From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution
Abstract
:1. Introduction
1.1. Overview of Environment and Environmental Processes
1.1.1. Defining Environment
1.1.2. Environment Quenching Mechanisms
1.2. What Do We Learn from the Infrared?
1.2.1. Near-Infrared
1.2.2. Mid- to Far-Infrared
1.2.3. Far-Infrared to Submillimeter/Millimeter
2. Scope, Definitions, and Outline
3. Identifying (Proto-)Clusters in the Infrared: Current and Future Large Surveys
3.1. Cluster Selection in the Near-Infrared
Survey | Method | Cluster | Confirmed | Area | Redshift | log | References |
---|---|---|---|---|---|---|---|
Candidates | Clusters | [deg] | (Median) | [] (Median) | |||
ISCS/IDCS | Photo-z Overdensities | >300 | >120 | 8.5 | 0.1–2 | (13.8) | E08, S12 |
SHELA | RS | 1082 | − | 24 | 0.5–1.2 | 13.9 | P16, F21 |
SpARCS | RS | >200 | >10 | 42 | 0.6–1.5 | − | G00, G05, M09, W09, M12 |
SSDF | Color Selection | 279 | − | 94 | >1.3 | 14.1 | R14 |
HSC + unWISE | Overdensities around BGC Candidates | 21,661 | − | 800 | 0.1–2 | ≥13.8 | WH21 |
DES + unWISE | Overdensities around BGC Candidates | 151,244 | − | 5000 | 0.1–1.5 (0.7) | − | WH22 |
MaDCoWS | Color Selection | 2683 | 38 | 10,000 | 0.7–1.5 (1.06) | (14.2) | G19 |
SDSS+WISE | Overdensities around BGC Candidates | 1959 | − | 10,000 | 0.7–1 | >14.4 | WH18 |
2MASS+WISE | Overdensities around BGC Candidates | 47,600 | − | 28,000 | 0.025–0.3 | ≳14.5 | W18 |
Projected | |||||||
Roman | Photo-z Overdensities | 40,000 | − | 2200 | <3 | >14 | S15 |
MaDCoWS2 | Color Selection | − | − | ≳10,000 | ∼0.5–2 | − | T., in prep. |
Euclid | Photo-z Overdensities | 2,000,000 | − | 15,000 | <2 | >13.8 | S16, A17, R18, E19 |
3.2. Cluster Selection via the SZ Effect
Survey | Method | Cluster | Confirmed | Area | Redshift | log | References |
---|---|---|---|---|---|---|---|
Candidates | Clusters | [deg] | (Median) | [] (Median) | |||
Clusters | |||||||
SPTpol | SZ | 89 | 81 | 500 | (0.6) | (14.6) | B14, H20 |
SPT-SZ 2500 deg | SZ | 677 | 516 | 2500 | (0.55) | (14.4) | B15 |
SPT-ECS | SZ | 448 | 408 | 2770 | (0.49) | (14.8) | B20 |
AdvACT DR5 | SZ | 4195 | 4195 | 13,211 | 0.04–1.91 (0.52) | >14.6 | H18, H21 |
Planck PSZ1/PSZ2 | SZ | 1653 | 1203 | 34,487 | <1 | 14.5 | P14, P16a |
Proto-clusters | |||||||
Planck PHz | Color Selection | 2151 | − | 10,725 | (∼2.5 ) | − | P16b |
Projected | |||||||
SPT-3G | SZ | ∼10,000 | − | 1500 | (0.7) | (>14.1) | B14, S22 |
Simons Obs | SZ | 26,445 | − | 16,500 | (0.7) | (14.3) | A19a, R22 |
CCAT-prime | SZ | 16,000 | − | ∼20,000 | <2.5 | >14 | C21 |
CMB-HD | SZ | 514,530 | − | 20,600 | (0.9) | (13.8) | S19, R22 |
CMB-S4 Wide | SZ | 107,747 | − | 27,600 | (0.8) | (14.2) | A19b, R22 |
PICO | SZ | 150,000–200,000 | − | All-Sky | <3–4.5 | >14.3 | H19 |
3.3. Proto-Cluster Selection in the Infrared
3.3.1. Luminous DSFGs, Obscured AGN, and Ultra-Massive Galaxies as Signposts of Proto-Clusters
Name | Redshift | Observing | SFR | Volume | log | log | References | |
---|---|---|---|---|---|---|---|---|
Window | [ yr] | [cMpc] | [] | [] | ||||
GOODS-N proto-cluster | 1.99 | 6 | 10 × 10 | 2600 ± 300 | 9000 | 13.8 ± 0.2 | ≳14.5–15 | B04, C09, C16 |
COSMOS proto-cluster | 2.10 | 8 | 8 × 20 | 15,000 | ≳15 | S12, Y14, H16, C16, Z19 | ||
MRC 1138-256 (PKS1138) | 2.16 | 5 | 6 × 9 | 8000 | ∼14 | ≳15 | K00, P00, K11, V13, R14, D14, S14, C16, E16, E18, Z18, T19, J21 | |
PHz G237.0+42.5 | 2.16 | 4 | 10 × 11 | 18,500 | ∼14 | ∼15 | K21a, P21 | |
HELAISS02 (core) | 2.171 | 4 | − | − | − | G19 | ||
2QZCluster (core) | 2.2 | 7 | 1000 | 138 | − | − | K16 | |
BOSS1244 (core) | 2.24 | 0 | 6720 | 2000 | − | − | Z22 | |
BOSS1542 (core) | 2.24 | 0 | 6300 | 2000 | − | − | Z22 | |
HS1700+64 | 2.3 | 4 | 8 × 8 (core) | 1200 (core) | 6900 130 (core) | ∼14 | ≳15 | Ch15, K16, L19, H19 |
PCL1002 e | 2.47 | 7 | 14 × 14 | 15,000 | ≳13.5 | ≳14.5–15 | D15, C15a, C15b, C16, Z19, C21 | |
HXMM20 (core) | 2.602 | 5 | − | − | − | G19 | ||
HS1549+19 | 2.85 | 4 | 50 (core) | 12,500 ± 2800 (core) | 10,600 240 (core) | ∼14 | ≳15 | L19 |
SSA22 | 3.09 | 12 | 20 × 30 | 21,000 | S98, S00, H04, C05, G05, T09, L09, U12, K13, U14, U15, K15, A16, K16, C16, U17, K21b | |||
SPT2018-45 (core) | 3.2 | 0 | 9200 | 2000 | − | − | W21 | |
SPT0303-59 (core) | 3.3 | 0 | 15,700 | 2050 | − | − | W21 | |
SPT0457-49 (core) | 3.988 | 0 | 7800 | 2600 | − | − | W21 | |
Distant Red Core (core) | 4.002 | 10 | 0.6 × 0.7 | 6500 | 876.5 | ≳15 | L18, O18, L20 | |
SPT2052-56 (core) | 4.257 | 0 | 7400 | 2800 | W21 | |||
SPT2349-56 (core) | 4.302 | 23 | 4480 | 128 | ∼13–13.4 | ≳15 | M18, H20, R21, W21 | |
SPT2335-53 (core) | 4.756 | 0 | 7000 | 3200 | − | − | W21 | |
SPT0553-50 (core) | 5.323 | 0 | 10,500 | 3500 | − | − | W21 | |
z57OD | 5.692 | 0 | − | − | − | ≳14.7 | O05, J18, H19 | |
SPT0348-62 (core) | 5.654 | 0 | 7800 | 3800 | − | − | W21 | |
z66OD | 6.585 | 0 | − | − | − | ∼14.5 | H19 | |
SPT0311-58 (core) | 6.9011 | 0 | 10,900 | 4500 | − | − | W21 |
3.3.2. Selecting DSFG Overdensities in Shallow, Wide (or All-Sky) Submm Surveys
4. The Near-Infrared: Stellar Mass Functions and Quenched Populations
4.1. The Stellar Mass Function in Overdense Environments
4.2. The Quenched Fraction and Environmental Quenching Efficiency
4.2.1. The Multi-Dimensional Dependencies of Quenching at
4.2.2. The Role of Pre-Processing to High Redshift
4.2.3. Strongly Evolving Quenching Efficiency at High Redshift?
4.3. Summary
5. The Mid- to Far-Infrared: Dust-Obscured Star Formation and AGN
5.1. Low Redshift (): Evidence for Multiple Quenching Mechanisms Operating in Clusters
5.1.1. The IR Butcher-Oemler Effect
5.1.2. The Global (Radial) Dependence of the Obscured SFR
5.2. Intermediate Redshift ( 1–2): A Transition Epoch for Massive Clusters
5.2.1. Is There a(n Infrared) Reversal in the SFR-Density Relation?
5.2.2. The Transition to Efficient (Rapid) Quenching at in Clusters
5.2.3. Summary
5.3. High Redshift (): The Realm of Proto-Clusters
5.3.1. The Nature of (Obscured) Star Formation in Proto-clusters
5.3.2. Placing Dusty Proto-Clusters in Context: A More Ubiquitous or Atypical Phase?
5.4. Obscured AGN in Clusters
6. The Far-Infrared to Submillimeter: Dust and Gas Measurements
6.1. Gas Scaling Relations
6.1.1. Caveats for Molecular Gas Mass Measurements
6.2. Environmental Effects on the Galaxy-Integrated Molecular Gas Content
6.2.1. An Historical Perspective
6.2.2. Low-Redshift () Cluster Trends
6.2.3. Intermediate-Redshift () Cluster Trends
6.2.4. High Redshift () Proto-Cluster Trends
6.3. Lessons from Spatially-Resolved Studies
7. Total Emission from (Proto-)Clusters: “Total Light” Stacking
7.1. Intracluster Dust
7.2. Total Emission from Cluster Galaxy Populations
7.2.1. The Integrated Light of Cluster Galaxies: Dust Emission and the Contribution from Low Mass Galaxies
7.2.2. Radial Profiles and the c- Relation
8. Quenching in (Proto-)Cluster Galaxies (the Infrared Perspective)
8.1. All Scenarios: Starvation
8.2. Scenario A: Combined Hydrodynamical and Internal Quenching
8.2.1. Ram Pressure Stripping and Overconsumption in “Typical” Intermediate-Mass Cluster Galaxies
8.2.2. Deviations from Scenario A in other stellar mass regimes
8.3. Scenario B: Pre-Processing and Galaxy Interactions
8.3.1. The Environment beyond the Virial Radius
8.3.2. Gravitational Quenching in Group and Cluster Environments
9. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2MASS | Two Micron All Sky Survey |
ACT | Atacama Cosmology Telescope |
AGES | Spectroscopy from the AGN and Galaxy Evolution Survey |
AGN | Active Galactic Nuclei |
AlFoCS | ALMA Fornax Cluster Survey |
ALMA | Atacama Large Millimeter Array |
ATCA | Australia Compact Array |
AtLAST | Atacama Large Aperture Submillimeter Telescope |
BCG | Brightest Cluster Galaxy |
BGG | Brightest Group Galaxy |
BIMA | Berkeley Illinois Maryland Association |
[Ci] | Neutral Atomic Carbon |
CO | Carbon Monoxide |
COLD GASS | CO Legacy Database for GASS |
COSMOS | Cosmic Evolution Survey |
CT | Compton-thick (AGN) |
DECaLS | Dark Energy Camera Legacy Survey |
DES | Dark Energy Survey |
DGR | Dust-to-Gas Ratio |
DM | Dark Matter |
(Hot) DOGs | (Hot) Dust-obscured Galaxies |
DRC | Distant Red Core |
EDisCs | ESO Distant Cluster Survey |
EQE | Environmental Quenching Efficiency |
ERCSC | Planck Early Release Compact Source Catalog |
ERIS | Enhanced Resolution Imager and Spectrograph |
ETG | Early-Type Galaxy |
FOV | Field-of-view |
GASP | GAs Stripping Phenomena in galaxies survey |
GBT | Green Bank Telescope |
GCLASS | Gemini Cluster Astrophysics Spectroscopic Survey |
GOGREEN | Gemini Observations of Galaxies in Rich Early Environments |
H | Molecular Hydrogen |
HERACLES | HERA CO-Line Extragalactic Survey |
HerMES | Herschel Multi-tiered Extragalactic Survey |
HeViCS | Herschel Virgo Cluster Survey |
[Hi] | Neutral Atomic Hydrogen |
HRS | Herschel Reference Survey |
HSC-SSP | Hyper-Surprime Cam-Subaru Strategic Program |
ICBS | IMACS Cluster Building Survey |
ICD | Intra-cluster Dust |
ICM | Intra-cluster Medium |
IGrM | Intra-group Medium |
IMF | Initial Mass Function |
(N/M/F)IR | (Near/Mid/Far-)Infrared |
IRAM | Institut de Radioastronomie Millimètrique |
IRAS | InfraRed Astronomy Satellite |
IRS | InfraRed Spectrograph |
ISCS/IDCS | IRAC Shallow and Distant Cluster Surveys |
ISO | Infrared Space Observatory |
ISS | IRAC Shallow Survey |
JCMT | James Clerk Maxwell Telescope |
JVLA | Karl G. Jansky Very Large Array |
JWST | James Webb Space Telescope |
LAE | Lyman- Emitter |
LABOCA | Large Apex BOlometer CAmera |
LF | Luminosity Function |
LMT | Large Millimeter Telescope/Gran Telescopio Milimétrico Alfonso Serrano |
LoCuSS | Local Cluster Substructure Survey |
MaDCoWS | Massive and Distant Clusters of WISE Survey |
MAGAZ3NE | Massive Ancient Galaxies At z > 3 NEar-infrared |
MIPS | Multi-Band Imaging Photometer |
MOONS | Multi-Object Optical and Near-infrared Spectrograph for Spitzer |
MS | Main Sequence |
MUSE | Multi-Unit Spectroscopic Explorer |
NDWFS | NOAO Deep Wide-Field Survey |
NFW | Navarro-Frenk-White (profile) |
NGLS | Nearby Galaxies Legacy Survey |
NIKA2 | New IRAM KID Arrays 2 |
NOEMA | NOrthern Extended Millimeter Array |
NMBS | NEWFIRM Medium-Band Survey |
ORELSE | Observations of Redshift Evolution in Large-Scale Environments |
PACS | Photodetector Array Camera & Spectrometer |
Pan-STARRS | Panoramic Survey Telescope and Rapid Response System |
PCCS(2) | (Second) Planck Catalogue of Compact Sources |
PdBI | Plateau de Bure Interferometer |
PHIBSS | Plateau de Bure High-z Blue Sequence Survey |
PICO | Probe of Inflation and Cosmic Origins |
Photo-z | Photometric Redshift |
QG | Quiescent Galaxy |
RPS | Ram Pressure Stripping |
RS | Red Sequence |
SCUBA | Submillimeter Common-User Bolometer Array |
SDSS | Sloan Digital Sky Survey |
SDWFS | Spitzer Deep Wide-field Survey |
SED | Spectral Energy Distribution |
SEEDisCS | Spatially Extended EDisCS Survey |
SF | Star Formation |
SFE | Star Formation Efficiency |
(D)SFG | (Dusty) Star-Forming Galaxy |
SFR | Star Formation Rate |
SFRD | Star Formation Rate Density |
SHELA | Spitzer-HETDEX Exploratory Large Area survey |
SLED | Spectral Line Energy Distribution |
SMG | Sub-Millimeter Galaxy |
SMF | Stellar Mass Function |
Spec-z | Spectroscopic Redshift |
SpARCS | Spitzer Adaptation of the Red-sequence Cluster Survey |
SPIRE | Spectral and Photometric Imaging REceiver |
SPT | South Pole Telescope |
SSDF | Spitzer South Pole Telescope Deep Field |
SSFR | Specific-Star Formation Rate |
Submm | Submillimeter |
SWIRE | Spitzer Wide-area InfraRed Extragalactic survey |
SZ | Sunyaev-Zel’dovich (Effect) |
(U)LIRG | (Ultra-)Luminous Infrared Galaxy |
UMG | Ultra-Massive Galaxy |
UV | Ultraviolet |
VERTICO | Virgo Environment Traced in CO survey |
VLT | Very Large Telescope |
WINGS | WIde-Field Nearby Galaxy-cluster Survey |
WISE | Wide-field Infrared Survey Explorer |
1 | |
2 | |
3 | |
4 | |
5 | We note that starvation is likely a form of mild RPS that effects hot halo gas and not a fully distinct process. However, for convenience, we refer to stripping of cold disk gas as RPS throughout this review. |
6 | The star-forming Main Sequence (MS; [113,114,115,116]) is the observed correlation between the star formation and stellar mass of a galaxy, which exhibits low scatter (∼0.3 dex) and a trend in the SFR per unit mass which increases with increasing redshift. The latter results in the SFR for a MS galaxy rising by two orders of magnitude from to (see Schreiber and Wuyts [117] and references therein). |
7 | Sizes, morphologies, and disturbed features (indicating galaxy interactions) can be identified in the rest-NIR up to with the current capabilities of HST. These measurements, however, are known to be sensitive to dust at the short wavelengths typically probed (e.g., [120]); this uncertainty will be addressed by upcoming observations with JWST (Section 9). As such, we will not attempt a full overview of these measurements in this review, though they may be discussed in supporting contexts. |
8 | H can emit radiation through the quadrupole moment, but these transitions have low probabilities and require high excitation energies. |
9 | Assuming an NFW profile with a concentration [152]. See Section 7.2.2 for an expanded definition of the NFW profile and concentration parameter. |
10 | |
11 | Referenced Surveys: the Massive and Distant Clusters of WISE Survey (MaDCoWS; [209], the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS; [214])), SuperCOSMOS [215], the Dark Energy Camera Legacy Survey (DECaLS; PI: D. Schlegel and A. Dey), CatWISE2020 [216], the Two Micron All Sky Survey (2MASS; [217]), the Sloan Digital Sky Survey (SDSS; [218]), unWISE [219], the Hyper-Surprime Cam-Subaru Strategic Program (HSC-SSP; [220]), and the Dark Energy Survey (DES; [221]). |
12 | The SZ effect is comprised of two components: the thermal component due to the random thermal motions of electrons and a kinetic component from the bulk gas motion relative to the CMB. For galaxy clusters, the thermal component dominates and as such as we will not discuss the kinetic SZ. |
13 | Galaxy bias is the statistical relation between the spatial distribution of a galaxy population and the underlying dark matter density field. Bias is strongly dependent on the galaxy population being observed. |
14 | Cosmic Evolution Survey (COSMOS; [276]). |
15 | |
16 | The Herschel Multi-tiered Extragalactic Survey (HerMES; [359]). |
17 | Spectral and Photometric Imaging Receiver (SPIRE [369]). |
18 | |
19 | |
20 | |
21 | |
22 | Observations of Redshift Evolution in Large-Scale Environments (ORELSE; [403]). |
23 | |
24 | Backsplash galaxies are gravitationally-bound cluster members that have completed their first pass of the cluster center and are on orbits taking them back into the cluster outskirts and infall regions [435]. |
25 | Multi-Band Imaging Photometer for Spitzer (MIPS; [468]). |
26 | The Local Cluster Substructure Survey (LoCuSS; [473]). |
27 | An observational (projected) caustic or phase space diagram uses the line-of-sight velocities relative to the cluster velocity dispersion and cluster-centric radii relative to the virial radius of a cluster population to kinematically separate galaxies by their time since infall (e.g., [486,487,488]). Simulations show projected phase space is in good agreement with theoretical full 3D phase space diagrams (e.g., [489,490]). |
28 | A “delayed, then rapid” model, in which SFRs are unaltered for some delay time upon infall followed by quenching on short timescales, was first proposed in Wetzel et al. [492]. |
29 | Photodetector Array Camera & Spectrometer (PACS; [519]). |
30 | Multi-Unit Spectroscopic Explorer (MUSE; [540]). |
31 | |
32 | We note the uncertainties that arise from the CO-H conversion could result in increased , see Section 6. |
33 | Given a high individual SFRs (> yr, discussed in Section 5.3), a “long” lifetime would be limited to <500 Myr so as not to exceed a final mass of log . |
34 | |
35 | Institut de Radioastronomie Millimétrique (IRAM; [610]). |
36 | The mass-weighted dust temperature represents the temperature of the dominant (by mass) cold dust component. It is typically lower than the luminosity-weighted temperature measured from the peak of the FIR SED. |
37 | Local studies have shown that the dust mass is a good tracer of total (Hi+H) gas mass in Hi dominated galaxies [620]. As Hi cannot yet be observed beyond low redshift, high-redshift calibrations of dust as a gas proxy are largely based on CO and are often stated to represent the molecular component. This is likely reasonable as high-z galaxies are thought to be dominated by H (see Schreiber and Wuyts [117] and references therein); however, this remains an unknown systematic. |
38 | This calibration may no longer be valid at high redshifts where the cosmic background boosts galaxy dust temperatures. |
39 | There was some evidence that Fornax cluster galaxies in Horellou et al. [646] had weaker CO emission compared to the atomic gas content, but the amount was typical given their low star formation rates. |
