Scholar] [CrossRef]
- Tsai, C.-L.; Mukundan, A.; Chung, C.-S.; Chen, Y.-H.; Wang, Y.-K.; Chen, T.-H.; Tseng, Y.-S.; Huang, C.-W.; Wu, I.-C.; Wang, H.-C. Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer. Cancers 2021, 13, 4593. [Google Scholar] [CrossRef] [PubMed]
- Mukundan, A.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Growth Mechanism of Periodic-Structured MoS2 by Transmission Electron Microscopy. Nanomaterials 2021, 12, 135. [Google Scholar] [CrossRef]
- Lee, C.-H.; Mukundan, A.; Chang, S.-C.; Wang, Y.-L.; Lu, S.-H.; Huang, Y.-C.; Wang, H.-C. Comparative Analysis of Stress and Deformation between One-Fenced and Three-Fenced Dental Implants Using Finite Element Analysis. J. Clin. Med. 2021, 10, 3986. [Google Scholar] [CrossRef]
- Tsai, T.-J.; Mukundan, A.; Chi, Y.-S.; Tsao, Y.-M.; Wang, Y.-K.; Chen, T.-H.; Wu, I.-C.; Huang, C.-W.; Wang, H.-C. Intelligent Identification of Early Esophageal Cancer by Band-Selective Hyperspectral Imaging. Cancers 2022, 14, 4292. [Google Scholar] [CrossRef]
- Kennel, C.; Coroniti, F.; Moses, S.; Zelenyi, L. Dynamics of Mars’ magnetosphere. Geophys. Res. Lett. 1989, 16, 915–918. [Google Scholar] [CrossRef]
- Reddy, A.; Mukundan, A. The Strategic Needs Necessary for Sustainable Marine Ecology Horizon 2030. Int. J. Innov. Res. Sci. Eng. Technol. 2020, 5, 1141–1147. [Google Scholar] [CrossRef]
- Wan, L.; Wendner, R.; Cusatis, G. A novel material for in situ construction on Mars: Experiments and numerical simulations. Constr. Build. Mater. 2016, 120, 222–231. [Google Scholar] [CrossRef]
- Tucker, D.S.; Ethridge, E.C. Processing glass fiber from Moon/Mars resources. Space 1998, 98, 290–300. [Google Scholar]
- Zubrin, R.; Frankie, B.; Kito, T.; Zubrin, R.; Frankie, B.; Kito, T. Mars in-situ resource utilization based on the reverse water gas shift-experiments and mission applications. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997; p. 2767. [Google Scholar]
- Pazar, C.C. Resource Utilization on Mars. J. Geophys. Res. Planets 2020, 124, 12. [Google Scholar]
- Abercromby, A.F.; Gernhardt, M.L.; Jadwick, J. Evaluation of dual multi-mission space exploration vehicle operations during simulated planetary surface exploration. Acta Astronaut. 2013, 90, 203–214. [Google Scholar] [CrossRef]
- Albarran Rafols, G. Design of an Electric ATV; Universitat Politècnica de Catalunya: Barcelona, Spain, 2017. [Google Scholar]
- Zelenka, B.J.; Olson, E.D.; Liu, X. Prandtl-D Qualitative and Quantitative Wind Tunnel Tests. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 0545. [Google Scholar]
- Zelenka, B.; Olson, E.D.; Liu, X. Wind Tunnel Measurements of the Prandtl-D Research Aircraft in Preparation for a Stereoscopic Particle Image Velocimetry Flow Survey. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15, 19–21 January 2021; p. 0826. [Google Scholar]
- Zelenka, B.J. An Experimental Investigation of the Prandtl-D Research Glider’s Aerodynamic Characteristics. Ph.D. Thesis, San Diego State University, San Diego, CA, USA, 2021. [Google Scholar]
- Balaram, J.; Aung, M.; Golombek, M.P. The ingenuity helicopter on the perseverance rover. Space Sci. Rev. 2021, 217, 1–11. [Google Scholar] [CrossRef]
- Jones, J.; Wu, J. Solar montgolfiere balloons for Mars. In Proceedings of the International Balloon Technology Conference, Norfolk, VA, USA, 28 June–1 July 1999; p. 3852. [Google Scholar]
- Landis, G.A.; Linne, D. Mars exploration with a self-refueling hopper. In Concepts and Approaches for Mars Exploration; Lunar and Planetary Institute: Houston, TX, USA, 2000; Volume 187. [Google Scholar]
- Jerred, N.; Cooley, S.; O’Brien, R.; Howe, S.; O’Brien, J. The Mars Hopper: Development, Simulation and Experimental Validation of a Radioisotope Exploration Probe for the Martian Surface. In Proceedings of the AIAA SPACE 2012 Conference & Exposition, Pasadena, CA, USA, 11–13 September 2012; p. 5152. [Google Scholar]
- Shafirovich, E.; Salomon, M.; Gökalp, I. Mars hopper versus Mars rover. Acta Astronaut. 2006, 59, 710–716. [Google Scholar] [CrossRef]
- Sercel, J.; Blandino, J.; Wood, K. The ballistic Mars hopper-An alternative Mars mobility concept. In Proceedings of the 23rd Joint Propulsion Conference, San Diego, CA, USA, 29 June–2 July 1987; p. 1901. [Google Scholar]
- Howe, S.D.; O’Brien, R.C.; Ambrosi, R.M.; Gross, B.; Katalenich, J.; Sailer, L.; Webb, J.; McKay, M.; Bridges, J.C.; Bannister, N.P. The Mars Hopper: An impulse-driven, long-range, long-lived mobile platform utilizing in situ Martian resources. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2011, 225, 144–153. [Google Scholar] [CrossRef]
- Sridhar, K.; Iacomini, C.S.; Finn, J.E. Combined H2O/CO2 solid oxide electrolysis for Mars in situ resource utilization. J. Propuls. Power 2004, 20, 892–901. [Google Scholar] [CrossRef]
- Burillo, D.; Chester, M.V.; Pincetl, S.; Fournier, E.D.; Reyna, J. Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change. Appl. Energy 2019, 236, 1–9. [Google Scholar] [CrossRef]
- Shyu, C.-W. Ensuring access to electricity and minimum basic electricity needs as a goal for the post-MDG development agenda after 2015. Energy Sustain. Dev. 2014, 19, 29–38. [Google Scholar] [CrossRef]
- Gibson, M.; Schmitz, P. Higher Power Design Concepts for NASA’s Kilopower Reactor. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–9. [Google Scholar]
- Gibson, M.A.; Poston, D.I.; McClure, P.; Godfroy, T.; Sanzi, J.; Briggs, M.H. The Kilopower Reactor Using Stirling TechnologY (KRUSTY) nuclear ground test results and lessons learned. In Proceedings of the 2018 International Energy Conversion Engineering Conference, Cincinnati, OH, USA, 9–11 July 2018; p. 4973. [Google Scholar]
- Gibson, M.A.; Oleson, S.R.; Poston, D.I.; McClure, P. NASA’s Kilopower reactor development and the path to higher power missions. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–14. [Google Scholar]
- Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J. Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends Microbiol. 2009, 17, 458–466. [Google Scholar] [CrossRef]
- Sharma, D.; Tomar, S.; Chakraborty, D. Role of earthworm in improving soil structure and functioning. Curr. Sci. 2017, 113, 1064–1071. [Google Scholar] [CrossRef]
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Cornwell, D.M. Overview and results of the lunar laser communication demonstration. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI; 2014; pp. 213–223. Available online: https://spie.org/Publications/Proceedings/Paper/10.1117/12.2045508?SSO=1 (accessed on 13 August 2022).
- Boroson, D.M.; Robinson, B.S.; Burianek, D.A.; Murphy, D.V.; Biswas, A. Overview and status of the lunar laser communications demonstration. In Proceedings of the Free-Space Laser Communication Technologies XXIV; 2012; pp. 69–78. Available online: https://icsos2012.nict.go.jp/pdf/1569619963.pdf (accessed on 13 August 2022).