40 | See also Young and Scoville [650] for a compilation of individual detections at that time. |
41 | Berkeley Illinois Maryland Association (BIMA; [657]). |
42 | There is a deficit of CO cluster studies from , which might be partially due to broad oxygen and water vapor absorption bands at 120 and 183 GHz, limiting continuous coverage of CO () and () at 0.8–0.9. |
43 | CO () was detected in 8 galaxies total in the Coogan et al. [682] study, but some lacked stellar masses and SFR estimates in order to determine how their gas fractions compare to the field-scaling relations. |
44 | See also Daddi et al. [693] for starburst-like excitation in CO within BzK field galaxies. |
45 | HERA CO-Line Extragalactic Survey (HERACLES; [712]). |
46 | InfraRed Spectrograph (IRS; [726]). |
47 | Total light stacking is the stacking of image cutouts large enough to contain entire (proto-)cluster structures, rather than stacking on individual galaxies within the (proto)clusters. |
48 | A note of caution: in reality MIR/FIR emission is a summation of a series of blackbodies at different temperatures representing different dust grain sizes and compositions. The observed dust temperature, however, is usually reported as a single, luminosity-weighted temperature or a more robust two-temperature model including “warm” and “cold” components [773]. In this review, we primarily discuss the commonly-used effective dust temperature, , derived from modeling a modified blackbody plus MIR power law [621,774,775]. |
49 | Simulation predictions were calculated using the Colossus python toolkit [813]; http://www.benediktdiemer.com/code/colossus/, accessed on 16 April 2022. |
50 | To be accurate, an NFW profile was found to fit the far-IR at ≳0.3 Mpc, with a relative deficit at smaller radii relative to the near-IR profile [779]. |
51 | We note that many studies refer to this stripping as ram pressure stripping. For ease of discussion, we have defined and refer to starvation as heating and/or removal (i.e., through stripping, tidal interactions, evaporation) of the hot halo gas and RPS as the (ram pressure) stripping of cold atomic or molecular disk gas. |
52 | The apocenter is the point of an orbit farthest from the center of attraction. |
53 | Multi-Object Optical and Near-infrared Spectrograph; https://vltmoons.org/, accessed on 2 September 2022. |
54 | Enhanced Resolution Imager and Spectrograph; https://www.eso.org/sci/facilities/develop/instruments/eris.html, accessed on 2 September 2022. |
55 | SPHEREx; https://spherex.caltech.edu/, accessed on 2 September 2022. |
56 | Infrared Satellite for Cluster Evolution Astrophysics; https://iscea.ipac.caltech.edu/, accessed on 2 September 2022. |
57 | Commissioning in 2022, http://toltec.astro.umass.edu/, accessed on 2 September 2022. |
58 | New IRAM KID Arrays 2 (NIKA2; [910]). |
59 | MUSTANG2 [911], Green Bank Telescope (GBT). |
60 | For example, see JWST Cycle 1 GO Program 1572 https://www.stsci.edu/jwst/science-execution/program-information.html?id=1572, accessed on 2 September 2022. |
References
- Dressler, A. Galaxy Morphology in Rich Clusters: Implications for the Formation and Evolution of Galaxies. Astrophys. J. 1980, 236, 351–365. [Google Scholar] [CrossRef]
- Postman, M.; Geller, M.J. The Morphology-Density Relation—The Group Connection. Astrophys. J. 1984, 281, 95–99. [Google Scholar] [CrossRef]
- Dressler, A.; Oemler, A., Jr.; Couch, W.J.; Smail, I.; Ellis, R.S.; Barger, A.; Butcher, H.; Poggianti, B.M.; Sharples, R.M. Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies. Astrophys. J. 1997, 490, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Dressler, A. The Evolution of Galaxies in Clusters. Annu. Rev. Astron. Astrophys. 1984, 22, 185. [Google Scholar] [CrossRef]
- Lewis, I.; Balogh, M.; De Propris, R.; Couch, W.; Bower, R.; Offer, A.; Bland-Hawthorn, J.; Baldry, I.K.; Baugh, C.; Bridges, T.; et al. The 2dF Galaxy Redshift Survey: The Environmental Dependence of Galaxy Star Formation Rates near Clusters. Mon. Not. R. Astron. Soc. 2002, 334, 673–683. [Google Scholar] [CrossRef]
- Peng, Y.j.; Lilly, S.J.; Kovač, K.; Bolzonella, M.; Pozzetti, L.; Renzini, A.; Zamorani, G.; Ilbert, O.; Knobel, C.; Iovino, A.; et al. Mass and environment as drivers of galaxy evolution in sdss and zcosmos and the origin of the schechter function. Astrophys. J. 2010, 721, 193–221. [Google Scholar] [CrossRef]
- Solanes, J.M.; Manrique, A.; García-Gómez, C.; González-Casado, G.; Giovanelli, R.; Haynes, M.P. The H I Content of Spirals. II. Gas Deficiency in Cluster Galaxies. Astrophys. J. 2001, 548, 97–113. [Google Scholar] [CrossRef] [Green Version]
- Gavazzi, G.; Boselli, A.; van Driel, W.; O’Neil, K. Completing H I Observations of Galaxies in the Virgo Cluster. Astron. Astrophys. 2005, 429, 439–447. [Google Scholar] [CrossRef]
- Catinella, B.; Schiminovich, D.; Cortese, L.; Fabello, S.; Hummels, C.B.; Moran, S.M.; Lemonias, J.J.; Cooper, A.P.; Wu, R.; Heckman, T.M.; et al. The GALEX Arecibo SDSS Survey—VIII. Final Data Release. The Effect of Group Environment on the Gas Content of Massive Galaxies. Mon. Not. R. Astron. Soc. 2013, 436, 34–70. [Google Scholar] [CrossRef] [Green Version]
- Jaffé, Y.L.; Verheijen, M.A.W.; Haines, C.P.; Yoon, H.; Cybulski, R.; Montero-Castaño, M.; Smith, R.; Chung, A.; Deshev, B.Z.; Fernández, X.; et al. BUDHIES—III: The Fate of H I and the Quenching of Galaxies in Evolving Environments. Mon. Not. R. Astron. Soc. 2016, 461, 1202–1221. [Google Scholar] [CrossRef]
- Fumagalli, M.; Krumholz, M.R.; Prochaska, J.X.; Gavazzi, G.; Boselli, A. Molecular Hydrogen Deficiency in H I-poor Galaxies and Its Implications for Star Formation. Astrophys. J. 2009, 697, 1811–1821. [Google Scholar] [CrossRef]
- Boselli, A.; Gavazzi, G. On the Origin of the Faint-End of the Red Sequence in High-Density Environments. Astron. Astrophys. Rev. 2014, 22, 74. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Gavazzi, G. Environmental Effects on Late-Type Galaxies in Nearby Clusters. Publ. Astron. Soc. Pac. 2006, 118, 517–559. [Google Scholar] [CrossRef]
- Cybulski, R.; Yun, M.S.; Fazio, G.G.; Gutermuth, R.A. From Voids to Coma: The Prevalence of Pre-Processing in the Local Universe. Mon. Not. R. Astron. Soc. 2014, 439, 3564–3586. [Google Scholar] [CrossRef] [Green Version]
- Gavazzi, G.; Fumagalli, M.; Cucciati, O.; Boselli, A. A Snapshot on Galaxy Evolution Occurring in the Great Wall: The Role of Nurture at z = 0. Astron. Astrophys. 2010, 517, A73. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Haines, C.P.; Raychaudhury, S. Star Formation, Starbursts and Quenching across the Coma Supercluster. Mon. Not. R. Astron. Soc. 2010, 404, 1745–1760. [Google Scholar] [CrossRef] [Green Version]
- Gerke, B.F.; Newman, J.A.; Davis, M.; Coil, A.L.; Cooper, M.C.; Dutton, A.A.; Faber, S.M.; Guhathakurta, P.; Konidaris, N.; Koo, D.C.; et al. The deep2 galaxy redshift survey: The voronoi-delaunay method catalog of galaxy groups. Astrophys. J. 2012, 751, 50. [Google Scholar] [CrossRef] [Green Version]
- Knobel, C.; Lilly, S.J.; Iovino, A.; Kovač, K.; Bschorr, T.J.; Presotto, V.; Oesch, P.A.; Kampczyk, P.; Carollo, C.M.; Contini, T.; et al. THE zCOSMOS 20k GROUP CATALOG. Astrophys. J. 2012, 753, 121. [Google Scholar] [CrossRef] [Green Version]
- Tempel, E.; Kipper, R.; Tamm, A.; Gramann, M.; Einasto, M.; Sepp, T.; Tuvikene, T. Friends-of-Friends Galaxy Group Finder with Membership Refinement. Application to the Local Universe. Astron. Astrophys. 2016, 588, A14. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Fossati, M.; Sun, M. Ram pressure stripping in high-density environments. Annu. Rev. Astron. Astrophys. 2022, 30, 3. [Google Scholar] [CrossRef]
- Chiang, Y.K.; Overzier, R.A.; Gebhardt, K.; Henriques, B. Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr. Astrophys. J. 2017, 844, L23. [Google Scholar] [CrossRef] [Green Version]
- Fraser-McKelvie, A.; Brown, M.J.I.; Pimbblet, K.; Dolley, T.; Bonne, N.J. Multiple Mechanisms Quench Passive Spiral Galaxies. Mon. Not. R. Astron. Soc. 2018, 474, 1909–1921. [Google Scholar] [CrossRef]
- Coccato, L.; Jaffé, Y.L.; Cortesi, A.; Merrifield, M.; Johnston, E.; Rodríguez del Pino, B.; Haeussler, B.; Chies-Santos, A.L.; Mendes de Oliveira, C.L.; Sheen, Y.K.; et al. Formation of S0s in Extreme Environments I: Clues from Kinematics and Stellar Populations. Mon. Not. R. Astron. Soc. 2020, 492, 2955–2972. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, G. How ‘Heredity’ and ‘Environment’ Shape Galaxy Properties. Cosm. Front. ASP Conf. Ser. 2007, 379, 257. [Google Scholar]
- Blanton, M.R.; Moustakas, J. Physical Properties and Environments of Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2009, 47, 159. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.I.; Baes, M.; Bendo, G.J.; Bianchi, S.; Bomans, D.J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; Dariush, A.; et al. The Herschel Virgo Cluster Survey. I. Luminosity Function. Astron. Astrophys. 2010, 518, L48. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.; Wilson, C.D.; Zabel, N.; Davis, T.A.; Boselli, A.; Chung, A.; Ellison, S.L.; Lagos, C.D.P.; Stevens, A.R.H.; Cortese, L.; et al. VERTICO: The Virgo Environment Traced in CO Survey. Astrophys. J. Suppl. Ser. 2021, 257, 21. [Google Scholar] [CrossRef]
- Zabel, N.; Brown, T.; Wilson, C.D.; Davis, T.A.; Cortese, L.; Parker, L.C.; Boselli, A.; Catinella, B.; Chown, R.; Chung, A.; et al. VERTICO II: Effects of HI-identified Environmental Mechanisms on Molecular Gas. Astrophys. J. 2022, 933, 10. [Google Scholar] [CrossRef]
- Zabel, N.; Davis, T.A.; Smith, M.W.L.; Maddox, N.; Bendo, G.J.; Peletier, R.; Iodice, E.; Venhola, A.; Baes, M.; Davies, J.I.; et al. The ALMA Fornax Cluster Survey I: Stirring and Stripping of the Molecular Gas in Cluster Galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 2251–2268. [Google Scholar] [CrossRef] [Green Version]
- Poggianti, B.M.; Moretti, A.; Gullieuszik, M.; Fritz, J.; Jaffé, Y.; Bettoni, D.; Fasano, G.; Bellhouse, C.; Hau, G.; Vulcani, B.; et al. GASP. I. Gas Stripping Phenomena in Galaxies with MUSE. Astrophys. J. 2017, 844, 48. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Paladino, R.; Poggianti, B.M.; Serra, P.; Roediger, E.; Gullieuszik, M.; Tomičić, N.; Radovich, M.; Vulcani, B.; Jaffé, Y.L.; et al. GASP. XXII. The Molecular Gas Content of the JW100 Jellyfish Galaxy at z ∼ 0.05: Does Ram Pressure Promote Molecular Gas Formation? Astrophys. J. 2020, 889, 9. [Google Scholar] [CrossRef]
- Butcher, H.; Oemler, A., Jr. The Evolution of Galaxies in Clusters. V. A Study of Populations since Z 0.5. Astrophys. J. 1984, 285, 426–438. [Google Scholar] [CrossRef]
- Overzier, R.A. The Realm of the Galaxy Protoclusters: A Review. Astron. Astrophys. Rev. 2016, 24, 14. [Google Scholar] [CrossRef]
- Muzzin, A.; Wilson, G.; Yee, H.K.C.; Gilbank, D.; Hoekstra, H.; Demarco, R.; Balogh, M.; van Dokkum, P.; Franx, M.; Ellingson, E.; et al. The gemini cluster astrophysics spectroscopic survey (gclass): The role of environment and self-regulation in galaxy evolution at z ∼ 1. Astrophys. J. 2012, 746, 188. [Google Scholar] [CrossRef] [Green Version]
- Balogh, M.L.; McGee, S.L.; Mok, A.; Muzzin, A.; van der Burg, R.F.J.; Bower, R.G.; Finoguenov, A.; Hoekstra, H.; Lidman, C.; Mulchaey, J.S.; et al. Evidence for a Change in the Dominant Satellite Galaxy Quenching Mechanism at z = 1. Mon. Not. R. Astron. Soc. 2016, 456, 4364–4376. [Google Scholar] [CrossRef] [Green Version]
- Matharu, J.; Muzzin, A.; Brammer, G.B.; Nelson, E.J.; Auger, M.W.; Hewett, P.C.; van der Burg, R.; Balogh, M.; Demarco, R.; Marchesini, D.; et al. HST/WFC3 Grism Observations of z 1 Clusters: Evidence for Rapid Outside-in Environmental Quenching from Spatially Resolved Hα Maps. Astrophys. J. 2021, 923, 222. [Google Scholar] [CrossRef]
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. Science with the James Webb space telescope. In Proceedings of the SPIE, Orlando, FL, USA, 16 June 2006; Mather, J.C., MacEwen, H.A., de Graauw, M.W.M., Eds.; SPIE: Bellingham, WA, USA, 2006; Volume 6265, p. 62650N. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, G.; Habing, H.J.; van Duinen, R.; Aumann, H.H.; Baud, B.; Beichman, C.A.; Beintema, D.A.; Boggess, N.; Clegg, P.E.; de Jong, T.; et al. The Infrared Astronomical Satellite (IRAS) Mission. Astrophys. J. 1984, 278, L1–L6. [Google Scholar] [CrossRef] [Green Version]
- Kessler, M.F.; Steinz, J.A.; Anderegg, M.E.; Clavel, J.; Drechsel, G.; Estaria, P.; Faelker, J.; Riedinger, J.R.; Robson, A.; Taylor, B.G.; et al. The Infrared Space Observatory (ISO) Mission. Astron. Astrophys. 1996, 315, L27–L31. [Google Scholar] [CrossRef]
- Werner, M.W.; Roellig, T.L.; Low, F.J.; Rieke, G.H.; Rieke, M.; Hoffmann, W.F.; Young, E.; Houck, J.R.; Brandl, B.; Fazio, G.G.; et al. The Spitzer Space Telescope Mission. Astrophys. J. Suppl. Ser. 2004, 154, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. An ESA Facility for Far-Infrared and Submillimetre Astronomy. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Baba, H.; Barthel, P.; Clements, D.L.; Cohen, M.; Doi, Y.; Enya, K.; Figueredo, E.; Fujishiro, N.; Fujiwara, H.; et al. The Infrared Astronomical Mission AKARI*. Publ. Astron. Soc. Jpn. 2007, 59, S369–S376. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Baker, M.; Balbi, A.; Banday, A.J.; et al. Planck Early Results. I. The Planck Mission. Astron. Astrophys. 2011, 536, A1. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.S.; Robson, E.I.; Gear, W.K.; Cunningham, C.R.; Lightfoot, J.F.; Jenness, T.; Ivison, R.J.; Stevens, J.A.; Ade, P.A.R.; Griffin, M.J.; et al. SCUBA: A Common-User Submillimetre Camera Operating on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 1999, 303, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.S.; Bintley, D.; Chapin, E.L.; Chrysostomou, A.; Davis, G.R.; Dempsey, J.T.; Duncan, W.D.; Fich, M.; Friberg, P.; Halpern, M.; et al. SCUBA-2: The 10,000 Pixel Bolometer Camera on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 2013, 430, 2513–2533. [Google Scholar] [CrossRef]
- Wilson, G.W.; Austermann, J.E.; Perera, T.A.; Scott, K.S.; Ade, P.A.R.; Bock, J.J.; Glenn, J.; Golwala, S.R.; Kim, S.; Kang, Y.; et al. The AzTEC Mm-Wavelength Camera. Mon. Not. R. Astron. Soc. 2008, 386, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Siringo, G.; Kreysa, E.; Kovács, A.; Schuller, F.; Weiß, A.; Esch, W.; Gemünd, H.P.; Jethava, N.; Lundershausen, G.; Colin, A.; et al. The Large APEX BOlometer CAmera LABOCA. Astron. Astrophys. 2009, 497, 945. [Google Scholar] [CrossRef]
- Hughes, D.H.; Jáuregui Correa, J.C.; Schloerb, F.P.; Erickson, N.; Romero, J.G.; Heyer, M.; Reynoso, D.H.; Narayanan, G.; Perez-Grovas, A.S.; Souccar, K.; et al. The Large Millimeter Telescope. In Proceedings of the Ground-based and Airborne Telescopes III; Stepp, L.M., Gilmozzi, R., Hall, H.J., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume 7733, p. 773312. Available online: https://spie.org/Publications/Proceedings/Volume/7733 (accessed on 2 September 2022). [CrossRef]
- Carlstrom, J.E.; Ade, P.A.R.; Aird, K.A.; Benson, B.A.; Bleem, L.E.; Busetti, S.; Chang, C.L.; Chauvin, E.; Cho, H.M.; Crawford, T.M.; et al. The 10 Meter South Pole Telescope. Publ. Astron. Soc. Pac. 2011, 123, 568. [Google Scholar] [CrossRef] [Green Version]
- Hincks, A.D.; Acquaviva, V.; Ade, P.A.R.; Aguirre, P.; Amiri, M.; Appel, J.W.; Barrientos, L.F.; Battistelli, E.S.; Bond, J.R.; Brown, B.; et al. The atacama cosmology telescope (act): Beam profiles and first sz cluster maps. Astrophys. J. Suppl. Ser. 2010, 191, 423–438. [Google Scholar] [CrossRef]
- Chenu, J.Y.; Navarrini, A.; Bortolotti, Y.; Butin, G.; Fontana, A.L.; Mahieu, S.; Maier, D.; Mattiocco, F.; Serres, P.; Berton, M.; et al. The Front-End of the NOEMA Interferometer. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 223–237. [Google Scholar] [CrossRef]
- Krips, M.; Castro-Carrizo, A.; Neri, R.; Pietu, V. NOEMA: How One Million Lines of Code Make the Optically Dark Universe Visible. Astron. Soc. Pac. Conf. Ser. 2022, 532, 313. [Google Scholar]
- Guilloteau, S.; Delannoy, J.; Downes, D.; Greve, A.; Guelin, M.; Lucas, R.; Morris, D.; Radford, S.J.E.; Wink, J.; Cernicharo, J.; et al. The IRAM Interferometer on Plateau de Bure. Astron. Astrophys. 1992, 262, 624. [Google Scholar] [CrossRef] [Green Version]
- Wootten, A.; Thompson, A.R. The Atacama Large Millimeter/Submillimeter Array. IEEE Proc. 2009, 97, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Perley, R.A.; Chandler, C.J.; Butler, B.J.; Wrobel, J.M. The Expanded Very Large Array: A New Telescope for New Science. Astrophys. J. 2011, 739, L1. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.M.; Narayanan, D.; Cooray, A. Dusty Star-Forming Galaxies at High Redshift. Phys. Rep. 2014, 541, 45–161. [Google Scholar] [CrossRef] [Green Version]
- Farrah, D.; Smith, K.E.; Ardila, D.; Bradford, C.M.; Dipirro, M.; Ferkinhoff, C.; Glenn, J.; Goldsmith, P.; Leisawitz, D.; Nikola, T.; et al. Review: Far-Infrared Instrumentation and Technological Development for the next Decade. J. Astron. Telesc. Instrum. Syst. 2019, 5, 020901. [Google Scholar] [CrossRef] [Green Version]
- Vivian, U. The Role of AGN in Luminous Infrared Galaxies from the Multiwavelength Perspective. Universe 2022, 8, 392. [Google Scholar] [CrossRef]
- Lyu, J.; Rieke, G. Infrared Spectral Energy Distribution and Variability of Active Galactic Nuclei: Clues to the Structure of Circumnuclear Material. Universe 2022, 8, 304. [Google Scholar] [CrossRef]
- Sajina, A.; Lacy, M.; Pope, A. The Past and Future of Mid-Infrared Studies of AGN. Universe 2022, 8, 356. [Google Scholar] [CrossRef]
- Faisst, A.L.; Yan, L.; Béthermin, M.; Cassata, P.; Dessauges-Zavadsky, M.; Fudamoto, Y.; Ginolfi, M.; Gruppioni, C.; Jones, G.; Khusanova, Y.; et al. ALPINE: A Large Survey to Understand Teenage Galaxies. Universe 2022, 8, 314. [Google Scholar] [CrossRef]
- Muldrew, S.I.; Croton, D.J.; Skibba, R.A.; Pearce, F.R.; Ann, H.B.; Baldry, I.K.; Brough, S.; Choi, Y.Y.; Conselice, C.J.; Cowan, N.B.; et al. Measures of Galaxy Environment—I. What Is ’Environment’? Mon. Not. R. Astron. Soc. 2012, 419, 2670–2682. [Google Scholar] [CrossRef] [Green Version]
- Kovač, K.; Lilly, S.J.; Cucciati, O.; Porciani, C.; Iovino, A.; Zamorani, G.; Oesch, P.; Bolzonella, M.; Knobel, C.; Finoguenov, A.; et al. The Density Field of the 10k zCOSMOS Galaxies. Astrophys. J. 2010, 708, 505–533. [Google Scholar] [CrossRef]
- Scoville, N.; Arnouts, S.; Aussel, H.; Benson, A.; Bongiorno, A.; Bundy, K.; Calvo, M.A.A.; Capak, P.; Carollo, M.; Civano, F.; et al. Evolution of Galaxies and Their Environments at z = 0.1–3 in COSMOS. Astrophys. J. Suppl. Ser. 2013, 206, 3. [Google Scholar] [CrossRef] [Green Version]
- Hogg, D.W.; Blanton, M.R.; Eisenstein, D.J.; Gunn, J.E.; Schlegel, D.J.; Zehavi, I.; Bahcall, N.A.; Brinkmann, J.; Csabai, I.; Schneider, D.P.; et al. The Overdensities of Galaxy Environments as a Function of Luminosity and Color. Astrophys. J. 2003, 585, L5–L9. [Google Scholar] [CrossRef]
- van den Bosch, F.C.; Aquino, D.; Yang, X.; Mo, H.J.; Pasquali, A.; McIntosh, D.H.; Weinmann, S.M.; Kang, X. The Importance of Satellite Quenching for the Build-up of the Red Sequence of Present-Day Galaxies. Mon. Not. R. Astron. Soc. 2008, 387, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Dekel, A.; Faber, S.M.; Noeske, K.; Koo, D.C.; Gerke, B.F.; Cooper, M.C.; Salim, S.; Dutton, A.A.; Newman, J.; et al. Dependence of Galaxy Quenching on Halo Mass and Distance from Its Centre. Mon. Not. R. Astron. Soc. 2013, 428, 3306–3326. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.V.; Hatch, N.A.; Muzzin, A.; van der Burg, R.F.J.; Balogh, M.L.; Rudnick, G.; Wilson, G. Satellite Quenching Was Not Important for z 1 Clusters: Most Quenching Occurred during Infall. Mon. Not. R. Astron. Soc. 2022, 510, 674–686. [Google Scholar] [CrossRef]
- Chiang, Y.K.; Overzier, R.; Gebhardt, K. Ancient light from young cosmic cities: Physical and observational signatures of galaxy proto-clusters. Astrophys. J. 2013, 779, 127. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Elbaz, D.; Daddi, E.; Liu, D.; Kodama, T.; Tanaka, I.; Schreiber, C.; Zanella, A.; Valentino, F.; Sargent, M.; et al. Revealing the Environmental Dependence of Molecular Gas Content in a Distant X-Ray Cluster at z = 2.51. Astrophys. J. 2018, 867, L29. [Google Scholar] [CrossRef] [Green Version]
- Champagne, J.B.; Casey, C.M.; Zavala, J.A.; Cooray, A.; Dannerbauer, H.; Fabian, A.; Hayward, C.C.; Long, A.S.; Spilker, J.S. Comprehensive Gas Characterization of a z = 2.5 Protocluster: A Cluster Core Caught in the Beginning of Virialization? Astrophys. J. 2021, 913, 110. [Google Scholar] [CrossRef]
- Bahé, Y.M.; McCarthy, I.G. Star Formation Quenching in Simulated Group and Cluster Galaxies: When, How, and Why? Mon. Not. R. Astron. Soc. 2015, 447, 969–992. [Google Scholar] [CrossRef]
- Dekel, A.; Birnboim, Y.; Engel, G.; Freundlich, J.; Goerdt, T.; Mumcuoglu, M.; Neistein, E.; Pichon, C.; Teyssier, R.; Zinger, E. Cold Streams in Early Massive Hot Haloes as the Main Mode of Galaxy Formation. Nature 2009, 457, 451–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouché, N.; Dekel, A.; Genzel, R.; Genel, S.; Cresci, G.; Förster Schreiber, N.M.; Shapiro, K.L.; Davies, R.I.; Tacconi, L. The Impact of Cold Gas Accretion Above a Mass Floor on Galaxy Scaling Relations. Astrophys. J. 2010, 718, 1001–1018. [Google Scholar] [CrossRef] [Green Version]
- Lilly, S.J.; Carollo, C.M.; Pipino, A.; Renzini, A.; Peng, Y. Gas Regulation of Galaxies: The Evolution of the Cosmic Specific Star Formation Rate, the Metallicity-Mass-Star-formation Rate Relation, and the Stellar Content of Halos. Astrophys. J. 2013, 772, 119. [Google Scholar] [CrossRef] [Green Version]
- Hatch, N. Galaxy Formation through Cosmic Recycling. Science 2016, 354, 1102–1103. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2020, 58, 157. [Google Scholar] [CrossRef]
- Saintonge, A.; Catinella, B. The Cold Interstellar Medium of Galaxies in the Local Universe. Annu. Rev. Astron. Astrophys. 2022, 60, 319. [Google Scholar] [CrossRef]
- Sarazin, C.L. X-Ray Emission from Clusters of Galaxies. Rev. Mod. Phys. 1986, 58, 1–115. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.B.; Tinsley, B.M.; Caldwell, C.N. The Evolution of Disk Galaxies and the Origin of S0 Galaxies. Astrophys. J. 1980, 237, 692–707. [Google Scholar] [CrossRef]
- Balogh, M.L.; Navarro, J.F.; Morris, S.L. The Origin of Star Formation Gradients in Rich Galaxy Clusters. Astrophys. J. 2000, 540, 113–121. [Google Scholar] [CrossRef]
- Peng, Y.j.; Maiolino, R.; Cochrane, R. Strangulation as the Primary Mechanism for Shutting down Star Formation in Galaxies. Nature 2015, 521, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; McCarthy, I.G.; Balogh, M.L.; Font, A.S. Why Does the Environmental Influence on Group and Cluster Galaxies Extend beyond the Virial Radius? Mon. Not. R. Astron. Soc. 2013, 430, 3017–3031. [Google Scholar] [CrossRef] [Green Version]
- Gunn, J.E.; Gott, J.R., III. On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution. Astrophys. J. 1972, 176, 1. [Google Scholar] [CrossRef]
- Nulsen, P.E.J. Transport Processes and the Stripping of Cluster Galaxies. Mon. Not. R. Astron. Soc. 1982, 198, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- Cowie, L.L.; Songaila, A. Thermal Evaporation of Gas within Galaxies by a Hot Intergalactic Medium. Nature 1977, 266, 501–503. [Google Scholar] [CrossRef]
- Cortese, L.; Catinella, B.; Smith, R. The Dawes Review 9: The Role of Cold Gas Stripping on the Star Formation Quenching of Satellite Galaxies. Publ. Astron. Soc. Aust. 2021, 38, e035. [Google Scholar] [CrossRef]
- Moore, B.; Katz, N.; Lake, G.; Dressler, A.; Oemler, A. Galaxy Harassment and the Evolution of Clusters of Galaxies. Nature 1996, 379, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Davies, J.I.; Nelson, A.H. How Effective Is Harassment on Infalling Late-Type Dwarfs? Mon. Not. R. Astron. Soc. 2010, 405, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Bialas, D.; Lisker, T.; Olczak, C.; Spurzem, R.; Kotulla, R. On the Occurrence of Galaxy Harassment. Astron. Astrophys. 2015, 576, A103. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Cox, T.J.; Kereš, D.; Hernquist, L. A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals. Astrophys. J. Suppl. Ser. 2008, 175, 390–422. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Faber, S.M.; Mozena, M.; Koekemoer, A.M.; Nandra, K.; Rangel, C.; Laird, E.S.; Brusa, M.; Wuyts, S.; Trump, J.R.; et al. CANDELS: Constraining the AGN-Merger Connection with Host Morphologies at z ~ 2. Astrophys. J. 2012, 744, 148. [Google Scholar] [CrossRef] [Green Version]
- Mechtley, M.; Jahnke, K.; Windhorst, R.A.; Andrae, R.; Cisternas, M.; Cohen, S.H.; Hewlett, T.; Koekemoer, A.M.; Schramm, M.; Schulze, A.; et al. Do the Most Massive Black Holes at z = 2 Grow via Major Mergers? Astrophys. J. 2016, 830, 156. [Google Scholar] [CrossRef] [Green Version]
- Shah, E.A.; Kartaltepe, J.S.; Magagnoli, C.T.; Cox, I.G.; Wetherell, C.T.; Vanderhoof, B.N.; Calabro, A.; Chartab, N.; Conselice, C.J.; Croton, D.J.; et al. Investigating the Effect of Galaxy Interactions on the Enhancement of Active Galactic Nuclei at 0.5 < z < 3.0. Astrophys. J. 2020, 904, 107. [Google Scholar] [CrossRef]
- Springel, V.; Di Matteo, T.; Hernquist, L. Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies. Astrophys. J. 2005, 620, L79–L82. [Google Scholar] [CrossRef]
- Feldmann, R.; Carollo, C.M.; Mayer, L. The Hubble Sequence in Groups: The Birth of the Early-type Galaxies. Astrophys. J. 2011, 736, 88. [Google Scholar] [CrossRef] [Green Version]
- Kaviraj, S.; Cohen, S.; Ellis, R.S.; Peirani, S.; Windhorst, R.A.; O’Connell, R.W.; Silk, J.; Whitmore, B.C.; Hathi, N.P.; Ryan, R.E.; et al. Newborn Spheroids at High Redshift: When and How Did the Dominant, Old Stars in Today’s Massive Galaxies Form? Mon. Not. R. Astron. Soc. 2013, 428, 925–934. [Google Scholar] [CrossRef] [Green Version]
- Lofthouse, E.K.; Kaviraj, S.; Conselice, C.J.; Mortlock, A.; Hartley, W. Major Mergers Are Not Significant Drivers of Star Formation or Morphological Transformation around the Epoch of Peak Cosmic Star Formation. Mon. Not. R. Astron. Soc. 2017, 465, 2895–2900. [Google Scholar] [CrossRef] [Green Version]
- Wylezalek, D.; Zakamska, N.L. Evidence of Suppression of Star Formation by Quasar-Driven Winds in Gas-Rich Host Galaxies at z < 1? Mon. Not. R. Astron. Soc. 2016, 461, 3724–3739. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L. Properties of Galaxies Reproduced by a Hydrodynamic Simulation. Nature 2014, 509, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Nelson, D.; Hernquist, L. Introducing the Illustris Project: Simulating the Coevolution of Dark and Visible Matter in the Universe. Mon. Not. R. Astron. Soc. 2014, 444, 1518–1547. [Google Scholar] [CrossRef]
- Henriques, B.M.B.; White, S.D.M.; Thomas, P.A.; Angulo, R.; Guo, Q.; Lemson, G.; Springel, V.; Overzier, R. Galaxy Formation in the Planck Cosmology—I. Matching the Observed Evolution of Star Formation Rates, Colours and Stellar Masses. Mon. Not. R. Astron. Soc. 2015, 451, 2663–2680. [Google Scholar] [CrossRef] [Green Version]
- Henriques, B.M.B.; White, S.D.M.; Lilly, S.J.; Bell, E.F.; Bluck, A.F.L.; Terrazas, B.A. The Origin of the Mass Scales for Maximal Star Formation Efficiency and Quenching: The Critical Role of Supernovae. Mon. Not. R. Astron. Soc. 2019, 485, 3446–3456. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy Input from Quasars Regulates the Growth and Activity of Black Holes and Their Host Galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE Project: Simulating the Evolution and Assembly of Galaxies and Their Environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Zinger, E.; Pillepich, A.; Nelson, D.; Weinberger, R.; Pakmor, R.; Springel, V.; Hernquist, L.; Marinacci, F.; Vogelsberger, M. Ejective and Preventative: The IllustrisTNG Black Hole Feedback and Its Effects on the Thermodynamics of the Gas within and around Galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 768–792. [Google Scholar] [CrossRef]
- McGee, S.L.; Bower, R.G.; Balogh, M.L. Overconsumption, Outflows and the Quenching of Satellite Galaxies. Mon. Not. R. Astron. Soc. 2014, 442, L105–L109. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.L.; Croom, S.M.; Allen, J.T.; Brough, S.; Medling, A.M.; Ho, I.T.; Scott, N.; Richards, S.N.; Pracy, M.B.; Gunawardhana, M.L.P.; et al. The SAMI Galaxy Survey: Spatially Resolving the Environmental Quenching of Star Formation in GAMA Galaxies. Mon. Not. R. Astron. Soc. 2017, 464, 121–142. [Google Scholar] [CrossRef]
- Fossati, M.; Mendel, J.T.; Boselli, A.; Cuillandre, J.C.; Vollmer, B.; Boissier, S.; Consolandi, G.; Ferrarese, L.; Gwyn, S.; Amram, P.; et al. A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). II. Constraining the Quenching Time in the Stripped Galaxy NGC 4330. Astron. Astrophys. 2018, 614, A57. [Google Scholar] [CrossRef] [Green Version]
- Poggianti, B.M.; Ignesti, A.; Gitti, M.; Wolter, A.; Brighenti, F.; Biviano, A.; George, K.; Vulcani, B.; Gullieuszik, M.; Moretti, A.; et al. GASP XXIII: A Jellyfish Galaxy as an Astrophysical Laboratory of the Baryonic Cycle. Astrophys. J. 2019, 887, 155. [Google Scholar] [CrossRef] [Green Version]
- Bluck, A.F.L.; Maiolino, R.; Piotrowska, J.M.; Trussler, J.; Ellison, S.L.; Sánchez, S.F.; Thorp, M.D.; Teimoorinia, H.; Moreno, J.; Conselice, C.J. How Do Central and Satellite Galaxies Quench?—Insights from Spatially Resolved Spectroscopy in the MaNGA Survey. Mon. Not. R. Astron. Soc. 2020, 499, 230–268. [Google Scholar] [CrossRef]
- Brinchmann, J.; Charlot, S.; White, S.D.M.; Tremonti, C.; Kauffmann, G.; Heckman, T.; Brinkmann, J. The Physical Properties of Star-Forming Galaxies in the Low-Redshift Universe. Mon. Not. R. Astron. Soc. 2004, 351, 1151–1179. [Google Scholar] [CrossRef] [Green Version]
- Noeske, K.G.; Weiner, B.J.; Faber, S.M.; Papovich, C.; Koo, D.C.; Somerville, R.S.; Bundy, K.; Conselice, C.J.; Newman, J.A.; Schiminovich, D.; et al. Star Formation in AEGIS Field Galaxies since Z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies. Astrophys. J. 2007, 660, L43–L46. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, D.; Daddi, E.; Le Borgne, D.; Dickinson, M.; Alexander, D.M.; Chary, R.R.; Starck, J.L.; Brandt, W.N.; Kitzbichler, M.; MacDonald, E.; et al. The Reversal of the Star Formation-Density Relation in the Distant Universe. Astron. Astrophys. 2007, 468, 33. [Google Scholar] [CrossRef] [Green Version]
- Daddi, E.; Dickinson, M.; Morrison, G.; Chary, R.; Cimatti, A.; Elbaz, D.; Frayer, D.; Renzini, A.; Pope, A.; Alexander, D.M.; et al. Multiwavelength Study of Massive Galaxies at Z~2. I. Star Formation and Galaxy Growth. Astrophys. J. 2007, 670, 156–172. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, N.M.F.; Wuyts, S. Star-Forming Galaxies at Cosmic Noon. Annu. Rev. Astron. Astrophys. 2020, 58, 661–725. [Google Scholar] [CrossRef]
- Sorba, R.; Sawicki, M. Using the 1.6 Mm Bump to Study Rest-frame Near-infrared-selected Galaxies at Redshift 2. Astrophys. J. 2010, 721, 1056–1078. [Google Scholar] [CrossRef]
- Conroy, C. Modeling the Panchromatic Spectral Energy Distributions of Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 393. [Google Scholar] [CrossRef] [Green Version]
- Popping, G.; Pillepich, A.; Calistro Rivera, G.; Schulz, S.; Hernquist, L.; Kaasinen, M.; Marinacci, F.; Nelson, D.; Vogelsberger, M. The Dust-Continuum Size of TNG50 Galaxies at z = 1-5: A Comparison with the Distribution of Stellar Light, Stars, Dust, and H2. Mon. Not. R. Astron. Soc. 2022, 510, 3321–3334. [Google Scholar] [CrossRef]
- Williams, R.J.; Quadri, R.F.; Franx, M.; van Dokkum, P.; Labbé, I. Detection of Quiescent Galaxies in a Bicolor Sequence from Z = 0–2. Astrophys. J. 2009, 691, 1879–1895. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, K.E.; van Dokkum, P.G.; Brammer, G.; Momcheva, I.G.; Skelton, R.; Franx, M.; Kriek, M.; Labbé, I.; Fumagalli, M.; Lundgren, B.F.; et al. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z ~ 2. Astrophys. J. 2013, 770, L39. [Google Scholar] [CrossRef]
- Fumagalli, M.; Labbé, I.; Patel, S.G.; Franx, M.; van Dokkum, P.; Brammer, G.; da Cunha, E.; Förster Schreiber, N.M.; Kriek, M.; Quadri, R.; et al. How Dead Are Dead Galaxies? Mid-infrared Fluxes of Quiescent Galaxies at Redshift 0.3 < z < 2.5: Implications for Star Formation Rates and Dust Heating. Astrophys. J. 2014, 796, 35. [Google Scholar] [CrossRef] [Green Version]
- Leja, J.; Tacchella, S.; Conroy, C. Beyond UVJ: More Efficient Selection of Quiescent Galaxies with Ultraviolet/Mid-infrared Fluxes. Astrophys. J. 2019, 880, L9. [Google Scholar] [CrossRef] [Green Version]
- Belli, S.; Genzel, R.; Förster Schreiber, N.M.; Wisnioski, E.; Wilman, D.J.; Wuyts, S.; Mendel, J.T.; Beifiori, A.; Bender, R.; Brammer, G.B.; et al. KMOS3D Reveals Low-level Star Formation Activity in Massive Quiescent Galaxies at 0.7 < z < 2.7. Astrophys. J. 2017, 841, L6. [Google Scholar] [CrossRef] [Green Version]
- Díaz-García, L.A.; Cenarro, A.J.; López-Sanjuan, C.; Ferreras, I.; Cerviño, M.; Fernández-Soto, A.; González Delgado, R.M.; Márquez, I.; Pović, M.; San Roman, I.; et al. Stellar Populations of Galaxies in the ALHAMBRA Survey up to z ∼ 1. II. Stellar Content of Quiescent Galaxies within the Dust-Corrected Stellar Mass-Colour and the UVJ Colour-Colour Diagrams. Astron. Astrophys. 2019, 631, A156. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, C.; Elbaz, D.; Pannella, M.; Ciesla, L.; Wang, T.; Franco, M. Dust Temperature and Mid-to-Total Infrared Color Distributions for Star-Forming Galaxies at 0 <z< 4. Astron. Astrophys. 2018, 609, A30. [Google Scholar] [CrossRef] [Green Version]
- Galliano, F.; Galametz, M.; Jones, A.P. The Interstellar Dust Properties of Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2018, 56, 673. [Google Scholar] [CrossRef] [Green Version]