- Robinson, B.S.; Boroson, D.M.; Burianek, D.A.; Murphy, D.V. The lunar laser communications demonstration. In Proceedings of the 2011 International Conference on Space Optical Systems and Applications (ICSOS); 2011; pp. 54–57. Available online: https://opg.optica.org/abstract.cfm?uri=lsc-2011-LWC1 (accessed on 13 August 2022).
- Robinson, B.S.; Boroson, D.; Burianek, D.; Murphy, D. Overview of the lunar laser communications demonstration. In Proceedings of the Free-Space Laser Communication Technologies XXIII; 2011; pp. 9–12. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7923/1/Overview-of-the-lunar-laser-communications-demonstration/10.1117/12.878313.short (accessed on 13 August 2022).
- Bell, J., III. Iron, sulfate, carbonate, and hydrated minerals on Mars. Miner. Spectrosc. A Tribut. Roger G. Burn. 1996. Available online: http://molokai.sese.asu.edu/~jimbo/indexed/publications/first_author/0014_Bell_III_J.F._Iron,_Sulfate,_Carbonate_1996.pdf (accessed on 13 August 2022).
- Bell III, J.F.; McCord, T.B.; Owensby, P.D. Observational evidence of crystalline iron oxides on Mars. J. Geophys. Res. Solid Earth 1990, 95, 14447–14461. [Google Scholar] [CrossRef]
- Shafirovich, E.Y.; Shiryaev, A.; Goldshleger, U. Magnesium and carbon dioxide-A rocket propellant for Mars missions. J. Propuls. Power 1993, 9, 197–203. [Google Scholar] [CrossRef]
- Barrón, V.; Torrent, J. Iron, manganese and aluminium oxides and oxyhydroxides. In Minerals at the Nanoscale; 2013; Available online: https://pubs.geoscienceworld.org/books/edited-volume/942/chapter-abstract/106820176/Iron-manganese-and-aluminium-oxides-and?redirectedFrom=fulltext (accessed on 13 August 2022).
- Landis, G.A. Meteoritic steel as a construction resource on Mars. Acta Astronaut. 2009, 64, 183–187. [Google Scholar] [CrossRef]
- Avci-Karatas, C. Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS). Steel Compos. Struct. 2019, 33, 583–594. [Google Scholar]
- Lim, D.S.; Abercromby, A.F.; Kobs Nawotniak, S.E.; Lees, D.S.; Miller, M.J.; Brady, A.L.; Miller, M.J.; Mirmalek, Z.; Sehlke, A.; Payler, S.J. The BASALT research program: Designing and developing mission elements in support of human scientific exploration of Mars. Astrobiology 2019, 19, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.H.; Bridges, J.C.; Wiens, R.; Anderson, R.; Dyar, D.; Fisk, M.; Thompson, L.; Gasda, P.; Filiberto, J.; Schwenzer, S.P. Basalt–trachybasalt samples in Gale crater, Mars. Meteorit. Planet. Sci. 2017, 52. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, M.B.; McSween, H.Y. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars. Nature 2002, 417, 263–266. [Google Scholar] [CrossRef]
- Reches, Y. Concrete on Mars: Options, challenges, and solutions for binder-based construction on the Red Planet. Cem. Concr. Compos. 2019, 104, 103349. [Google Scholar] [CrossRef]
- Rampe, E.; Morris, R.; Bish, D.; Chipera, S.; Ming, D.; Blake, D.; Vaniman, D.; Bristow, T.; Cavanagh, P.; Farmer, J. Potential cement phases in sedimentary rocks drilled by Curiosity at Gale Crater, Mars. In Proceedings of the Lunar and Planetary Science Conference; 2015. Available online: https://ntrs.nasa.gov/citations/20150001954 (accessed on 13 August 2022).
- McKay, D.S.; Allen, C.C. Concrete—A practical construction material for Mars. In Engineering, Construction, and Operations in Space V; 1996; pp. 566–570. Available online: https://ascelibrary.org/doi/abs/10.1061/40177(207)78 (accessed on 13 August 2022).
- Cannon, K.M.; Mustard, J.F. Preserved glass-rich impactites on Mars. Geology 2015, 43, 635–638. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.C.; Gooding, J.L.; Jercinovic, M.; Keil, K. Altered basaltic glass: A terrestrial analog to the soil of Mars. Icarus 1981, 45, 347–369. [Google Scholar] [CrossRef]
- Gooding, J.L.; Keil, K. Alteration of glass as a possible source of clay minerals on Mars. Geophys. Res. Lett. 1978, 5, 727–730. [Google Scholar] [CrossRef]
- Haberle, R.M.; Tyler, D.; McKay, C.P.; Davis, W.L. A model for the evolution of CO2 on Mars. Icarus 1994, 109, 102–120. [Google Scholar] [CrossRef]
- Titus, T.N.; Kieffer, H.H.; Christensen, P.R. Exposed water ice discovered near the south pole of Mars. Science 2003, 299, 1048–1051. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, Y.; Meng, X. SHARAD Observations of Temporal Variations of CO2 Ice Deposits at the South Pole of Mars. Remote Sens. 2022, 14, 435. [Google Scholar] [CrossRef]
- Birch, P. Terraforming Mars quickly. Br. Interplanet. Soc. J. 1992, 45, 331–340. [Google Scholar]
- Hellgren, V. Asteroid mining: A review of methods and aspects. Stud. Thesis Ser. INES 2016. Available online: https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8882371&fileOId=8884121 (accessed on 13 August 2022).
- Andrews, D.G.; Bonner, K.; Butterworth, A.; Calvert, H.; Dagang, B.; Dimond, K.; Eckenroth, L.; Erickson, J.; Gilbertson, B.; Gompertz, N. Defining a successful commercial asteroid mining program. Acta Astronaut. 2015, 108, 106–118. [Google Scholar] [CrossRef]
- Zacny, K.; Cohen, M.M.; James, W.W.; Hilscher, B. Asteroid mining. In Proceedings of the AIAA Space 2013 Conference and Exposition, San Diego, CA, USA, 10–12 September 2013; p. 5304. [Google Scholar]
- Foster, C. Trajectory Browser: An online tool for interplanetary trajectory analysis and visualization. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–6. [Google Scholar]
- Foster, C.; Jaroux, B.A. Trajectory Browser Website. In Proceedings of the Planetary Data: A Workshop for Users and Software, Flagstaff, AZ, USA, 25–29 June 2012. [Google Scholar]
- Krasnopolsky, V. On the deuterium abundance on Mars and some related problems. Icarus 2000, 148, 597–602. [Google Scholar] [CrossRef]
- Krasnopolsky, V.A.; Mumma, M.J.; Gladstone, G.R. Detection of atomic deuterium in the upper atmosphere of Mars. Science 1998, 280, 1576–1580. [Google Scholar] [CrossRef]
- Owen, T.; Maillard, J.P.; De Bergh, C.; Lutz, B.L. Deuterium on Mars: The abundance of HDO and the value of D/H. Science 1988, 240, 1767. [Google Scholar] [CrossRef]
- Alfayad, K.; Murray, R.L.; Britton, J.; Barker, A.B. Population exposure to alcohol and junk food advertising during the 2018 FIFA world cup: Implications for public health. BMC Public Health 2022, 22, 1–11. [Google Scholar] [CrossRef]
- Van Reeth, D.; Osokin, N. The impact of hosting the 2018 FIFA world cup on differences in TV viewership between seasoned football fans and occasional watchers of football games in Russia. J. Sport. Econ. 2020, 21, 256–280. [Google Scholar] [CrossRef]