- Draine, B.T. Interstellar Dust Grains. Annu. Rev. Astron. Astrophys. 2003, 41, 241. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, K.E.; Pope, A.; Cybulski, R.; Casey, C.M.; Popping, G.; Yun, M.S. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5. Astrophys. J. 2017, 850, 208. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C.; Evans, N.J. Star Formation in the Milky Way and Nearby Galaxies. Annu. Rev. Astron. Astrophys. 2012, 50, 531. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.C.; Labbe, I.; Spilker, J.; Stefanon, M.; Leja, J.; Whitaker, K.; Bezanson, R.; Narayanan, D.; Oesch, P.; Weiner, B. Discovery of a Dark, Massive, ALMA-only Galaxy at z ∼ 5–6 in a Tiny 3 Mm Survey. Astrophys. J. 2019, 884, 154. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kohno, K.; Hatsukade, B.; Wang, T.; Yoshimura, Y.; Ao, Y.; Caputi, K.I.; Dunlop, J.S.; Egami, E.; Espada, D.; et al. ALMA 26 Arcmin 2 Survey of GOODS-S at 1 Mm (ASAGAO): Near-infrared-dark Faint ALMA Sources. Astrophys. J. 2019, 878, 73. [Google Scholar] [CrossRef] [Green Version]
- Smail, I.; Dudzevičiūtė, U.; Stach, S.M.; Almaini, O.; Birkin, J.E.; Chapman, S.C.; Chen, C.C.; Geach, J.E.; Gullberg, B.; Hodge, J.A.; et al. An ALMA Survey of the S2CLS UDS Field: Optically Invisible Submillimetre Galaxies. Mon. Not. R. Astron. Soc. 2021, 502, 3426–3435. [Google Scholar] [CrossRef]
- Manning, S.M.; Casey, C.M.; Zavala, J.A.; Magdis, G.E.; Drew, P.M.; Champagne, J.B.; Aravena, M.; Béthermin, M.; Clements, D.L.; Finkelstein, S.L.; et al. Characterization of Two 2 Mm Detected Optically Obscured Dusty Star-forming Galaxies. Astrophys. J. 2022, 925, 23. [Google Scholar] [CrossRef]
- Duc, P.A.; Poggianti, B.M.; Fadda, D.; Elbaz, D.; Flores, H.; Chanial, P.; Franceschini, A.; Moorwood, A.; Cesarsky, C. Hidden Star-Formation in the Cluster of Galaxies Abell 1689. Astron. Astrophys. 2002, 382, 60–83. [Google Scholar] [CrossRef]
- Vulcani, B.; Poggianti, B.M.; Finn, R.A.; Rudnick, G.; Desai, V.; Bamford, S. Comparing the Relation Between Star Formation and Galaxy Mass in Different Environments. Astrophys. J. 2010, 710, L1–L6. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.A.; Desai, V.; Rudnick, G.; Poggianti, B.; Bell, E.F.; Hinz, J.; Jablonka, P.; Milvang-Jensen, B.; Moustakas, J.; Rines, K.; et al. Dust-obscured star formation in intermediate redshift galaxy clusters. Astrophys. J. 2010, 720, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.S.; Altieri, B.; Tanaka, M.; Valtchanov, I.; Saintonge, A.; Dickinson, M.; Foucaud, S.; Kodama, T.; Rawle, T.D.; Tadaki, K. Star Formation in the Cluster CLG0218.3-0510 at z = 1.62 and Its Large-Scale Environment: The Infrared Perspective. Mon. Not. R. Astron. Soc. 2014, 438, 2565–2577. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.J.; Smail, I.; Swinbank, A.M.; Simpson, J.M.; Thomson, A.P.; Chen, C.C.; Danielson, A.L.R.; Hilton, M.; Tadaki, K.; Stott, J.P.; et al. Dusty starbursts and the formation of elliptical galaxies: A scuba-2 survey of a z = 1.46 CLUSTER. Astrophys. J. 2015, 806, 257. [Google Scholar] [CrossRef] [Green Version]
- Silverman, J.D.; Green, P.J.; Barkhouse, W.A.; Kim, D.W.; Kim, M.; Wilkes, B.J.; Cameron, R.A.; Hasinger, G.; Jannuzi, B.T.; Smith, M.G.; et al. The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift. Astrophys. J. 2008, 679, 118–139. [Google Scholar] [CrossRef] [Green Version]
- Madau, P.; Dickinson, M. Cosmic Star Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Hickox, R.C.; Alexander, D.M. Obscured Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2018, 56, 625. [Google Scholar] [CrossRef] [Green Version]
- Alberts, S.; Rujopakarn, W.; Rieke, G.H.; Jagannathan, P.; Nyland, K. Completing the Census of AGN in GOODS-S/HUDF: New Ultradeep Radio Imaging and Predictions for JWST. Astrophys. J. 2020, 901, 168. [Google Scholar] [CrossRef]
- Solomon, P.M.; Vanden Bout, P.A. Molecular Gas at High Redshift. Annu. Rev. Astron. Astrophys. 2005, 43, 677. [Google Scholar] [CrossRef] [Green Version]
- Carilli, C.; Walter, F. Cool Gas in High Redshift Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 105–161. [Google Scholar] [CrossRef] [Green Version]
- Scoville, N.; Sheth, K.; Aussel, H.; Vanden Bout, P.; Capak, P.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; Álvarez-Márquez, J.; et al. ISM Masses and the Star Formation Law at Z = 1 to 6: ALMA Observations of Dust Continuum in 145 Galaxies in the COSMOS Survey Field. Astrophys. J. 2016, 820, 83. [Google Scholar] [CrossRef] [Green Version]
- Scoville, N.; Lee, N.; Vanden Bout, P.; Diaz-Santos, T.; Sanders, D.; Darvish, B.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; et al. Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift. Astrophys. J. 2017, 837, 150. [Google Scholar] [CrossRef]
- Cormier, D.; Madden, S.C.; Lebouteiller, V.; Hony, S.; Aalto, S.; Costagliola, F.; Hughes, A.; Rémy-Ruyer, A.; Abel, N.; Bayet, E.; et al. The Molecular Gas Reservoir of 6 Low-Metallicity Galaxies from the Herschel Dwarf Galaxy Survey. A Ground-Based Follow-up Survey of CO(1-0), CO(2-1), and CO(3-2). Astron. Astrophys. 2014, 564, A121. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, G.; Blaizot, J. The Hierarchical Formation of the Brightest Cluster Galaxies. Mon. Not. R. Astron. Soc. 2007, 375, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Donahue, M.; Voit, G.M. Baryon Cycles in the Biggest Galaxies. Phys. Rep. 2022, 973, 1–109. [Google Scholar] [CrossRef]
- White, M. The Mass of a Halo. Astron. Astrophys. 2001, 367, 27. [Google Scholar] [CrossRef]
- Kroupa, P. On the Variation of the Initial Mass Function. Mon. Not. R. Astron. Soc. 2001, 322, 231–246. [Google Scholar] [CrossRef]
- Allen, S.W.; Evrard, A.E.; Mantz, A.B. Cosmological Parameters from Observations of Galaxy Clusters. Annu. Rev. Astron. Astrophys. 2011, 49, 409. [Google Scholar] [CrossRef] [Green Version]
- Rosati, P.; Borgani, S.; Norman, C. The Evolution of X-Ray Clusters of Galaxies. Annu. Rev. Astron. Astrophys. 2002, 40, 539–577. [Google Scholar] [CrossRef] [Green Version]
- Gladders, M.D.; Yee, H.K.C. A New Method For Galaxy Cluster Detection. I. The Algorithm. Astron. J. 2000, 120, 2148–2162. [Google Scholar] [CrossRef] [Green Version]
- Gladders, M.D.; Yee, H.K.C. The Red-Sequence Cluster Survey. I. The Survey and Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29. Astrophys. J. Suppl. Ser. 2005, 157, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Sunyaev, R.A.; Zeldovich, Y.B. The Velocity of Clusters of Galaxies Relative to the Microwave Background—The Possibility of Its Measurement. Mon. Not. R. Astron. Soc. 1980, 190, 413–420. [Google Scholar] [CrossRef]
- Jannuzi, B.T.; Dey, A. The NOAO Deep Wide-Field Survey. Astron. Soc. Pac. Conf. Ser. 1999, 193, 258. [Google Scholar]
- Whitaker, K.E.; Labbé, I.; van Dokkum, P.G.; Brammer, G.; Kriek, M.; Marchesini, D.; Quadri, R.F.; Franx, M.; Muzzin, A.; Williams, R.J.; et al. The NEWFIRM Medium-band Survey: Photometric Catalogs, Redshifts, and the Bimodal Color Distribution of Galaxies out to z ~ 3. Astrophys. J. 2011, 735, 86. [Google Scholar] [CrossRef] [Green Version]
- Eisenhardt, P.R.; Stern, D.; Brodwin, M.; Fazio, G.G.; Rieke, G.H.; Rieke, M.J.; Werner, M.W.; Wright, E.L.; Allen, L.E.; Arendt, R.G.; et al. The Infrared Array Camera (IRAC) Shallow Survey. Astrophys. J. Suppl. Ser. 2004, 154, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M.L.N.; Stern, D.; Brodwin, M.; Griffith, R.; Eisenhardt, P.; Kozłowski, S.; Kochanek, C.S.; Bock, J.J.; Borys, C.; Brand, K.; et al. The Spitzer Deep, Wide-field Survey. Astrophys. J. 2009, 701, 428–453. [Google Scholar] [CrossRef] [Green Version]
- Lonsdale, C.J.; Smith, H.E.; Rowan-Robinson, M.; Surace, J.; Shupe, D.; Xu, C.; Oliver, S.; Padgett, D.; Fang, F.; Conrow, T.; et al. SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey. Publ. Astron. Soc. Pac. 2003, 115, 897–927. [Google Scholar] [CrossRef]
- Stanford, S.A.; Romer, A.K.; Sabirli, K.; Davidson, M.; Hilton, M.; Viana, P.T.P.; Collins, C.A.; Kay, S.T.; Liddle, A.R.; Mann, R.G.; et al. The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45. Astrophys. J. 2006, 646, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Brodwin, M.; Brown, M.J.I.; Ashby, M.L.N.; Bian, C.; Brand, K.; Dey, A.; Eisenhardt, P.R.; Eisenstein, D.J.; Gonzalez, A.H.; Huang, J.S.; et al. Photometric Redshifts in the IRAC Shallow Survey. Astrophys. J. 2006, 651, 791–803. [Google Scholar] [CrossRef] [Green Version]
- van Breukelen, C.; Cotter, G.; Rawlings, S.; Readhead, T.; Bonfield, D.; Clewley, L.; Ivison, R.; Jarvis, M.; Simpson, C.; Watson, M. Spectroscopic Follow-up of a Cluster Candidate at z = 1.45. Mon. Not. R. Astron. Soc. 2007, 382, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Zatloukal, M.; Röser, H.J.; Wolf, C.; Hippelein, H.; Falter, S. Distant Galaxy Clusters in the COSMOS Field Found by HIROCS. Astron. Astrophys. 2007, 474, L5. [Google Scholar] [CrossRef] [Green Version]
- Krick, J.E.; Surace, J.A.; Thompson, D.; Ashby, M.L.N.; Hora, J.L.; Gorjian, V.; Yan, L. Galaxy Clusters in the IRAC Dark Field. I. Growth of the Red Sequence. Astrophys. J. 2008, 686, 918–926. [Google Scholar] [CrossRef] [Green Version]
- Eisenhardt, P.R.M.; Brodwin, M.; Gonzalez, A.H.; Stanford, S.A.; Stern, D.; Barmby, P.; Brown, M.J.I.; Dawson, K.; Dey, A.; Doi, M.; et al. Clusters of Galaxies in the First Half of the Universe from the IRAC Shallow Survey. Astrophys. J. 2008, 684, 905–932. [Google Scholar] [CrossRef] [Green Version]
- Muzzin, A.; Wilson, G.; Lacy, M.; Yee, H.K.C.; Stanford, S.A. The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 Mm Cluster Luminosity Functions. Astrophys. J. 2008, 686, 966–994. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.; Muzzin, A.; Yee, H.K.C.; Lacy, M.; Surace, J.; Gilbank, D.; Blindert, K.; Hoekstra, H.; Majumdar, S.; Demarco, R.; et al. Spectroscopic Confirmation of a Massive Red-Sequence-Selected Galaxy Cluster at z = 1.34 in the SpARCS-South Cluster Survey. Astrophys. J. 2009, 698, 1943–1950. [Google Scholar] [CrossRef] [Green Version]
- Muzzin, A.; Wilson, G.; Yee, H.K.C.; Hoekstra, H.; Gilbank, D.; Surace, J.; Lacy, M.; Blindert, K.; Majumdar, S.; Demarco, R.; et al. Spectroscopic Confirmation of Two Massive Red-Sequence-Selected Galaxy Clusters at z ~ 1.2 in the SpARCS-North Cluster Survey. Astrophys. J. 2009, 698, 1934–1942. [Google Scholar] [CrossRef] [Green Version]
- Papovich, C. The Angular Clustering of Distant Galaxy Clusters. Astrophys. J. 2008, 676, 206–217. [Google Scholar] [CrossRef]
- Muzzin, A.; Wilson, G.; Demarco, R.; Lidman, C.; Nantais, J.; Hoekstra, H.; Yee, H.K.C.; Rettura, A. Discovery of a Rich Cluster at z = 1.63 Using the Rest-frame 1.6 Mm “Stellar Bump Sequence” Method. Astrophys. J. 2013, 767, 39. [Google Scholar] [CrossRef] [Green Version]
- Brodwin, M.; Stanford, S.A.; Gonzalez, A.H.; Zeimann, G.R.; Snyder, G.F.; Mancone, C.L.; Pope, A.; Eisenhardt, P.R.; Stern, D.; Alberts, S.; et al. The era of star formation in galaxy clusters. Astrophys. J. 2013, 779, 138. [Google Scholar] [CrossRef]
- Wylezalek, D.; Galametz, A.; Stern, D.; Vernet, J.; De Breuck, C.; Seymour, N.; Brodwin, M.; Eisenhardt, P.R.M.; Gonzalez, A.H.; Hatch, N.; et al. Galaxy Clusters around Radio-loud Active Galactic Nuclei at 1.3 < z < 3.2 as Seen by Spitzer. Astrophys. J. 2013, 769, 79. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.P.; Ramos-Ceja, M.E.; Muzzin, A.; Pacaud, F.; Yee, H.K.C.; Wilson, G. X-Ray versus Infrared Selection of Distant Galaxy Clusters: A Case Study Using the XMM-LSS and SpARCS Cluster Samples. Mon. Not. R. Astron. Soc. 2018, 477, 5517–5535. [Google Scholar] [CrossRef] [Green Version]
- Costanzi, M.; Rozo, E.; Rykoff, E.S.; Farahi, A.; Jeltema, T.; Evrard, A.E.; Mantz, A.; Gruen, D.; Mandelbaum, R.; DeRose, J.; et al. Modelling Projection Effects in Optically Selected Cluster Catalogues. Mon. Not. R. Astron. Soc. 2019, 482, 490–505. [Google Scholar] [CrossRef]
- Girardi, M.; Borgani, S.; Giuricin, G.; Mardirossian, F.; Mezzetti, M. Optical Luminosities and Mass-to-Light Ratios of Nearby Galaxy Clusters. Astrophys. J. 2000, 530, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.T.; Mohr, J.J.; Stanford, S.A. Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons. Astrophys. J. 2003, 591, 749–763. [Google Scholar] [CrossRef]
- Andreon, S. Making the Observational Parsimonious Richness a Working Mass Proxy. Astron. Astrophys. 2015, 582, A100. [Google Scholar] [CrossRef]
- Rozo, E.; Rykoff, E.S.; Bartlett, J.G.; Melin, J.B. redMaPPer—III. A Detailed Comparison of the Planck 2013 and SDSS DR8 redMaPPer Cluster Catalogues. Mon. Not. R. Astron. Soc. 2015, 450, 592–605. [Google Scholar] [CrossRef] [Green Version]
- Old, L.J.; Wojtak, R.; Mamon, G.A.; Skibba, R.A.; Pearce, F.R.; Croton, D.; Bamford, S.; Behroozi, P.; de Carvalho, R.; Muñoz-Cuartas, J.C.; et al. Galaxy Cluster Mass Reconstruction Project—II. Quantifying Scatter and Bias Using Contrasting Mock Catalogues. Mon. Not. R. Astron. Soc. 2015, 449, 1897–1920. [Google Scholar] [CrossRef]
- Wojtak, R.; Old, L.; Mamon, G.A.; Pearce, F.R.; de Carvalho, R.; Sifón, C.; Gray, M.E.; Skibba, R.A.; Croton, D.; Bamford, S.; et al. Galaxy Cluster Mass Reconstruction Project—IV. Understanding the Effects of Imperfect Membership on Cluster Mass Estimation. Mon. Not. R. Astron. Soc. 2018, 481, 324–340. [Google Scholar] [CrossRef] [Green Version]
- Demarco, R.; Wilson, G.; Muzzin, A.; Lacy, M.; Surace, J.; Yee, H.K.C.; Hoekstra, H.; Blindert, K.; Gilbank, D. Spectroscopic Confirmation of Three Red-sequence Selected Galaxy Clusters at z = 0.87, 1.16, and 1.21 from the SpARCS Survey. Astrophys. J. 2010, 711, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Balogh, M.L.; Gilbank, D.G.; Muzzin, A.; Rudnick, G.; Cooper, M.C.; Lidman, C.; Biviano, A.; Demarco, R.; McGee, S.L.; Nantais, J.B.; et al. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: Survey Description. Mon. Not. R. Astron. Soc. 2017, 470, 4168–4185. [Google Scholar] [CrossRef] [Green Version]
- Stanford, S.A.; Brodwin, M.; Gonzalez, A.H.; Zeimann, G.; Stern, D.; Dey, A.; Eisenhardt, P.R.; Snyder, G.F.; Mancone, C. IDCS J1426.5+3508: Discovery of a Massive, Infrared-selected Galaxy Cluster at z = 1.75. Astrophys. J. 2012, 753, 164. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, C.S.; Eisenstein, D.J.; Cool, R.J.; Caldwell, N.; Assef, R.J.; Jannuzi, B.T.; Jones, C.; Murray, S.S.; Forman, W.R.; Dey, A.; et al. AGES: The AGN and Galaxy Evolution Survey. Astrophys. J. Suppl. Ser. 2012, 200, 8. [Google Scholar] [CrossRef] [Green Version]
- Stanford, S.A.; Eisenhardt, P.R.; Brodwin, M.; Gonzalez, A.H.; Stern, D.; Jannuzi, B.T.; Dey, A.; Brown, M.J.I.; McKenzie, E.; Elston, R. An IR-selected Galaxy Cluster at z = 1.41. Astrophys. J. 2005, 634, L129–L132. [Google Scholar] [CrossRef]
- Brodwin, M.; Stern, D.; Vikhlinin, A.; Stanford, S.A.; Gonzalez, A.H.; Eisenhardt, P.R.; Ashby, M.L.N.; Bautz, M.; Dey, A.; Forman, W.R.; et al. X-Ray Emission from Two Infrared-selected Galaxy Clusters at z > 1.4 in the IRAC Shallow Cluster Survey. Astrophys. J. 2011, 732, 33. [Google Scholar] [CrossRef]
- Elston, R.J.; Gonzalez, A.H.; McKenzie, E.; Brodwin, M.; Brown, M.J.I.; Cardona, G.; Dey, A.; Dickinson, M.; Eisenhardt, P.R.; Jannuzi, B.T.; et al. The FLAMINGOS Extragalactic Survey. Astrophys. J. 2006, 639, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Zeimann, G.R.; Stanford, S.A.; Brodwin, M.; Gonzalez, A.H.; Mancone, C.; Snyder, G.F.; Stern, D.; Eisenhardt, P.; Dey, A.; Moustakas, J. Hα Star Formation Rates of z > 1 Galaxy Clusters in the IRAC Shallow Cluster Survey. Astrophys. J. 2013, 779, 137. [Google Scholar] [CrossRef] [Green Version]
- Brodwin, M.; Gonzalez, A.H.; Moustakas, L.A.; Eisenhardt, P.R.; Stanford, S.A.; Stern, D.; Brown, M.J.I. Galaxy Cluster Correlation Function to Z~1.5 in the IRAC Shallow Cluster Survey. Astrophys. J. 2007, 671, L93–L96. [Google Scholar] [CrossRef]
- Jee, M.J.; Dawson, K.S.; Hoekstra, H.; Perlmutter, S.; Rosati, P.; Brodwin, M.; Suzuki, N.; Koester, B.; Postman, M.; Lubin, L.; et al. Scaling Relations and Overabundance of Massive Clusters at z > 1 from Weak-lensing Studies with the Hubble Space Telescope. Astrophys. J. 2011, 737, 59. [Google Scholar] [CrossRef] [Green Version]
- Brodwin, M.; Gonzalez, A.H.; Stanford, S.A.; Plagge, T.; Marrone, D.P.; Carlstrom, J.E.; Dey, A.; Eisenhardt, P.R.; Fedeli, C.; Gettings, D.; et al. IDCS J1426.5+3508: Sunyaev-Zel’dovich Measurement of a Massive Infrared-selected Cluster at z = 1.75. Astrophys. J. 2012, 753, 162. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.T.; Brodwin, M.; Gonzalez, A.H.; Bode, P.; Eisenhardt, P.R.M.; Stanford, S.A.; Vikhlinin, A. The Stellar Mass Growth of Brightest Cluster Galaxies in the IRAC Shallow Cluster Survey. Astrophys. J. 2013, 771, 61. [Google Scholar] [CrossRef] [Green Version]
- Alberts, S.; Pope, A.; Brodwin, M.; Atlee, D.W.; Lin, Y.T.; Dey, A.; Eisenhardt, P.R.M.; Gettings, D.P.; Gonzalez, A.H.; Jannuzi, B.T.; et al. The Evolution of Dust-Obscured Star Formation Activity in Galaxy Clusters Relative to the Field over the Last 9 Billion Years72. Mon. Not. R. Astron. Soc. 2014, 437, 437–457. [Google Scholar] [CrossRef] [Green Version]