- Tremml, B.M. The Global and the Local: Problematic Dynamics of the Triangular Trade in Early Modern Manila. J. World Hist. 2012, 23, 555–586. [Google Scholar] [CrossRef] [Green Version]
- Findlay, R. The “Triangular Trade” and the Atlantic Economy of the Eighteenth Century: A Simple General-Equilibrium Model; International Finance Section, Department of Economics, Princeton University: Princeton, NJ, USA, 1990. [Google Scholar]
- Merritt, J. The triangular trade. Bus. Hist. 1960, 3, 1–7. [Google Scholar] [CrossRef]
- Genta, G.; Kezerashvili, R.Y. Achieving the required mobility in the solar system through direct fusion drive. Acta Astronaut. 2020, 173, 303–309. [Google Scholar] [CrossRef]
Asteroid Mining | ||
---|---|---|
Number of Transits | 4 | Per year |
Platinum Extracted | 637.5 | Tons |
Selling Price on Earth | 30,000 | Per Kg |
Cost of Transportation | 752 Million | Per year |
Estimated Cost of Payload | 19 Billion | Per year |
Total Revenue Generated | 18 Billon | Per year |
Research Visit | ||
---|---|---|
Number of Tourists | 85 | Per year |
Selling Price | 20 Million | Per researcher |
Profit Generated | 10 Million | Per researcher |
Total Revenue | 8.91 Million | Per year |
Plan | Stay Time | Duration | Frequency | Cost/Person | Ticket/Person | Total Revenue/Year |
---|---|---|---|---|---|---|
A | 30 | 465 | 3 | $6.3 Million | $15 Million | $3.2 Billion |
30 | 410 | |||||
B | 112 | 800 | 3 | $9.5 Million | $18 Million | $2.1 Billion |
112 | 688 | |||||
C | 128 | 800 | 3 | $6.5 Million | $21 Million | $5.5 Billion |
288 | 848 | |||||
D | 320 | 896 | 3 | $10 Million | $24 Million | $3.3 Billion |
368 | 816 | |||||
E | 384 | 912 | 3 | $7 Million | $27 Million | $7 Billion |
448 | 880 | |||||
F | 464 | 864 | 3 | $6 Million | $30 Million | $9.8 Billion |
544 | 896 | |||||
Total Revenue Generated = | $31 Billion |
Total D Exported from Mars | 87,989.33 kg |
---|---|
Transportation costs | USD 133.32 million |
Cost of D on Earth | USD 10,000 |
The total cost of D on Earth | USD 879.89 million |
Total Revenue generated in 2 years | USD746.58 million |
Lunar Dust | |
---|---|
Cost of Lunar Dust | USD 200 Million/kg |
Total kgs transported | 15.00/year |
Total Cost of Transportation | USD 3000.00/year |
Total Revenue Earned | USD 3 Billion/year |
Broadcasting | |
---|---|
Revenue Generated | USD 183 Million/event |
Number of Launch Events On Earth | 6/year |
Number of Sporting Events on Mars | 156/year |
Total Revenue Generated in the Pre-Initiative Phase Phase | USD 1 Billion/year |
Total Revenue Generated in the Self-Sustaining Phase | USD 29 Billion/year |
Cost Budget | ||||||
---|---|---|---|---|---|---|
Years | Details | Outflow Cost Estimation | Total Outflow | Outflow Margin with Margin | Inflow Estimation | Total Inflow |
2024–2034 | MADE member’s investments | $34.7 Billion | $36.4 Billion | $48 Billion | $55.5 Billion | |
MADE operating cost | $19 Billion | |||||
MADE Infrastructure | $3 Billion | |||||
The training program at MADE | $2.8 Billion | $7.5 Billion | ||||
Spacecraft Manufacturing | $9 Billion | |||||
2036–2046 | MADE member’s investments | $210 Billion | $221 Billion | $48 Billion | $349 Billion | |
MADE operating cost | $19 Billion | |||||
Spacecraft Manufacturing | $9 Billion | |||||
Broadcasting | $6.5 Billion | |||||
Manned Mission | $54 Billion | |||||
Cargo Missions | $31 Billion | |||||
Martian Soil | $35 Billion | |||||