- Brodwin, M.; McDonald, M.; Gonzalez, A.H.; Stanford, S.A.; Eisenhardt, P.R.; Stern, D.; Zeimann, G.R. IDCS J1426.5+3508: The Most Massive Galaxy Cluster at z > 1.5. Astrophys. J. 2016, 817, 122. [Google Scholar] [CrossRef]
- Chung, S.M.; Kochanek, C.S.; Assef, R.; Brown, M.J.I.; Stern, D.; Jannuzi, B.T.; Gonzalez, A.H.; Hickox, R.C.; Moustakas, J. A UV to Mid-IR Study of AGN Selection. Astrophys. J. 2014, 790, 54. [Google Scholar] [CrossRef] [Green Version]
- Rykoff, E.S.; Rozo, E.; Busha, M.T.; Cunha, C.E.; Finoguenov, A.; Evrard, A.; Hao, J.; Koester, B.P.; Leauthaud, A.; Nord, B.; et al. redMaPPer. I. Algorithm and SDSS DR8 Catalog. Astrophys. J. 2014, 785, 104. [Google Scholar] [CrossRef]
- Papovich, C.; Shipley, H.V.; Mehrtens, N.; Lanham, C.; Lacy, M.; Ciardullo, R.; Finkelstein, S.L.; Bassett, R.; Behroozi, P.; Blanc, G.A.; et al. The Spitzer-HETDEX Exploratory Large-area Survey. Astrophys. J. Suppl. Ser. 2016, 224, 28. [Google Scholar] [CrossRef] [Green Version]
- Rettura, A.; Martinez-Manso, J.; Stern, D.; Mei, S.; Ashby, M.L.N.; Brodwin, M.; Gettings, D.; Gonzalez, A.H.; Stanford, S.A.; Bartlett, J.G. Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey. Astrophys. J. 2014, 797, 109. [Google Scholar] [CrossRef] [Green Version]
- Fuzia, B.J.; Kawinwanichakij, L.; Mehrtens, N.; Aiola, S.; Battaglia, N.; Ciardullo, R.; Devlin, M.; Finkelstein, S.L.; Gralla, M.; Hilton, M.; et al. The Atacama Cosmology Telescope: SZ-based Masses and Dust Emission from IR-selected Cluster Candidates in the SHELA Survey. Mon. Not. R. Astron. Soc. 2021, 502, 4026–4038. [Google Scholar] [CrossRef]
- Wen, Z.L.; Han, J.L. Photometric Redshifts for Galaxies in the Subaru Hyper Suprime-Cam and unWISE and a Catalogue of Identified Clusters of Galaxies. Mon. Not. R. Astron. Soc. 2021, 500, 1003–1017. [Google Scholar] [CrossRef]
- Wen, Z.L.; Han, J.L. Clusters of Galaxies up to Z = 1.5 Identified from Photometric Data of the Dark Energy Survey and unWISE. Mon. Not. R. Astron. Soc. 2022, 513, 3946–3959. [Google Scholar] [CrossRef]
- Wen, Z.L.; Han, J.L.; Yang, F. A Catalogue of Clusters of Galaxies Identified from All Sky Surveys of 2MASS, WISE, and SuperCOSMOS. Mon. Not. R. Astron. Soc. 2018, 475, 343–352. [Google Scholar] [CrossRef]
- Ascaso, B.; Mei, S.; Bartlett, J.G.; Benítez, N. Apples to Apples A2—II. Cluster Selection Functions for next-Generation Surveys. Mon. Not. R. Astron. Soc. 2017, 464, 2270–2280. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Adam, R.; Vannier, M.; Maurogordato, S.; Biviano, A.; Adami, C.; Ascaso, B.; Bellagamba, F.; Benoist, C.; Cappi, A.; et al. Euclid Preparation. III. Galaxy Cluster Detection in the Wide Photometric Survey, Performance and Algorithm Selection. Astron. Astrophys. 2019, 627, A23. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.H.; Gettings, D.P.; Brodwin, M.; Eisenhardt, P.R.M.; Stanford, S.A.; Wylezalek, D.; Decker, B.; Marrone, D.P.; Moravec, E.; O’Donnell, C.; et al. The Massive and Distant Clusters of WISE Survey. I. Survey Overview and a Catalog of >2000 Galaxy Clusters at z ≃ 1. Astrophys. J. Suppl. Ser. 2019, 240, 33. [Google Scholar] [CrossRef] [Green Version]
- Rettura, A.; Chary, R.; Krick, J.; Ettori, S. Mass-Richness Relations for X-Ray and SZE-selected Clusters at 0.4 < z < 2.0 as Seen by Spitzer at 4.5 Mm. Astrophys. J. 2018, 867, 12. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv 2015, arXiv:150303757S. [Google Scholar]
- Sartoris, B.; Biviano, A.; Fedeli, C.; Bartlett, J.G.; Borgani, S.; Costanzi, M.; Giocoli, C.; Moscardini, L.; Weller, J.; Ascaso, B.; et al. Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey. Mon. Not. R. Astron. Soc. 2016, 459, 1764–1780. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.L.; Han, J.L. A Sample of 1959 Massive Galaxy Clusters at High Redshifts. Mon. Not. R. Astron. Soc. 2018, 481, 4158–4168. [Google Scholar] [CrossRef] [Green Version]
- Chambers, K.C.; Magnier, E.A.; Metcalfe, N.; Flewelling, H.A.; Huber, M.E.; Waters, C.Z.; Denneau, L.; Draper, P.W.; Farrow, D.; Finkbeiner, D.P.; et al. The Pan-STARRS1 Surveys. arXiv 2016, arXiv:161205560C. [Google Scholar]
- Peacock, J.A.; Hambly, N.C.; Bilicki, M.; MacGillivray, H.T.; Miller, L.; Read, M.A.; Tritton, S.B. The SuperCOSMOS All-Sky Galaxy Catalogue. Mon. Not. R. Astron. Soc. 2016, 462, 2085–2098. [Google Scholar] [CrossRef]
- Marocco, F.; Eisenhardt, P.R.M.; Fowler, J.W.; Kirkpatrick, J.D.; Meisner, A.M.; Schlafly, E.F.; Stanford, S.A.; Garcia, N.; Caselden, D.; Cushing, M.C.; et al. The CatWISE2020 Catalog. Astrophys. J. Suppl. Ser. 2021, 253, 8. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Schlafly, E.F.; Meisner, A.M.; Green, G.M. The unWISE Catalog: Two Billion Infrared Sources from Five Years of WISE Imaging. Astrophys. J. Suppl. Ser. 2019, 240, 30. [Google Scholar] [CrossRef] [Green Version]
- Aihara, H.; Arimoto, N.; Armstrong, R.; Arnouts, S.; Bahcall, N.A.; Bickerton, S.; Bosch, J.; Bundy, K.; Capak, P.L.; Chan, J.H.H.; et al. The Hyper Suprime-Cam SSP Survey: Overview and Survey Design. Publ. Astron. Soc. Jpn. 2018, 70, S4. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Abdalla, F.B.; Allam, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; Ballester, O.; Banerji, M.; Barkhouse, W.; et al. The Dark Energy Survey: Data Release 1. Astrophys. J. Suppl. Ser. 2018, 239, 18. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Carlstrom, J.E.; Holder, G.P.; Reese, E.D. Cosmology with the Sunyaev-Zel’dovich Effect. Annu. Rev. Astron. Astrophys. 2002, 40, 643–680. [Google Scholar] [CrossRef] [Green Version]
- Motl, P.M.; Hallman, E.J.; Burns, J.O.; Norman, M.L. The Integrated Sunyaev-Zeldovich Effect as a Superior Method for Measuring the Mass of Clusters of Galaxies. Astrophys. J. 2005, 623, L63–L66. [Google Scholar] [CrossRef] [Green Version]
- Andersson, K.; Benson, B.A.; Ade, P.A.R.; Aird, K.A.; Armstrong, B.; Bautz, M.; Bleem, L.E.; Brodwin, M.; Carlstrom, J.E.; Chang, C.L.; et al. X-Ray Properties of the First Sunyaev-Zel’dovich Effect Selected Galaxy Cluster Sample from the South Pole Telescope. Astrophys. J. 2011, 738, 48. [Google Scholar] [CrossRef]
- Henden, N.A.; Puchwein, E.; Sijacki, D. The Redshift Evolution of X-ray and Sunyaev-Zel’dovich Scaling Relations in the FABLE Simulations. Mon. Not. R. Astron. Soc. 2019, 489, 2439–2470. [Google Scholar] [CrossRef]
- Bleem, L.E.; Bocquet, S.; Stalder, B.; Gladders, M.D.; Ade, P.A.R.; Allen, S.W.; Anderson, A.J.; Annis, J.; Ashby, M.L.N.; Austermann, J.E.; et al. The SPTpol Extended Cluster Survey. Astrophys. J. Suppl. Ser. 2020, 247, 25. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Battaner, E.; et al. Planck Intermediate Results. XXXIX. The Planck List of High-Redshift Source Candidates. Astron. Astrophys. 2016, 596, A100. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.; Aguirre, J.; Ahmed, Z.; Aiola, S.; Ali, A.; Alonso, D.; Alvarez, M.A.; Arnold, K.; Ashton, P.; Austermann, J.; et al. The Simons Observatory: Science Goals and Forecasts. J. Cosmol. Astropart. Phys. 2019, 2019, 056. [Google Scholar] [CrossRef]
- Abazajian, K.; Addison, G.; Adshead, P.; Ahmed, Z.; Allen, S.W.; Alonso, D.; Alvarez, M.; Anderson, A.; Arnold, K.S.; Baccigalupi, C.; et al. CMB-S4 Science Case, Reference Design, and Project Plan. arXiv 2019, arXiv:190704473A. [Google Scholar]
- Benson, B.A.; Ade, P.A.R.; Ahmed, Z.; Allen, S.W.; Arnold, K.; Austermann, J.E.; Bender, A.N.; Bleem, L.E.; Carlstrom, J.E.; Chang, C.L.; et al. SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope. arXiv 2014, arXiv:1407.2973. [Google Scholar] [CrossRef] [Green Version]
- Bleem, L.E.; Stalder, B.; de Haan, T.; Aird, K.A.; Allen, S.W.; Applegate, D.E.; Ashby, M.L.N.; Bautz, M.; Bayliss, M.; Benson, B.A.; et al. Galaxy Clusters Discovered via the Sunyaev-Zel’dovich Effect in the 2500-Square-Degree SPT-SZ Survey. Astrophys. J. Suppl. Ser. 2015, 216, 27. [Google Scholar] [CrossRef]
- CCAT Collaboration, C.P.; Aravena, M.; Austermann, J.E.; Basu, K.; Battaglia, N.; Beringue, B.; Bertoldi, F.; Bigiel, F.; Bond, J.R.; Breysse, P.C.; et al. CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope. arXiv 2021, arXiv:2107.10364. [Google Scholar]
- Hilton, M.; Hasselfield, M.; Sifón, C.; Battaglia, N.; Aiola, S.; Bharadwaj, V.; Bond, J.R.; Choi, S.K.; Crichton, D.; Datta, R.; et al. The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog. Astrophys. J. Suppl. Ser. 2018, 235, 20. [Google Scholar] [CrossRef] [Green Version]
- Hanany, S.; Alvarez, M.; Artis, E.; Ashton, P.; Aumont, J.; Aurlien, R.; Banerji, R.; Barreiro, R.B.; Bartlett, J.G.; Basak, S.; et al. PICO: Probe of Inflation and Cosmic Origins. arXiv 2019, arXiv:190210541H. [Google Scholar]
- Huang, N.; Bleem, L.E.; Stalder, B.; Ade, P.A.R.; Allen, S.W.; Anderson, A.J.; Austermann, J.E.; Avva, J.S.; Beall, J.A.; Bender, A.N.; et al. Galaxy Clusters Selected via the Sunyaev–Zel’dovich Effect in the SPTpol 100-Square-Degree Survey. Astron. J. 2020, 159, 110. [Google Scholar] [CrossRef] [Green Version]
- Hilton, M.; Sifón, C.; Naess, S.; Madhavacheril, M.; Oguri, M.; Rozo, E.; Rykoff, E.; Abbott, T.M.C.; Adhikari, S.; Aguena, M.; et al. The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters. Astrophys. J. Suppl. Ser. 2021, 253, 3. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; et al. Planck 2013 Results. XXIX. The Planck Catalogue of Sunyaev-Zeldovich Sources. Astron. Astrophys. 2014, 571, A29. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Barrena, R.; et al. Planck 2015 Results: XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources. Astron. Astrophys. 2016, 594, A27. [Google Scholar] [CrossRef] [Green Version]
- Raghunathan, S. Assessing the Importance of Noise from Thermal Sunyaev-Zel’dovich Signals for CMB Cluster Surveys and Cluster Cosmology. Astrophys. J. 2022, 928, 16. [Google Scholar] [CrossRef]
- Sehgal, N.; Aiola, S.; Akrami, Y.; Basu, K.; Boylan-Kolchin, M.; Bryan, S.; Clesse, S.; Cyr-Racine, F.Y.; Di Mascolo, L.; Dicker, S.; et al. CMB-HD: An Ultra-Deep, High-Resolution Millimeter-Wave Survey Over Half the Sky. arXiv 2019, arXiv:1906.10134. [Google Scholar]
- Sobrin, J.A.; Anderson, A.J.; Bender, A.N.; Benson, B.A.; Dutcher, D.; Foster, A.; Goeckner-Wald, N.; Montgomery, J.; Nadolski, A.; Rahlin, A.; et al. The Design and Integrated Performance of SPT-3G. Astrophys. J. Suppl. Ser. 2022, 258, 42. [Google Scholar] [CrossRef]
- Swetz, D.S.; Ade, P.A.R.; Amiri, M.; Appel, J.W.; Battistelli, E.S.; Burger, B.; Chervenak, J.; Devlin, M.J.; Dicker, S.R.; Doriese, W.B.; et al. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems. Astrophys. J. Suppl. Ser. 2011, 194, 41. [Google Scholar] [CrossRef]
- Tinker, J.; Kravtsov, A.V.; Klypin, A.; Abazajian, K.; Warren, M.; Yepes, G.; Gottlöber, S.; Holz, D.E. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality. Astrophys. J. 2008, 688, 709–728. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Springel, V.; White, S.D.M.; Jenkins, A.; Lemson, G. Resolving Cosmic Structure Formation with the Millennium-II Simulation. Mon. Not. R. Astron. Soc. 2009, 398, 1150–1164. [Google Scholar] [CrossRef] [Green Version]
- Overzier, R.A.; Guo, Q.; Kauffmann, G.; De Lucia, G.; Bouwens, R.; Lemson, G. ΛCDM Predictions for Galaxy Protoclusters—I. The Relation between Galaxies, Protoclusters and Quasars at z ~ 6. Mon. Not. R. Astron. Soc. 2009, 394, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Lovell, C.C.; Thomas, P.A.; Wilkins, S.M. Characterising and Identifying Galaxy Protoclusters. Mon. Not. R. Astron. Soc. 2018, 474, 4612–4628. [Google Scholar] [CrossRef]
- Venemans, B.P.; Kurk, J.D.; Miley, G.K.; Röttgering, H.J.A.; van Breugel, W.; Carilli, C.L.; De Breuck, C.; Ford, H.; Heckman, T.; McCarthy, P.; et al. The Most Distant Structure of Galaxies Known: A Protocluster at Z = 4.1. Astrophys. J. 2002, 569, L11–L14. [Google Scholar] [CrossRef]
- Miley, G.; De Breuck, C. Distant Radio Galaxies and Their Environments. Astron. Astrophys. Rev. 2008, 15, 67. [Google Scholar] [CrossRef]
- Eisenhardt, P.R.M.; Wu, J.; Tsai, C.W.; Assef, R.; Benford, D.; Blain, A.; Bridge, C.; Condon, J.J.; Cushing, M.C.; Cutri, R.; et al. The First Hyper-luminous Infrared Galaxy Discovered by WISE. Astrophys. J. 2012, 755, 173. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Tsai, C.W.; Sayers, J.; Benford, D.; Bridge, C.; Blain, A.; Eisenhardt, P.R.M.; Stern, D.; Petty, S.; Assef, R.; et al. Submillimeter Follow-up of WISE-selected Hyperluminous Galaxies. Astrophys. J. 2012, 756, 96. [Google Scholar] [CrossRef] [Green Version]
- Lonsdale, C.J.; Lacy, M.; Kimball, A.E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R.J.; et al. Radio Jet Feedback and Star Formation in Heavily Obscured, Hyperluminous Quasars at Redshifts ∼ 0.5-3. I. ALMA Observations. Astrophys. J. 2015, 813, 45. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.F.; Blain, A.W.; Assef, R.J.; Eisenhardt, P.; Lonsdale, C.; Condon, J.; Farrah, D.; Tsai, C.W.; Bridge, C.; Wu, J.; et al. Overdensities of SMGs around WISE-selected, Ultraluminous, High-Redshift AGNs. Mon. Not. R. Astron. Soc. 2017, 469, 4565–4577. [Google Scholar] [CrossRef] [Green Version]
- Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.K.; et al. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies. Astrophys. J. 2014, 782, 68. [Google Scholar] [CrossRef] [Green Version]
- Stach, S.M.; Smail, I.; Amvrosiadis, A.; Swinbank, A.M.; Dudzevičiūtė, U.; Geach, J.E.; Almaini, O.; Birkin, J.E.; Chen, C.C.; Conselice, C.J.; et al. An ALMA Survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS Field: Halo Masses for Submillimetre Galaxies. Mon. Not. R. Astron. Soc. 2021, 504, 172–184. [Google Scholar] [CrossRef]
- García-Vergara, C.; Hodge, J.; Hennawi, J.F.; Weiss, A.; Wardlow, J.; Myers, A.D.; Hickox, R. The Clustering of Submillimeter Galaxies Detected with ALMA. Astrophys. J. 2020, 904, 2. [Google Scholar] [CrossRef]
- Nelan, J.E.; Smith, R.J.; Hudson, M.J.; Wegner, G.A.; Lucey, J.R.; Moore, S.A.W.; Quinney, S.J.; Suntzeff, N.B. NOAO Fundamental Plane Survey. II. Age and Metallicity along the Red Sequence from Line-Strength Data. Astrophys. J. 2005, 632, 137–156. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, G.; Springel, V.; White, S.D.M.; Croton, D.; Kauffmann, G. The Formation History of Elliptical Galaxies. Mon. Not. R. Astron. Soc. 2006, 366, 499–509. [Google Scholar] [CrossRef]
- Chapman, S.C.; Blain, A.; Ibata, R.; Ivison, R.J.; Smail, I.; Morrison, G. Do Submillimeter Galaxies Really Trace the Most Massive Dark-Matter Halos? Discovery of a High-z Cluster in a Highly Active Phase of Evolution. Astrophys. J. 2009, 691, 560–568. [Google Scholar] [CrossRef]
- Hayward, C.C.; Narayanan, D.; Kereš, D.; Jonsson, P.; Hopkins, P.F.; Cox, T.J.; Hernquist, L. Submillimetre Galaxies in a Hierarchical Universe: Number Counts, Redshift Distribution and Implications for the IMF. Mon. Not. R. Astron. Soc. 2013, 428, 2529–2547. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.B.; Hayward, C.C.; Chapman, S.C.; Behroozi, P.S. The Bias of the Submillimetre Galaxy Population: SMGs Are Poor Tracers of the Most-Massive Structures in the z ∼ 2 Universe. Mon. Not. R. Astron. Soc. 2015, 452, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Danielson, A.L.R.; Swinbank, A.M.; Smail, I.; Simpson, J.M.; Casey, C.M.; Chapman, S.C.; da Cunha, E.; Hodge, J.A.; Walter, F.; Wardlow, J.L.; et al. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts. Astrophys. J. 2017, 840, 78. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.R.; Crichton, D.; Marriage, T.; Zakamska, N.L.; Mandelbaum, R. Downsizing of Star Formation Measured from the Clustered Infrared Background Correlated with Quasars. Mon. Not. R. Astron. Soc. 2018, 480, 149–181. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.; Kaiser, N. Biased Clustering in the Cold Dark Matter Cosmogony. Mon. Not. R. Astron. Soc. 1989, 237, 1127–1146. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.J.; Jing, Y.P.; White, S.D.M. The Correlation Function of Clusters of Galaxies and the Amplitude of Mass Fluctuations in the Universe. Mon. Not. R. Astron. Soc. 1996, 282, 1096–1104. [Google Scholar] [CrossRef] [Green Version]
- Cooray, A.; Sheth, R. Halo Models of Large Scale Structure. Phys. Rep. 2002, 372, 1–129. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.C.; Giavalisco, M.; Porciani, C.; Yun, M.S.; Pope, A.; Scott, K.S.; Austermann, J.E.; Aretxaga, I.; Hatsukade, B.; Lee, K.S.; et al. On the Clustering of Submillimeter Galaxies. Astrophys. J. 2011, 733, 92. [Google Scholar] [CrossRef]
- Hickox, R.C.; Wardlow, J.L.; Smail, I.; Myers, A.D.; Alexander, D.M.; Swinbank, A.M.; Danielson, A.L.R.; Stott, J.P.; Chapman, S.C.; Coppin, K.E.K.; et al. The LABOCA Survey of the Extended Chandra Deep Field-South: Clustering of Submillimetre Galaxies. Mon. Not. R. Astron. Soc. 2012, 421, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Hodge, J.A.; da Cunha, E. High-Redshift Star Formation in the Atacama Large Millimetre/Submillimetre Array Era. R. Soc. Open Sci. 2020, 7, 200556. [Google Scholar] [CrossRef]
- Marrone, D.P.; Spilker, J.S.; Hayward, C.C.; Vieira, J.D.; Aravena, M.; Ashby, M.L.N.; Bayliss, M.B.; Béthermin, M.; Brodwin, M.; Bothwell, M.S.; et al. Galaxy Growth in a Massive Halo in the First Billion Years of Cosmic History. Nature 2018, 553, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Blain, A.W.; Chapman, S.C.; Smail, I.; Ivison, R. Clustering of Submillimeter-selected Galaxies. Astrophys. J. 2004, 611, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.C.; Blain, A.W.; Smail, I.; Ivison, R.J. A Redshift Survey of the Submillimeter Galaxy Population. Astrophys. J. 2005, 622, 772–796. [Google Scholar] [CrossRef] [Green Version]
- Geach, J.E.; Matsuda, Y.; Smail, I.; Chapman, S.C.; Yamada, T.; Ivison, R.J.; Hayashino, T.; Ohta, K.; Shioya, Y.; Taniguchi, Y. A Submillimetre Survey of Lyman α Haloes in the SA22 Protocluster at z = 3.1. Mon. Not. R. Astron. Soc. 2005, 363, 1398–1408. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Kohno, K.; Nakanishi, K.; Hatsukade, B.; Iono, D.; Wilson, G.W.; Yun, M.S.; Takata, T.; Matsuda, Y.; Tosaki, T.; et al. Spatial Correlation between Submillimetre and Lyman-alpha Galaxies in the SSA 22 Protocluster. Nature 2009, 459, 61–63. [Google Scholar] [CrossRef] [Green Version]
- Scoville, N.; Aussel, H.; Brusa, M.; Capak, P.; Carollo, C.M.; Elvis, M.; Giavalisco, M.; Guzzo, L.; Hasinger, G.; Impey, C.; et al. The Cosmic Evolution Survey (COSMOS): Overview. Astrophys. J. Suppl. Ser. 2007, 172, 1–8. [Google Scholar] [CrossRef]
- Casey, C.M.; Cooray, A.; Capak, P.; Fu, H.; Kovac, K.; Lilly, S.; Sanders, D.B.; Scoville, N.Z.; Treister, E. A massive, distant proto-cluster at z = 2.47 caught in a phase of rapid formation? Astrophys. J. 2015, 808, L33. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.M. The ubiquity of coeval starbursts in massive galaxy cluster progenitors. Astrophys. J. 2016, 824, 36. [Google Scholar] [CrossRef] [Green Version]
- Clements, D.L.; Braglia, F.G.; Hyde, A.K.; Pérez-Fournon, I.; Bock, J.; Cava, A.; Chapman, S.; Conley, A.; Cooray, A.; Farrah, D.; et al. Herschel Multitiered Extragalactic Survey: Clusters of Dusty Galaxies Uncovered by Herschel★ and Planck†. Mon. Not. R. Astron. Soc. 2014, 439, 1193–1211. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Aghanim, N.; Altieri, B.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck Intermediate Results: XXVII. High-redshift Infrared Galaxy Overdensity Candidates and Lensed Sources Discovered by Planck and Confirmed by Herschel-SPIRE★. Astron. Astrophys. 2015, 582, A30. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2015 Results: XXVI. The Second Planck Catalogue of Compact Sources. Astron. Astrophys. 2016, 594, A26. [Google Scholar] [CrossRef] [Green Version]
- Bridge, C.R.; Blain, A.; Borys, C.J.K.; Petty, S.; Benford, D.; Eisenhardt, P.; Farrah, D.; Griffith, R.L.; Jarrett, T.; Lonsdale, C.; et al. A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act? Astrophys. J. 2013, 769, 91. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.F.; Blain, A.W.; Stern, D.; Assef, R.J.; Bridge, C.R.; Eisenhardt, P.; Petty, S.; Wu, J.; Tsai, C.W.; Cutri, R.; et al. Submillimetre Observations of WISE-selected High-Redshift, Luminous, Dusty Galaxies. Mon. Not. R. Astron. Soc. 2014, 443, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.F.; Blain, A.W.; Lonsdale, C.; Condon, J.; Farrah, D.; Stern, D.; Tsai, C.W.; Assef, R.J.; Bridge, C.; Kimball, A.; et al. Submillimetre Observations of WISE/Radio-Selected AGN and Their Environments. Mon. Not. R. Astron. Soc. 2015, 448, 3325–3338. [Google Scholar] [CrossRef] [Green Version]
- Assef, R.J.; Eisenhardt, P.R.M.; Stern, D.; Tsai, C.W.; Wu, J.; Wylezalek, D.; Blain, A.W.; Bridge, C.R.; Donoso, E.; Gonzales, A.; et al. Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot Dust-Obscured Galaxies. Astrophys. J. 2015, 804, 27. [Google Scholar] [CrossRef]
- Penney, J.I.; Blain, A.W.; Wylezalek, D.; Hatch, N.A.; Lonsdale, C.; Kimball, A.; Assef, R.J.; Condon, J.J.; Eisenhardt, P.R.M.; Jones, S.F.; et al. The Environments of Luminous Radio-WISE Selected Infrared Galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Han, Y.; Fang, G.; Gao, Y.; Zhang, D.; Jiang, X.; Wu, Q.; Yang, J.; Li, Z. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies. Astrophys. J. 2016, 822, L32. [Google Scholar] [CrossRef] [Green Version]
- Penney, J.I.; Blain, A.W.; Assef, R.J.; Diaz-Santos, T.; González-López, J.; Tsai, C.W.; Aravena, M.; Eisenhardt, P.R.M.; Jones, S.F.; Jun, H.D.; et al. Cold Molecular Gas and Free-Free Emission from Hot, Dust-Obscured Galaxies at z ∼ 3. Mon. Not. R. Astron. Soc. 2020, 496, 1565–1578. [Google Scholar] [CrossRef]
- Capak, P.L.; Riechers, D.; Scoville, N.Z.; Carilli, C.; Cox, P.; Neri, R.; Robertson, B.; Salvato, M.; Schinnerer, E.; Yan, L.; et al. A Massive Proto-Cluster of Galaxies at a Redshift of z ≈ 5.3. Nature 2011, 470, 233–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsan, Z.C.; Marchesini, D.; Brammer, G.B.; Stefanon, M.; Muzzin, A.; Fernández-Soto, A.; Geier, S.; Hainline, K.N.; Intema, H.; Karim, A.; et al. Spectroscopic Confirmation of an Ultra Massive and Compact Galaxy at z = 3.35: A Detailed Look at an Early Progenitor of Local Giant Ellipticals. Astrophys. J. 2015, 801, 133. [Google Scholar] [CrossRef]
- Marsan, Z.C.; Marchesini, D.; Brammer, G.B.; Geier, S.; Kado-Fong, E.; Labbé, I.; Muzzin, A.; Stefanon, M. A Spectroscopic Follow-up Program of Very Massive Galaxies at 3 < z < 4: Confirmation of Spectroscopic Redshifts, and a High Fraction of Powerful AGNs. Astrophys. J. 2017, 842, 21. [Google Scholar] [CrossRef] [Green Version]
- Glazebrook, K.; Schreiber, C.; Labbé, I.; Nanayakkara, T.; Kacprzak, G.G.; Oesch, P.A.; Papovich, C.; Spitler, L.R.; Straatman, C.M.S.; Tran, K.V.H.; et al. A Massive, Quiescent Galaxy at a Redshift of 3.717. Nature 2017, 544, 71–74. [Google Scholar] [CrossRef]
- Tanaka, M.; Valentino, F.; Toft, S.; Onodera, M.; Shimakawa, R.; Ceverino, D.; Faisst, A.L.; Gallazzi, A.; Gómez-Guijarro, C.; Kubo, M.; et al. Stellar Velocity Dispersion of a Massive Quenching Galaxy at z = 4.01. Astrophys. J. 2019, 885, L34. [Google Scholar] [CrossRef] [Green Version]
- Valentino, F.; Tanaka, M.; Davidzon, I.; Toft, S.; Gómez-Guijarro, C.; Stockmann, M.; Onodera, M.; Brammer, G.; Ceverino, D.; Faisst, A.L.; et al. Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors. Astrophys. J. 2020, 889, 93. [Google Scholar] [CrossRef]
- Saracco, P.; Marchesini, D.; La Barbera, F.; Gargiulo, A.; Annunziatella, M.; Forrest, B.; Lange Vagle, D.J.; Marsan, Z.C.; Muzzin, A.; Stefanon, M.; et al. The Rapid Buildup of Massive Early-type Galaxies: Supersolar Metallicity, High Velocity Dispersion, and Young Age for an Early-type Galaxy at z = 3.35. Astrophys. J. 2020, 905, 40. [Google Scholar] [CrossRef]
- Ando, M.; Shimasaku, K.; Momose, R. A Systematic Search for Galaxy Proto-Cluster Cores at z ∼ 2. Mon. Not. R. Astron. Soc. 2020, 496, 3169–3181. [Google Scholar] [CrossRef]
- McConachie, I.; Wilson, G.; Forrest, B.; Marsan, Z.C.; Muzzin, A.; Cooper, M.C.; Annunziatella, M.; Marchesini, D.; Chan, J.C.C.; Gomez, P.; et al. Spectroscopic Confirmation of a Protocluster at z = 3.37 with a High Fraction of Quiescent Galaxies. Astrophys. J. 2022, 926, 37. [Google Scholar] [CrossRef]
- Forrest, B.; Annunziatella, M.; Wilson, G.; Marchesini, D.; Muzzin, A.; Cooper, M.C.; Marsan, Z.C.; McConachie, I.; Chan, J.C.C.; Gomez, P.; et al. An Extremely Massive Quiescent Galaxy at z = 3.493: Evidence of Insufficiently Rapid Quenching Mechanisms in Theoretical Models. Astrophys. J. 2020, 890, L1. [Google Scholar] [CrossRef] [Green Version]
- Forrest, B.; Marsan, Z.C.; Annunziatella, M.; Wilson, G.; Muzzin, A.; Marchesini, D.; Cooper, M.C.; Chan, J.C.C.; McConachie, I.; Gomez, P.; et al. The Massive Ancient Galaxies at z > 3 NEar-infrared (MAGAZ3NE) Survey: Confirmation of Extremely Rapid Star Formation and Quenching Timescales for Massive Galaxies in the Early Universe. Astrophys. J. 2020, 903, 47. [Google Scholar] [CrossRef]
- Lacaille, K.M.; Chapman, S.C.; Smail, I.; Steidel, C.C.; Blain, A.W.; Geach, J.; Golob, A.; Gurwell, M.; Ivison, R.J.; Reddy, N.; et al. Two Sub-Millimetre Bright Protoclusters Bounding the Epoch of Peak Star-Formation Activity. Mon. Not. R. Astron. Soc. 2019, 488, 1790–1812. [Google Scholar] [CrossRef]
- Wang, T.; Elbaz, D.; Daddi, E.; Finoguenov, A.; Liu, D.; Schreiber, C.; Martín, S.; Strazzullo, V.; Valentino, F.; van der Burg, R.; et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 2016, 828, 56. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.M.; Simpson, J.M.; Harrison, C.M.; Mullaney, J.R.; Smail, I.; Geach, J.E.; Hickox, R.C.; Hine, N.K.; Karim, A.; Kubo, M.; et al. ALMA Observations of a z ≈ 3.1 Protocluster: Star Formation from Active Galactic Nuclei and Lyman-alpha Blobs in an Overdense Environment. Mon. Not. R. Astron. Soc. 2016, 461, 2944–2952. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.K.; Overzier, R.A.; Gebhardt, K.; Finkelstein, S.L.; Chiang, C.T.; Hill, G.J.; Blanc, G.A.; Drory, N.; Chonis, T.S.; Zeimann, G.R.; et al. Surveying Galaxy Proto-clusters in Emission: A Large-scale Structure at z = 2.44 and the Outlook for HETDEX. Astrophys. J. 2015, 808, 37. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.C.; Bertoldi, F.; Smail, I.; Blain, A.W.; Geach, J.E.; Gurwell, M.; Ivison, R.J.; Petitpas, G.R.; Reddy, N.; Steidel, C.C. A Blind CO Detection of a Distant Red Galaxy in the HS1700+64 Protocluster. Mon. Not. R. Astron. Soc. 2015, 449, L68–L72. [Google Scholar] [CrossRef]
- Emonts, B.H.C.; Lehnert, M.D.; Villar-Martín, M.; Norris, R.P.; Ekers, R.D.; van Moorsel, G.A.; Dannerbauer, H.; Pentericci, L.; Miley, G.K.; Allison, J.R.; et al. Molecular Gas in the Halo Fuels the Growth of a Massive Cluster Galaxy at High Redshift. Science 2016, 354, 1128–1130. [Google Scholar] [CrossRef] [Green Version]
- Emonts, B.H.C.; Lehnert, M.D.; Dannerbauer, H.; De Breuck, C.; Villar-Martín, M.; Miley, G.K.; Allison, J.R.; Gullberg, B.; Hatch, N.A.; Guillard, P.; et al. Giant Galaxy Growing from Recycled Gas: ALMA Maps the Circumgalactic Molecular Medium of the Spiderweb in [C i]. Mon. Not. R. Astron. Soc. 2018, 477, L60–L65. [Google Scholar] [CrossRef]
- Dannerbauer, H.; Kurk, J.D.; De Breuck, C.; Wylezalek, D.; Santos, J.S.; Koyama, Y.; Seymour, N.; Tanaka, M.; Hatch, N.; Altieri, B.; et al. An Excess of Dusty Starbursts Related to the Spiderweb Galaxy. Astron. Astrophys. 2014, 570, A55. [Google Scholar] [CrossRef] [Green Version]
- Diener, C.; Lilly, S.J.; Ledoux, C.; Zamorani, G.; Bolzonella, M.; Murphy, D.N.A.; Capak, P.; Ilbert, O.; McCracken, H. A Protocluster at z = 2.45. Astrophys. J. 2015, 802, 31. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Guijarro, C.; Riechers, D.A.; Pavesi, R.; Magdis, G.E.; Leung, T.K.D.; Valentino, F.; Toft, S.; Aravena, M.; Chapman, S.C.; Clements, D.L.; et al. Confirming Herschel Candidate Protoclusters from ALMA/VLA CO Observations. Astrophys. J. 2019, 872, 117. [Google Scholar] [CrossRef] [Green Version]
- Hayashino, T.; Matsuda, Y.; Tamura, H.; Yamauchi, R.; Yamada, T.; Ajiki, M.; Fujita, S.S.; Murayama, T.; Nagao, T.; Ohta, K.; et al. Large-Scale Structure of Emission-Line Galaxies at Z = 3.1. Astron. J. 2004, 128, 2073–2079. [Google Scholar] [CrossRef]
- Hung, C.L.; Casey, C.M.; Chiang, Y.K.; Capak, P.L.; Cowley, M.J.; Darvish, B.; Kacprzak, G.G.; Kovač, K.; Lilly, S.J.; Nanayakkara, T.; et al. Large-scale structure around a z = 2.1 cluster. Astrophys. J. 2016, 826, 130. [Google Scholar] [CrossRef] [Green Version]
- Harikane, Y.; Ouchi, M.; Ono, Y.; Fujimoto, S.; Donevski, D.; Shibuya, T.; Faisst, A.L.; Goto, T.; Hatsukade, B.; Kashikawa, N.; et al. SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at z ∼ 6–7: Strong Associations of Dusty Star-forming Galaxies. Astrophys. J. 2019, 883, 142. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.; Chapman, S.; Scott, D.; Apostolovski, Y.; Aravena, M.; Béthermin, M.; Bradford, C.M.; Canning, R.E.A.; De Breuck, C.; Dong, C.; et al. Megaparsec-Scale Structure around the Protocluster Core SPT2349–56 at z = 4.3. Mon. Not. R. Astron. Soc. 2020, 495, 3124–3159. [Google Scholar] [CrossRef]
- Kurk, J.D.; Röttgering, H.J.A.; Pentericci, L.; Miley, G.K.; van Breugel, W.; Carilli, C.L.; Ford, H.; Heckman, T.; McCarthy, P.; Moorwood, A. A Search for Clusters at High Redshift. I. Candidate Lyalpha Emitters near 1138-262 at Z = 2.2. Astron. Astrophys. 2000, 358, L1. [Google Scholar]
- Kuiper, E.; Hatch, N.A.; Miley, G.K.; Nesvadba, N.P.H.; Röttgering, H.J.A.; Kurk, J.D.; Lehnert, M.D.; Overzier, R.A.; Pentericci, L.; Schaye, J.; et al. A SINFONI View of Flies in the Spiderweb: A Galaxy Cluster in the Making. Mon. Not. R. Astron. Soc. 2011, 415, 2245–2256. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.; Uchimoto, Y.K.; Yamada, T.; Kajisawa, M.; Ichikawa, T.; Matsuda, Y.; Akiyama, M.; Hayashino, T.; Konishi, M.; Nishimura, T.; et al. The Formation of the Massive Galaxies in the SSA22 z = 3.1 Protocluster. Astrophys. J. 2013, 778, 170. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.; Yamada, T.; Ichikawa, T.; Kajisawa, M.; Matsuda, Y.; Tanaka, I. NIR Spectroscopic Observation of Massive Galaxies in the Protocluster at z = 3.09. Astrophys. J. 2015, 799, 38. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Matsuda, Y.; Smail, I.; Swinbank, A.M.; Hatsukade, B.; Umehata, H.; Tanaka, I.; Saito, T.; Iono, D.; Tamura, Y.; et al. Herschel Protocluster Survey: A Search for Dusty Star-Forming Galaxies in Protoclusters at z = 2–3. Mon. Not. R. Astron. Soc. 2016, 460, 3861–3872. [Google Scholar] [CrossRef] [Green Version]
- Koyama, Y.; Polletta, M.d.C.; Tanaka, I.; Kodama, T.; Dole, H.; Soucail, G.; Frye, B.; Lehnert, M.; Scodeggio, M. A Planck -Selected Dusty Proto-Cluster at z = 2.16 Associated with a Strong Overdensity of Massive Hα-emitting Galaxies. Mon. Not. R. Astron. Soc. 2021, 503, L1–L5. [Google Scholar] [CrossRef]
- Kubo, M.; Umehata, H.; Matsuda, Y.; Kajisawa, M.; Steidel, C.C.; Yamada, T.; Tanaka, I.; Hatsukade, B.; Tamura, Y.; Nakanishi, K.; et al. A Massive Quiescent Galaxy Confirmed in a Protocluster at z = 3.09. Astrophys. J. 2021, 919, 6. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, J.; Bian, F.; Chiang, Y.K.; Ho, L.C.; Shen, Y.; Zheng, Z.Y.; Bailey, J.I.; Blanc, G.A.; Crane, J.D.; et al. A Giant Protocluster of Galaxies at Redshift 5.7. Nat. Astron. 2018, 2, 962–966. [Google Scholar] [CrossRef]
- Jin, S.; Dannerbauer, H.; Emonts, B.; Serra, P.; Lagos, C.D.P.; Thomson, A.P.; Bassini, L.; Lehnert, M.; Allison, J.R.; Champagne, J.B.; et al. ATCA CO(1-0) Survey and Luminosity Function in the Spiderweb Protocluster at Z = 2.16. Astron. Astrophys. 2021, 652, A11. [Google Scholar] [CrossRef]
- Lehmer, B.D.; Alexander, D.M.; Chapman, S.C.; Smail, I.; Bauer, F.E.; Brandt, W.N.; Geach, J.E.; Matsuda, Y.; Mullaney, J.R.; Swinbank, A.M. The Chandra Deep Protocluster Survey: Point-Source Catalogues for a 400-Ks Observation of the z = 3.09 Protocluster in SSA22. Mon. Not. R. Astron. Soc. 2009, 400, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.J.R.; Ivison, R.J.; Best, P.N.; Simpson, J.M.; Weiss, A.; Oteo, I.; Zhang, Z.Y.; Arumugam, V.; Bremer, M.N.; Chapman, S.C.; et al. Ultra-Red Galaxies Signpost Candidate Protoclusters at High Redshift. Astrophys. J. 2018, 862, 96. [Google Scholar] [CrossRef]
- Long, A.S.; Cooray, A.; Ma, J.; Casey, C.M.; Wardlow, J.L.; Nayyeri, H.; Ivison, R.J.; Farrah, D.; Dannerbauer, H. Emergence of an Ultrared, Ultramassive Galaxy Cluster Core at z = 4. Astrophys. J. 2020, 898, 133. [Google Scholar] [CrossRef]
- Miller, T.B.; Chapman, S.C.; Aravena, M.; Ashby, M.L.N.; Hayward, C.C.; Vieira, J.D.; Weiß, A.; Babul, A.; Béthermin, M.; Bradford, C.M.; et al. A Massive Core for a Cluster of Galaxies at a Redshift of 4.3. Nature 2018, 556, 469–472. [Google Scholar] [CrossRef]
- Ouchi, M.; Shimasaku, K.; Akiyama, M.; Sekiguchi, K.; Furusawa, H.; Okamura, S.; Kashikawa, N.; Iye, M.; Kodama, T.; Saito, T.; et al. The Discovery of Primeval Large-Scale Structures with Forming Clusters at Redshift 6. Astrophys. J. 2005, 620, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Oteo, I.; Ivison, R.J.; Dunne, L.; Manilla-Robles, A.; Maddox, S.; Lewis, A.J.R.; de Zotti, G.; Bremer, M.; Clements, D.L.; Cooray, A.; et al. An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe. Astrophys. J. 2018, 856, 72. [Google Scholar] [CrossRef] [Green Version]
- Pentericci, L.; Kurk, J.D.; Röttgering, H.J.A.; Miley, G.K.; van Breugel, W.; Carilli, C.L.; Ford, H.; Heckman, T.; McCarthy, P.; Moorwood, A. A Search for Clusters at High Redshift. II. A Proto Cluster around a Radio Galaxy at Z = 2.16. Astron. Astrophys. 2000, 361, L25. [Google Scholar]
- Polletta, M.; Soucail, G.; Dole, H.; Lehnert, M.D.; Pointecouteau, E.; Vietri, G.; Scodeggio, M.; Montier, L.; Koyama, Y.; Lagache, G.; et al. Spectroscopic Observations of PHz G237.01+42.50: A Galaxy Protocluster at z = 2.16 in the Cosmos Field. Astron. Astrophys. 2021, 654, A121. [Google Scholar] [CrossRef]