The training program at MADE | $97 Billion | $258.8 Billion | ||||
2048–2058 | MADE member’s investments | $230.5 Billion | $242 Billion | $48 Billion | $358.7 Billion | |
MADE operating cost | $19 Billion | |||||
Spacecraft Manufacturing | $9 Billion | |||||
Manned Mission | $77 Billion | |||||
Broadcasting | $6.5 Billion | |||||
Cargo Missions | $26.3 Billion | |||||
Deuterium | $4.4 Billion | |||||
Martian Soil | $35.9 Billion | |||||
The training program at MADE | $98.8 Billion | $263.6 Billion | ||||
2060–2070 | MADE member’s investments | $235.5 Billion | $247.3 Billion | $48 Billion | $372.1 Billion | |
MADE operating cost | $19 Billion | |||||
Spacecraft Manufacturing | $9 Billion | |||||
Manned Mission | $77 Billion | |||||
Broadcasting | $6.5 Billion | |||||
Cargo Missions | $26.3 Billion | |||||
Deuterium | $4.4 Billion | |||||
Martian Soil | $35.9 Billion | |||||
The training program at MADE | $103.9 Billion | $277.1 Billion | ||||
2072–2082 | MADE member’s investments | $311.3 Billion | $326.9 Billion | $48 Billion | $497.3 Billion | |
MADE operating cost | $19 Billion | |||||
Spacecraft Manufacturing | $9 Billion | |||||
Manned Mission | $106 Billion | |||||
Broadcasting | $6.5 Billion | |||||
Cargo Missions | $26.3 Billion | |||||
Deuterium | $4.4 Billion | |||||
Martian Soil | $35.9 Billion | |||||
The training program at MADE | $150.8 Billion | $402.2 Billion | ||||
2084 | MADE member’s investments | $49.1 Billion | $51.5 Billion | $8 Billion | $212.3 Billion | |
MADE operating cost | $3 Billion | |||||
Spacecraft Manufacturing | $1.5 Billion | |||||
Manned Mission | $19.2 Billion | |||||
Broadcasting | $29.6 Billion | |||||
Deuterium | $746 Billion | |||||
Martian Soil | $5.9 Billion | |||||
The training program at MADE | $25.1 Billion | $67 Billion | ||||
Asteroid Mining | $36.7 Billion | |||||
Research Visits | $1.7 Billion | |||||
Tourism | $62.3 Billion | |||||
Total Money Borrowed = | $240 Billion | Money Left after Payback | $479.9 Billion |
A Sample Balance Sheet for Every 10 Years | ||||||
---|---|---|---|---|---|---|
2200–2210 | Broadcasting | $286.2 Billion | $300 Billion | $29.6 Billion | $903 Billion | |
MADE operating cost | $19 Billion | |||||
Spacecraft Manufacturing | $9 Billion | |||||
Manned Mission | $106 Billion | |||||
Cargo Missions | $26.3 Billion | |||||
Deuterium | $3.7 Billion | |||||
Martian Soil | $29.9 Billion | |||||
Tourism | $311.8 Billion | |||||
Research Visits | $8.9 Billion | |||||
Asteroid Mining | $183.7 Billion | |||||
The training program at MADE | $125.7 Billion | $335.2 Billion | ||||
Total Outflow = | $300.5 Billion | Total Inflow = | $903 Billion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukundan, A.; Wang, H.-C. The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars. Universe 2022, 8, 550. https://doi.org/10.3390/universe8110550
Mukundan A, Wang H-C. The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars. Universe. 2022; 8(11):550. https://doi.org/10.3390/universe8110550
Chicago/Turabian StyleMukundan, Arvind, and Hsiang-Chen Wang. 2022. "The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars" Universe 8, no. 11: 550. https://doi.org/10.3390/universe8110550
APA StyleMukundan, A., & Wang, H. -C. (2022). The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars. Universe, 8(11), 550. https://doi.org/10.3390/universe8110550