- Rigby, E.E.; Hatch, N.A.; Röttgering, H.J.A.; Sibthorpe, B.; Chiang, Y.K.; Overzier, R.; Herbonnet, R.; Borgani, S.; Clements, D.L.; Dannerbauer, H.; et al. Searching for Large-Scale Structures around High-Redshift Radio Galaxies with Herschel. Mon. Not. R. Astron. Soc. 2014, 437, 1882–1893. [Google Scholar] [CrossRef] [Green Version]
- Rotermund, K.M.; Chapman, S.C.; Phadke, K.A.; Hill, R.; Pass, E.; Aravena, M.; Ashby, M.L.N.; Babul, A.; Béthermin, M.; Canning, R.; et al. Optical and Near-Infrared Observations of the SPT2349-56 Proto-Cluster Core at z = 4.3. Mon. Not. R. Astron. Soc. 2021, 502, 1797–1815. [Google Scholar] [CrossRef]
- Steidel, C.C.; Adelberger, K.L.; Dickinson, M.; Giavalisco, M.; Pettini, M.; Kellogg, M. A Large Structure of Galaxies at Redshift Z Approximately 3 and Its Cosmological Implications. Astrophys. J. 1998, 492, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Steidel, C.C.; Adelberger, K.L.; Shapley, A.E.; Pettini, M.; Dickinson, M.; Giavalisco, M. Lyα Imaging of a Proto-Cluster Region at =3.09. Astrophys. J. 2000, 532, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Spitler, L.R.; Labbé, I.; Glazebrook, K.; Persson, S.E.; Monson, A.; Papovich, C.; Tran, K.V.H.; Poole, G.B.; Quadri, R.; van Dokkum, P.; et al. First Results from Z -FOURGE: Discovery of a Candidate Cluster at z = 2.2 in COSMOS. Astrophys. J. 2012, 748, L21. [Google Scholar] [CrossRef] [Green Version]
- Shimakawa, R.; Kodama, T.; Tadaki, K.I.; Tanaka, I.; Hayashi, M.; Koyama, Y. Identification of the Progenitors of Rich Clusters and Member Galaxies in Rapid Formation at z > 2. Mon. Not. R. Astron. Soc. 2014, 441, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Tadaki, K.i.; Kodama, T.; Hayashi, M.; Shimakawa, R.; Koyama, Y.; Lee, M.; Tanaka, I.; Hatsukade, B.; Iono, D.; Kohno, K.; et al. Environmental Impacts on Molecular Gas in Protocluster Galaxies at z ∼ 2. Publ. Astron. Soc. Jpn. 2019, 71. [Google Scholar] [CrossRef] [Green Version]
- Uchimoto, Y.K.; Yamada, T.; Kajisawa, M.; Kubo, M.; Ichikawa, T.; Matsuda, Y.; Akiyama, M.; Hayashino, T.; Konishi, M.; Nishimura, T.; et al. Assembly of Massive Galaxies in a High-z Protocluster. Astrophys. J. 2012, 750, 116. [Google Scholar] [CrossRef] [Green Version]
- Umehata, H.; Tamura, Y.; Kohno, K.; Hatsukade, B.; Scott, K.S.; Kubo, M.; Yamada, T.; Ivison, R.J.; Cybulski, R.; Aretxaga, I.; et al. AzTEC/ASTE 1.1-Mm Survey of SSA22: Counterpart Identification and Photometric Redshift Survey of Submillimetre Galaxies. Mon. Not. R. Astron. Soc. 2014, 440, 3462–3478. [Google Scholar] [CrossRef] [Green Version]
- Umehata, H.; Tamura, Y.; Kohno, K.; Ivison, R.J.; Alexander, D.M.; Geach, J.E.; Hatsukade, B.; Hughes, D.H.; Ikarashi, S.; Kato, Y.; et al. Alma deep field in ssa22: A concentration of dusty starbursts in a z = 3.09 protocluster core. Astrophys. J. 2015, 815, L8. [Google Scholar] [CrossRef] [Green Version]
- Umehata, H.; Tamura, Y.; Kohno, K.; Ivison, R.J.; Smail, I.; Hatsukade, B.; Nakanishi, K.; Kato, Y.; Ikarashi, S.; Matsuda, Y.; et al. ALMA Deep Field in SSA22: Source Catalog and Number Counts. Astrophys. J. 2017, 835, 98. [Google Scholar] [CrossRef]
- Valtchanov, I.; Altieri, B.; Berta, S.; Chapin, E.; Coia, D.; Conversi, L.; Dannerbauer, H.; Domínguez-Sánchez, H.; Rawle, T.D.; Sánchez-Portal, M.; et al. Serendipitous Detection of an Overdensity of Herschel-SPIRE 250 Mm Sources South of MRC 1138-26. Mon. Not. R. Astron. Soc. 2013, 436, 2505–2514. [Google Scholar] [CrossRef]
- Wang, G.; Hill, R.; Chapman, S.C.; Weiß, A.; Scott, D.; Aravena, M.; Archipley, M.A.; Béthermin, M.; De Breuck, C.; Canning, R.E.A.; et al. Overdensities of Submillimetre-Bright Sources around Candidate Protocluster Cores Selected from the South Pole Telescope Survey. Mon. Not. R. Astron. Soc. 2021, 508, 3754–3770. [Google Scholar] [CrossRef]
- Yuan, T.; Nanayakkara, T.; Kacprzak, G.G.; Tran, K.V.H.; Glazebrook, K.; Kewley, L.J.; Spitler, L.R.; Poole, G.B.; Labbé, I.; Straatman, C.M.S.; et al. Keck/MOSFIRE Spectroscopic Confirmation of a Virgo-like Cluster Ancestor at z = 2.095. Astrophys. J. 2014, 795, L20. [Google Scholar] [CrossRef] [Green Version]
- Zeballos, M.; Aretxaga, I.; Hughes, D.H.; Humphrey, A.; Wilson, G.W.; Austermann, J.; Dunlop, J.S.; Ezawa, H.; Ferrusca, D.; Hatsukade, B.; et al. AzTEC 1.1 Mm Observations of High-z Protocluster Environments: SMG Overdensities and Misalignment between AGN Jets and SMG Distribution. Mon. Not. R. Astron. Soc. 2018, 479, 4577–4632. [Google Scholar] [CrossRef] [Green Version]
- Zavala, J.A.; Casey, C.M.; Scoville, N.; Champagne, J.B.; Chiang, Y.; Dannerbauer, H.; Drew, P.; Fu, H.; Spilker, J.; Spitler, L.; et al. On the Gas Content, Star Formation Efficiency, and Environmental Quenching of Massive Galaxies in Protoclusters at z ≈ 2.0–2.5. Astrophys. J. 2019, 887, 183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zheng, X.Z.; Shi, D.D.; Gao, Y.; Dannerbauer, H.; An, F.X.; Shu, X.; Gao, Z.K.; Wang, W.H.; Wang, X.; et al. Submillimetre Galaxies in Two Massive Protoclusters at z = 2.24: Witnessing the Enrichment of Extreme Starbursts in the Outskirts of HAE Density Peaks. Mon. Not. R. Astron. Soc. 2022, 512, 4893–4908. [Google Scholar] [CrossRef]
- Negrello, M.; González-Nuevo, J.; Magliocchetti, M.; Moscardini, L.; De Zotti, G.; Toffolatti, L.; Danese, L. Effect of Clustering on Extragalactic Source Counts with Low-Resolution Instruments. Mon. Not. R. Astron. Soc. 2005, 358, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Magnelli, B.; Lutz, D.; Saintonge, A.; Berta, S.; Santini, P.; Symeonidis, M.; Altieri, B.; Andreani, P.; Aussel, H.; Béthermin, M.; et al. The Evolution of the Dust Temperatures of Galaxies in the SFR-M* Plane up to z ∼ 2. Astron. Astrophys. 2014, 561, A86. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, A.; Toffolatti, L.; Mazzei, P.; Danese, L.; de Zotti, G. Galaxy Counts and Contributions to the Background Radiation from 1 Mm to 1000 Mim. Astron. Astrophys. Suppl. Ser. 1991, 89, 285. [Google Scholar]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; Barreiro, R.B.; et al. Planck Early Results. VII. The Early Release Compact Source Catalogue. Astron. Astrophys. 2011, 536, A7. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Argüeso, F.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; et al. Planck 2013 Results. XXVIII. The Planck Catalogue of Compact Sources. Astron. Astrophys. 2014, 571, A28. [Google Scholar] [CrossRef] [Green Version]
- Herranz, D.; González-Nuevo, J.; Clements, D.L.; Clemens, M.; De Zotti, G.; Lopez-Caniego, M.; Lapi, A.; Rodighiero, G.; Danese, L.; Fu, H.; et al. Herschel -ATLAS: Planck Sources in the Phase 1 Fields. Astron. Astrophys. 2013, 549, A31. [Google Scholar] [CrossRef]
- Baes, M.; Herranz, D.; Bianchi, S.; Ciesla, L.; Clemens, M.; De Zotti, G.; Allaert, F.; Auld, R.; Bendo, G.J.; Boquien, M.; et al. The Herschel Virgo Cluster Survey. XV. Planck Submillimetre Sources in the Virgo Cluster. Astron. Astrophys. 2014, 562, A106. [Google Scholar] [CrossRef] [Green Version]
- Greenslade, J.; Clements, D.L.; Cheng, T.; De Zotti, G.; Scott, D.; Valiante, E.; Eales, S.; Bremer, M.N.; Dannerbauer, H.; Birkinshaw, M.; et al. Candidate High-z Protoclusters among the Planck Compact Sources, as Revealed by Herschel–SPIRE. Mon. Not. R. Astron. Soc. 2018, 476, 3336–3359. [Google Scholar] [CrossRef] [Green Version]
- Miville-Deschênes, M.A.; Lagache, G. IRIS: A New Generation of IRAS Maps. Astrophys. J. Suppl. Ser. 2005, 157, 302–323. [Google Scholar] [CrossRef]
- Martinache, C.; Rettura, A.; Dole, H.; Lehnert, M.; Frye, B.; Altieri, B.; Beelen, A.; Béthermin, M.; Le Floc’h, E.; Giard, M.; et al. SpitzerPlanck Herschel Infrared Cluster (SPHerIC) Survey: Candidate Galaxy Clusters at 1.3 < z < 3 Selected by High Star-Formation Rate. Astron. Astrophys. 2018, 620, A198. [Google Scholar] [CrossRef] [Green Version]
- Egami, E.; Rex, M.; Rawle, T.D.; Pérez-González, P.G.; Richard, J.; Kneib, J.P.; Schaerer, D.; Altieri, B.; Valtchanov, I.; Blain, A.W.; et al. The Herschel Lensing Survey (HLS): Overview. Astron. Astrophys. 2010, 518, L12. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.J.; Wang, L.; Smith, A.J.; Altieri, B.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Babbedge, T.; Blain, A.; et al. HerMES: SPIRE Galaxy Number Counts at 250, 350, and 500 Mm. Astron. Astrophys. 2010, 518, L21. [Google Scholar] [CrossRef] [Green Version]
- Flores-Cacho, I.; Pierini, D.; Soucail, G.; Montier, L.; Dole, H.; Pointecouteau, E.; Pelló, R.; Le Floc’h, E.; Nesvadba, N.; Lagache, G.; et al. Multi-Wavelength Characterisation of z ~ 2 Clustered, Dusty Star-Forming Galaxies Discovered by Planck. Astron. Astrophys. 2016, 585, A54. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, T.P.; Scott, D.; Bianconi, M.; Clements, D.L.; Dole, H.A.; Flores-Cacho, I.; Guery, D.; Kneissl, R.; Lagache, G.; Marleau, F.R.; et al. SCUBA-2 Follow-up of Herschel-SPIRE Observed Planck Overdensities. Mon. Not. R. Astron. Soc. 2017, 468, 4006–4017. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Clements, D.L.; Greenslade, J.; Cairns, J.; Andreani, P.; Bremer, M.; Conversi, L.; Cooray, A.; Dannerbauer, H.; De Zotti, G.; et al. SCUBA-2 Observations of Candidate Starbursting Protoclusters Selected by Planck and Herschel-SPIRE. Mon. Not. R. Astron. Soc. 2019, 490, 3840–3859. [Google Scholar] [CrossRef] [Green Version]
- Kaasinen, M.; Walter, F.; Novak, M.; Neeleman, M.; Smail, I.; Boogaard, L.; da Cunha, E.; Weiss, A.; Liu, D.; Decarli, R.; et al. A Comparison of the Stellar, CO, and Dust-continuum Emission from Three Star-forming HUDF Galaxies at z ∼ 2. Astrophys. J. 2020, 899, 37. [Google Scholar] [CrossRef]
- Granato, G.L.; Ragone-Figueroa, C.; Domínguez-Tenreiro, R.; Obreja, A.; Borgani, S.; De Lucia, G.; Murante, G. The Early Phases of Galaxy Clusters Formation in IR: Coupling Hydrodynamical Simulations with GRASIL-3D. Mon. Not. R. Astron. Soc. 2015, 450, 1320–1332. [Google Scholar] [CrossRef] [Green Version]
- Negrello, M.; Gonzalez-Nuevo, J.; De Zotti, G.; Bonato, M.; Cai, Z.Y.; Clements, D.; Danese, L.; Dole, H.; Greenslade, J.; Lapi, A.; et al. On the Statistics of Proto-Cluster Candidates Detected in the Planck All-Sky Survey. Mon. Not. R. Astron. Soc. 2017, 470, 2253–2261. [Google Scholar] [CrossRef] [Green Version]
- Kneissl, R.; Polletta, M.d.C.; Martinache, C.; Hill, R.; Clarenc, B.; Dole, H.A.; Nesvadba, N.P.H.; Scott, D.; Béthermin, M.; Frye, B.; et al. Using ALMA to Resolve the Nature of the Early Star-Forming Large-Scale Structure PLCK G073.4-57.5. Astron. Astrophys. 2019, 625, A96. [Google Scholar] [CrossRef] [Green Version]
- Polletta, M.; Dole, H.; Martinache, C.; Lehnert, M.D.; Frye, B.L.; Kneissl, R. Molecular Gas Properties of Planck-selected Protocluster Candidates at Z ~1.3–3. Astron. Astrophys. 2022, 666, 39. [Google Scholar] [CrossRef]
- Lammers, C.; Hill, R.; Lim, S.; Scott, D.; Cañameras, R.; Dole, H. Candidate High-Redshift Protoclusters and Lensed Galaxies in the Planck List of High-z Sources Overlapping with Herschel-SPIRE Imaging. Mon. Not. R. Astron. Soc. 2022, 514, 5004–5023. [Google Scholar] [CrossRef]
- Griffin, M.; Abergel, A.; Ade, P.; André, P.; Baluteau, J.P.; Bock, J.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, D.; et al. The Herschel-SPIRE Instrument and Its Capabilities for Extragalactic Astronomy. Adv. Space Res. 2007, 40, 612–619. [Google Scholar] [CrossRef]
- Shirley, R.; Duncan, K.; Campos Varillas, M.C.; Hurley, P.D.; Małek, K.; Roehlly, Y.; Smith, M.W.L.; Aussel, H.; Bakx, T.; Buat, V.; et al. HELP: The Herschel Extragalactic Legacy Project. Mon. Not. R. Astron. Soc. 2021, 507, 129–155. [Google Scholar] [CrossRef]
- Gouin, C.; Aghanim, N.; Dole, H.; Polletta, M.; Park, C. Questioning Planck-selected Star-Forming High-Redshift Galaxy Protoclusters and Their Fate. Astron. Astrophys. 2022, 155, 16. [Google Scholar] [CrossRef]
- Pillepich, A.; Springel, V.; Nelson, D.; Genel, S.; Naiman, J.; Pakmor, R.; Hernquist, L.; Torrey, P.; Vogelsberger, M.; Weinberger, R.; et al. Simulating Galaxy Formation with the IllustrisTNG Model. Mon. Not. R. Astron. Soc. 2018, 473, 4077–4106. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Scott, D.; Babul, A.; Barnes, D.J.; Kay, S.T.; McCarthy, I.G.; Rennehan, D.; Vogelsberger, M. Is There Enough Star Formation in Simulated Protoclusters? Mon. Not. R. Astron. Soc. 2021, 501, 1803–1822. [Google Scholar] [CrossRef]
- Darvish, B.; Scoville, N.Z.; Martin, C.; Sobral, D.; Mobasher, B.; Rettura, A.; Matthee, J.; Capak, P.; Chartab, N.; Hemmati, S.; et al. Spectroscopic Confirmation of a Coma Cluster Progenitor at z ∼ 2.2. Astrophys. J. 2020, 892, 8. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Davé, R.; Kereš, D.; Fardal, M.; Katz, N.; Kollmeier, J.A.; Weinberg, D.H. Feedback and Recycled Wind Accretion: Assembling the z = 0 Galaxy Mass Function. Mon. Not. R. Astron. Soc. 2010, 406, 2325–2338. [Google Scholar] [CrossRef] [Green Version]
- Croton, D.J. Evolution in the Black Hole Mass-Bulge Mass Relation: A Theoretical Perspective. Mon. Not. R. Astron. Soc. 2006, 369, 1808–1812. [Google Scholar] [CrossRef] [Green Version]
- Tremonti, C.A.; Moustakas, J.; Diamond-Stanic, A.M. The Discovery of 1000 Km S-1 Outflows in Massive Poststarburst Galaxies at Z = 0.6. Astrophys. J. 2007, 663, L77–L80. [Google Scholar] [CrossRef] [Green Version]
- Popesso, P.; Rodighiero, G.; Saintonge, A.; Santini, P.; Grazian, A.; Lutz, D.; Brusa, M.; Altieri, B.; Andreani, P.; Aussel, H.; et al. The Effect of Environment on Star Forming Galaxies at Redshift: I. First Insight from PACS. Astron. Astrophys. 2011, 532, A145. [Google Scholar] [CrossRef]
- Sobral, D.; Best, P.N.; Smail, I.; Geach, J.E.; Cirasuolo, M.; Garn, T.; Dalton, G.B. The Dependence of Star Formation Activity on Environment and Stellar Mass at Z∼ 1 from the HiZELS-Hα Survey. Mon. Not. R. Astron. Soc. 2011, 411, 675–692. [Google Scholar] [CrossRef]
- Darvish, B.; Mobasher, B.; Sobral, D.; Rettura, A.; Scoville, N.; Faisst, A.; Capak, P. The Effects of the Local Environment and Stellar Mass on Galaxy Quenching to z ∼ 3. Astrophys. J. 2016, 825, 113. [Google Scholar] [CrossRef] [Green Version]
- Fossati, M.; Wilman, D.J.; Mendel, J.T.; Saglia, R.P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J.C.C.; Fabricius, M.; Bandara, K.; et al. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ∼ 1–2. Astrophys. J. 2017, 835, 153. [Google Scholar] [CrossRef] [Green Version]
- Geha, M.; Blanton, M.R.; Yan, R.; Tinker, J.L. A Stellar Mass Threshold for Quenching of Field Galaxies. Astrophys. J. 2012, 757, 85. [Google Scholar] [CrossRef]
- Lidman, C.; Suherli, J.; Muzzin, A.; Wilson, G.; Demarco, R.; Brough, S.; Rettura, A.; Cox, J.; DeGroot, A.; Yee, H.K.C.; et al. Evidence for Significant Growth in the Stellar Mass of Brightest Cluster Galaxies over the Past 10 Billion Years. Mon. Not. R. Astron. Soc. 2012, 427, 550–568. [Google Scholar] [CrossRef]
- Lin, Y.T.; Hsieh, B.C.; Lin, S.C.; Oguri, M.; Chen, K.F.; Tanaka, M.; Chiu, I.N.; Huang, S.; Kodama, T.; Leauthaud, A.; et al. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies. Astrophys. J. 2017, 851, 139. [Google Scholar] [CrossRef]
- Schechter, P. An Analytic Expression for the Luminosity Function for Galaxies. Astrophys. J. 1976, 203, 297–306. [Google Scholar] [CrossRef]
- Pérez-González, P.G.; Rieke, G.H.; Villar, V.; Barro, G.; Blaylock, M.; Egami, E.; Gallego, J.; Gil de Paz, A.; Pascual, S.; Zamorano, J.; et al. The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer. Astrophys. J. 2008, 675, 234–261. [Google Scholar] [CrossRef] [Green Version]
- Muzzin, A.; Marchesini, D.; Stefanon, M.; Franx, M.; McCracken, H.J.; Milvang-Jensen, B.; Dunlop, J.S.; Fynbo, J.P.U.; Brammer, G.; Labbé, I.; et al. The Evolution of the Stellar Mass Functions of Star-forming and Quiescent Galaxies to z = 4 from the COSMOS/UltraVISTA Survey. Astrophys. J. 2013, 777, 18. [Google Scholar] [CrossRef] [Green Version]
- van der Burg, R.F.J.; Rudnick, G.; Balogh, M.L.; Muzzin, A.; Lidman, C.; Old, L.J.; Shipley, H.; Gilbank, D.; McGee, S.; Biviano, A.; et al. The GOGREEN Survey: A Deep Stellar Mass Function of Cluster Galaxies at 1.0 <z< 1.4 and the Complex Nature of Satellite Quenching. Astron. Astrophys. 2020, 638, A112. [Google Scholar] [CrossRef]
- Vulcani, B.; Poggianti, B.M.; Fasano, G.; Desai, V.; Dressler, A.; Oemler, A.; Calvi, R.; D’Onofrio, M.; Moretti, A. The Importance of the Local Density in Shaping the Galaxy Stellar Mass Functions. Mon. Not. R. Astron. Soc. 2012, 420, 1481–1494. [Google Scholar] [CrossRef] [Green Version]
- Vulcani, B.; Poggianti, B.M.; Oemler, A.; Dressler, A.; Aragón-Salamanca, A.; De Lucia, G.; Moretti, A.; Gladders, M.; Abramson, L.; Halliday, C. The Galaxy Stellar Mass Function and Its Evolution with Time Show No Dependence on Global Environment. Astron. Astrophys. 2013, 550, A58. [Google Scholar] [CrossRef] [Green Version]
- Fasano, G.; Marmo, C.; Varela, J.; D’Onofrio, M.; Poggianti, B.M.; Moles, M.; Pignatelli, E.; Bettoni, D.; Kjærgaard, P.; Rizzi, L.; et al. WINGS: A WIde-field Nearby Galaxy-cluster Survey. I. Optical Imaging. Astron. Astrophys. 2006, 445, 805. [Google Scholar] [CrossRef] [Green Version]
- Oemler, A., Jr.; Dressler, A.; Gladders, M.G.; Rigby, J.R.; Bai, L.; Kelson, D.; Villanueva, E.; Fritz, J.; Rieke, G.; Poggianti, B.M.; et al. The IMACS Cluster Building Survey. I. Description of the Survey and Analysis Methods. Astrophys. J. 2013, 770, 61. [Google Scholar] [CrossRef] [Green Version]
- White, S.D.M.; Clowe, D.I.; Simard, L.; Rudnick, G.; De Lucia, G.; Aragón-Salamanca, A.; Bender, R.; Best, P.; Bremer, M.; Charlot, S.; et al. EDisCS—the ESO Distant Cluster Survey. Sample Definition and Optical Photometry. Astron. Astrophys. 2005, 444, 365. [Google Scholar] [CrossRef]
- Annunziatella, M.; Biviano, A.; Mercurio, A.; Nonino, M.; Rosati, P.; Balestra, I.; Presotto, V.; Girardi, M.; Gobat, R.; Grillo, C.; et al. CLASH-VLT: The Stellar Mass Function and Stellar Mass Density Profile of the z = 0.44 Cluster of Galaxies MACS J1206.2-0847. Astron. Astrophys. 2014, 571, A80. [Google Scholar] [CrossRef] [Green Version]
- Annunziatella, M.; Mercurio, A.; Biviano, A.; Girardi, M.; Nonino, M.; Balestra, I.; Rosati, P.; Bartosch Caminha, G.; Brescia, M.; Gobat, R.; et al. CLASH-VLT: Environment-driven Evolution of Galaxies in the z = 0.209 Cluster Abell 209. Astron. Astrophys. 2016, 585, A160. [Google Scholar] [CrossRef] [Green Version]
- van der Burg, R.F.J.; Muzzin, A.; Hoekstra, H.; Lidman, C.; Rettura, A.; Wilson, G.; Yee, H.K.C.; Hildebrandt, H.; Marchesini, D.; Stefanon, M.; et al. The Environmental Dependence of the Stellar Mass Function at z ~ 1. Comparing Cluster and Field between the GCLASS and UltraVISTA Surveys. Astron. Astrophys. 2013, 557, A15. [Google Scholar] [CrossRef] [Green Version]
- van der Burg, R.F.J.; McGee, S.; Aussel, H.; Dahle, H.; Arnaud, M.; Pratt, G.W.; Muzzin, A. The Stellar Mass Function of Galaxies in Planck-selected Clusters at 0.5 < z < 0.7: New Constraints on the Timescale and Location of Satellite Quenching. Astron. Astrophys. 2018, 618, A140. [Google Scholar] [CrossRef] [Green Version]
- Calvi, R.; Poggianti, B.M.; Vulcani, B.; Fasano, G. The Impact of Global Environment on Galaxy Mass Functions at Low Redshift. Mon. Not. R. Astron. Soc. 2013, 432, 3141–3152. [Google Scholar] [CrossRef]
- Nantais, J.B.; van der Burg, R.F.J.; Lidman, C.; Demarco, R.; Noble, A.; Wilson, G.; Muzzin, A.; Foltz, R.; DeGroot, A.; Cooper, M.C. Stellar Mass Function of Cluster Galaxies at z ~ 1.5: Evidence for Reduced Quenching Efficiency at High Redshift. Astron. Astrophys. 2016, 592, A161. [Google Scholar] [CrossRef] [Green Version]
- Papovich, C.; Kawinwanichakij, L.; Quadri, R.F.; Glazebrook, K.; Labbé, I.; Tran, K.V.H.; Forrest, B.; Kacprzak, G.G.; Spitler, L.R.; Straatman, C.M.S.; et al. The Effects of Environment on the Evolution of the Galaxy Stellar Mass Function. Astrophys. J. 2018, 854, 30. [Google Scholar] [CrossRef]
- Reeves, A.M.M.; Balogh, M.L.; van der Burg, R.F.J.; Finoguenov, A.; Kukstas, E.; McCarthy, I.G.; Webb, K.; Muzzin, A.; McGee, S.; Rudnick, G.; et al. The GOGREEN Survey: Dependence of Galaxy Properties on Halo Mass at z > 1 and Implications for Environmental Quenching. Mon. Not. R. Astron. Soc. 2021, 506, 3364–3384. [Google Scholar] [CrossRef]
- Tomczak, A.R.; Lemaux, B.C.; Lubin, L.M.; Gal, R.R.; Wu, P.F.; Holden, B.; Kocevski, D.D.; Mei, S.; Pelliccia, D.; Rumbaugh, N.; et al. Glimpsing the Imprint of Local Environment on the Galaxy Stellar Mass Function. Mon. Not. R. Astron. Soc. 2017, 472, 3512–3531. [Google Scholar] [CrossRef] [Green Version]
- Lubin, L.M.; Gal, R.R.; Lemaux, B.C.; Kocevski, D.D.; Squires, G.K. The Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey. I. The Survey Design and First Results on CL 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82. Astron. J. 2009, 137, 4867–4883. [Google Scholar] [CrossRef]
- Giodini, S.; Finoguenov, A.; Pierini, D.; Zamorani, G.; Ilbert, O.; Lilly, S.; Peng, Y.; Scoville, N.; Tanaka, M. The Galaxy Stellar Mass Function of X-ray Detected Groups. Environmental Dependence of Galaxy Evolution in the COSMOS Survey. Astron. Astrophys. 2012, 538, A104. [Google Scholar] [CrossRef] [Green Version]
- Mok, A.; Balogh, M.L.; McGee, S.L.; Wilman, D.J.; Finoguenov, A.; Tanaka, M.; Giodini, S.; Bower, R.G.; Connelly, J.L.; Hou, A.; et al. Efficient Satellite Quenching at Z∼1 from the GEEC2 Spectroscopic Survey of Galaxy Groups. Mon. Not. R. Astron. Soc. 2013, 431, 1090–1106. [Google Scholar] [CrossRef] [Green Version]
- Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental Effects Shaping the Galaxy Stellar Mass Function. Astron. Astrophys. 2016, 586, A23. [Google Scholar] [CrossRef] [Green Version]
- Pintos-Castro, I.; Yee, H.K.C.; Muzzin, A.; Old, L.; Wilson, G. The Evolution of the Quenching of Star Formation in Cluster Galaxies since z ∼ 1. Astrophys. J. 2019, 876, 40. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, A.R.; Tinker, J.L.; Conroy, C. Galaxy Evolution in Groups and Clusters: Star Formation Rates, Red Sequence Fractions and the Persistent Bimodality. Mon. Not. R. Astron. Soc. 2012, 424, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; Barnes, D.J.; Dalla Vecchia, C.; Kay, S.T.; White, S.D.M.; McCarthy, I.G.; Schaye, J.; Bower, R.G.; Crain, R.A.; Theuns, T.; et al. The Hydrangea Simulations: Galaxy Formation in and around Massive Clusters. Mon. Not. R. Astron. Soc. 2017, 470, 4186–4208. [Google Scholar] [CrossRef] [Green Version]
- Balogh, M.L.; McGee, S.L.; Mok, A.; Wilman, D.J.; Finoguenov, A.; Bower, R.G.; Mulchaey, J.S.; Parker, L.C.; Tanaka, M. The GEEC2 Spectroscopic Survey of Galaxy Groups at 0.8 < z < 1. Mon. Not. R. Astron. Soc. 2014, 443, 2679–2694. [Google Scholar] [CrossRef] [Green Version]
- Sarron, F.; Conselice, C.J. DETECTIFz Galaxy Groups in the REFINE Survey—I. Group Detection and Quenched Fraction Evolution at z < 2.5. Mon. Not. R. Astron. Soc. 2021, 506, 2136–2155. [Google Scholar] [CrossRef]
- Loh, Y.S.; Ellingson, E.; Yee, H.K.C.; Gilbank, D.G.; Gladders, M.D.; Barrientos, L.F. The Color Bimodality in Galaxy Clusters since z ~ 0.9. Astrophys. J. 2008, 680, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Raichoor, A.; Andreon, S. Galaxy Mass, Cluster-Centric Distance and Secular Evolution: Their Role in the Evolution of Galaxies in Clusters in the Last 10 Gyr. Astron. Astrophys. 2012, 543, A19. [Google Scholar] [CrossRef]
- Kawinwanichakij, L.; Papovich, C.; Quadri, R.F.; Glazebrook, K.; Kacprzak, G.G.; Allen, R.J.; Bell, E.F.; Croton, D.J.; Dekel, A.; Ferguson, H.C.; et al. Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0. Astrophys. J. 2017, 847, 134. [Google Scholar] [CrossRef]
- Lee-Brown, D.B.; Rudnick, G.H.; Momcheva, I.G.; Papovich, C.; Lotz, J.M.; Tran, K.V.H.; Henke, B.; Willmer, C.N.A.; Brammer, G.B.; Brodwin, M.; et al. The Ages of Passive Galaxies in a z = 1.62 Protocluster. Astrophys. J. 2017, 844, 43. [Google Scholar] [CrossRef] [Green Version]
- Nantais, J.B.; Muzzin, A.; van der Burg, R.F.J.; Wilson, G.; Lidman, C.; Foltz, R.; DeGroot, A.; Noble, A.; Cooper, M.C.; Demarco, R. Evidence for Strong Evolution in Galaxy Environmental Quenching Efficiency between z = 1.6 and z = 0.9. Mon. Not. R. Astron. Soc. Lett. 2017, 465, L104–L108. [Google Scholar] [CrossRef] [Green Version]
- Strazzullo, V.; Pannella, M.; Mohr, J.J.; Saro, A.; Ashby, M.L.N.; Bayliss, M.B.; Bocquet, S.; Bulbul, E.; Khullar, G.; Mantz, A.B.; et al. Galaxy Populations in the Most Distant SPT-SZ Clusters: I. Environmental Quenching in Massive Clusters at 1.4 ≲ z ≲ 1.7. Astron. Astrophys. 2019, 622, A117. [Google Scholar] [CrossRef] [Green Version]
- von der Linden, A.; Wild, V.; Kauffmann, G.; White, S.D.M.; Weinmann, S. Star Formation and AGN Activity in SDSS Cluster Galaxies. Mon. Not. R. Astron. Soc. 2010, 404, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.M.; Eisenhardt, P.R.; Gonzalez, A.H.; Stanford, S.A.; Brodwin, M.; Stern, D.; Jarrett, T. A WISE View of Star Formation in Local Galaxy Clusters. Astrophys. J. 2011, 743, 34. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.G.; Holden, B.P.; Kelson, D.D.; Illingworth, G.D.; Franx, M. The Dependence of Star Formation Rates on Stellar Mass and Environment at z ~ 0.8. Astrophys. J. 2009, 705, L67–L70. [Google Scholar] [CrossRef] [Green Version]
- Haines, C.P.; Pereira, M.J.; Smith, G.P.; Egami, E.; Babul, A.; Finoguenov, A.; Ziparo, F.; McGee, S.L.; Rawle, T.D.; Okabe, N.; et al. LoCuSS: The slow quenching of star formation in cluster galaxies and the need for pre-processing. Astrophys. J. 2015, 806, 101. [Google Scholar] [CrossRef]
- Just, D.W.; Kirby, M.; Zaritsky, D.; Rudnick, G.; Desjardins, T.; Cool, R.; Moustakas, J.; Clowe, D.; De Lucia, G.; Aragón-Salamanca, A.; et al. Preprocessing among the Infalling Galaxy Population of EDisCS Clusters. Astrophys. J. 2019, 885, 6. [Google Scholar] [CrossRef] [Green Version]
- Ayromlou, M.; Kauffmann, G.; Anand, A.; White, S.D.M. The Physical Origin of Galactic Conformity: From Theory to Observation. arXiv 2022, arXiv:220702218A. [Google Scholar]
- Zabludoff, A.I.; Zaritsky, D.; Lin, H.; Tucker, D.; Hashimoto, Y.; Shectman, S.A.; Oemler, A.; Kirshner, R.P. The Environment of “E+A” Galaxies. Astrophys. J. 1996, 466, 104. [Google Scholar] [CrossRef]
- Zabludoff, A.I.; Mulchaey, J.S. Hierarchical Evolution in Poor Groups of Galaxies. Astrophys. J. 1998, 498, L5–L8. [Google Scholar] [CrossRef]
- Kodama, T.; Smail, I.; Nakata, F.; Okamura, S.; Bower, R.G. The Transformation of Galaxies within the Large-Scale Structure around a Z = 0.41 Cluster. Astrophys. J. 2001, 562, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y. Pre-Processing of Galaxies before Entering a Cluster. Publ. Astron. Soc. Jpn. 2004, 56, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Berrier, J.C.; Stewart, K.R.; Bullock, J.S.; Purcell, C.W.; Barton, E.J.; Wechsler, R.H. The Assembly of Galaxy Clusters. Astrophys. J. 2009, 690, 1292–1302. [Google Scholar] [CrossRef]
- McGee, S.L.; Balogh, M.L.; Bower, R.G.; Font, A.S.; McCarthy, I.G. The Accretion of Galaxies into Groups and Clusters. Mon. Not. R. Astron. Soc. 2009, 400, 937–950. [Google Scholar] [CrossRef] [Green Version]
- Dressler, A.; Oemler, A., Jr.; Poggianti, B.M.; Gladders, M.D.; Abramson, L.; Vulcani, B. The IMACS Cluster Building Survey. II. Spectral Evolution of Galaxies in the Epoch of Cluster Assembly. Astrophys. J. 2013, 770, 62. [Google Scholar] [CrossRef]
- Weinzirl, T.; Aragón-Salamanca, A.; Gray, M.E.; Bamford, S.P.; Rodríguez del Pino, B.; Chies-Santos, A.L.; Böhm, A.; Wolf, C.; Cool, R.J. OMEGA—OSIRIS Mapping of Emission-line Galaxies in A901/2—III. Galaxy Properties across Projected Phase Space in A901/2. Mon. Not. R. Astron. Soc. 2017, 471, 182–200. [Google Scholar] [CrossRef] [Green Version]
- Cooke, E.A.; Hatch, N.A.; Muldrew, S.I.; Rigby, E.E.; Kurk, J.D. A z = 2.5 Protocluster Associated with the Radio Galaxy MRC 2104-242: Star Formation and Differing Mass Functions in Dense Environments. Mon. Not. R. Astron. Soc. 2014, 440, 3262–3274. [Google Scholar] [CrossRef] [Green Version]
- Muldrew, S.I.; Hatch, N.A.; Cooke, E.A. Galaxy Evolution in Protoclusters. Mon. Not. R. Astron. Soc. 2018, 473, 2335–2347. [Google Scholar] [CrossRef]
- Bianconi, M.; Smith, G.P.; Haines, C.P.; McGee, S.L.; Finoguenov, A.; Egami, E. LoCuSS: Pre-Processing in Galaxy Groups Falling into Massive Galaxy Clusters at z = 0.2. Mon. Not. R. Astron. Soc. 2018, 473, L79–L83. [Google Scholar] [CrossRef]
- Diemer, B.; Kravtsov, A.V. Dependence of the Outer Density Profiles of Halos on Their Mass Accretion Rate. Astrophys. J. 2014, 789, 1. [Google Scholar] [CrossRef]
- Haggar, R.; Gray, M.E.; Pearce, F.R.; Knebe, A.; Cui, W.; Mostoghiu, R.; Yepes, G. The Three Hundred Project: Backsplash Galaxies in Simulations of Clusters. Mon. Not. R. Astron. Soc. 2020, 492, 6074–6085. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Dalal, N.; Chamberlain, R.T. Splashback in Accreting Dark Matter Halos. J. Cosmol. Astropart. Phys. 2014, 2014, 019. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, P.; Kravtsov, A.V.; Diemer, B. Splashback Shells of Cold Dark Matter Halos. Astrophys. J. 2017, 841, 34. [Google Scholar] [CrossRef] [Green Version]
- More, S.; Diemer, B.; Kravtsov, A.V. The Splashback Radius as a Physical Halo Boundary and the Growth of Halo Mass. Astrophys. J. 2015, 810, 36. [Google Scholar] [CrossRef] [Green Version]
- Zinger, E.; Dekel, A.; Kravtsov, A.V.; Nagai, D. Quenching of Satellite Galaxies at the Outskirts of Galaxy Clusters. Mon. Not. R. Astron. Soc. 2018, 475, 3654–3681. [Google Scholar] [CrossRef] [Green Version]
- Mostoghiu, R.; Arthur, J.; Pearce, F.R.; Gray, M.; Knebe, A.; Cui, W.; Welker, C.; Cora, S.A.; Murante, G.; Dolag, K.; et al. The Three Hundred Project: The Gas Disruption of Infalling Objects in Cluster Environments. Mon. Not. R. Astron. Soc. 2021, 501, 5029–5041. [Google Scholar] [CrossRef]
- Ayromlou, M.; Kauffmann, G.; Yates, R.M.; Nelson, D.; White, S.D.M. Galaxy Formation with L-GALAXIES: Modelling the Environmental Dependency of Galaxy Evolution and Comparing with Observations. Mon. Not. R. Astron. Soc. 2021, 505, 492–514. [Google Scholar] [CrossRef]
- Birnboim, Y.; Dekel, A. Virial Shocks in Galactic Haloes? Mon. Not. R. Astron. Soc. 2003, 345, 349–364. [Google Scholar] [CrossRef]
- Dekel, A.; Birnboim, Y. Galaxy Bimodality Due to Cold Flows and Shock Heating. Mon. Not. R. Astron. Soc. 2006, 368, 2–20. [Google Scholar] [CrossRef]
- Grützbauch, R.; Bauer, A.E.; Jørgensen, I.; Varela, J. Suppression of Star Formation in the Central 200 Kpc of a Z= 1.4 Galaxy Cluster. Mon. Not. R. Astron. Soc. 2012, 423, 3652–3662. [Google Scholar] [CrossRef] [Green Version]
- Quadri, R.F.; Williams, R.J.; Franx, M.; Hildebrandt, H. Tracing the star-formation-density relation to z ∼ 2. Astrophys. J. 2012, 744, 88. [Google Scholar] [CrossRef] [Green Version]
- Stalder, B.; Ruel, J.; Šuhada, R.; Brodwin, M.; Aird, K.A.; Andersson, K.; Armstrong, R.; Ashby, M.L.N.; Bautz, M.; Bayliss, M.; et al. SPT-CL J0205-5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel’dovich Effect Survey. Astrophys. J. 2013, 763, 93. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.S.; Altieri, B.; Popesso, P.; Strazzullo, V.; Valtchanov, I.; Berta, S.; Böhringer, H.; Conversi, L.; Demarco, R.; Edge, A.C.; et al. Dust-Obscured Star Formation in the Outskirts of XMMU J2235.3-2557, a Massive Galaxy Cluster at z = 1.472. Mon. Not. R. Astron. Soc. 2013, 433, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Strazzullo, V.; Gobat, R.; Daddi, E.; Onodera, M.; Carollo, M.; Dickinson, M.; Renzini, A.; Arimoto, N.; Cimatti, A.; Finoguenov, A.; et al. Galaxy Evolution in Overdense Environments at High Redshift: Passive Early-type Galaxies in a Cluster at z ~ 2. Astrophys. J. 2013, 772, 118. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.B.; Ellis, R.S.; Andreon, S.; Treu, T.; Raichoor, A.; Trinchieri, G. Spectroscopic Confirmation of the Rich z = 1.80 Galaxy Cluster JKCS 041 Using the WFC3 Grism: Environmental Trends in the Ages and Structure of Quiescent Galaxies. Astrophys. J. 2014, 788, 51. [Google Scholar] [CrossRef] [Green Version]
- Cooke, E.A.; Hatch, N.A.; Stern, D.; Rettura, A.; Brodwin, M.; Galametz, A.; Wylezalek, D.; Bridge, C.; Conselice, C.J.; De Breuck, C.; et al. A Mature Galaxy Cluster at Z=1.58 around the Radio Galaxy 7C1753+6311. Astrophys. J. 2016, 816, 83. [Google Scholar] [CrossRef] [Green Version]
- Mancone, C.L.; Gonzalez, A.H.; Brodwin, M.; Stanford, S.A.; Eisenhardt, P.R.M.; Stern, D.; Jones, C. The Formation of Massive Cluster Galaxies. Astrophys. J. 2010, 720, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Mancone, C.L.; Baker, T.; Gonzalez, A.H.; Ashby, M.L.N.; Stanford, S.A.; Brodwin, M.; Eisenhardt, P.R.M.; Snyder, G.; Stern, D.; Wright, E.L. The Faint End of the Cluster-galaxy Luminosity Function at High Redshift. Astrophys. J. 2012, 761, 141. [Google Scholar] [CrossRef] [Green Version]
- Muldrew, S.I.; Hatch, N.A.; Cooke, E.A. What Are Protoclusters?—Defining High-Redshift Galaxy Clusters and Protoclusters. Mon. Not. R. Astron. Soc. 2015, 452, 2528–2539. [Google Scholar] [CrossRef]
- Coia, D.; McBreen, B.; Metcalfe, L.; Biviano, A.; Altieri, B.; Ott, S.; Fort, B.; Kneib, J.P.; Mellier, Y.; Miville-Deschênes, M.A.; et al. An ISOCAM Survey through Gravitationally Lensing Galaxy Clusters. IV. Luminous Infrared Galaxies in Cl 0024+1654 and the Dynamical Status of Clusters. Astron. Astrophys. 2005, 431, 433. [Google Scholar] [CrossRef] [Green Version]
- Geach, J.E.; Smail, I.; Ellis, R.S.; Moran, S.M.; Smith, G.P.; Treu, T.; Kneib, J.P.; Edge, A.C.; Kodama, T. A Panoramic Mid-infrared Survey of Two Distant Clusters. Astrophys. J. 2006, 649, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Geach, J.E.; Smail, I.; Moran, S.M.; Treu, T.; Ellis, R.S. The Nature of Dusty Starburst Galaxies in a Rich Cluster at z = 0.4: The Progenitors of Lenticulars? Astrophys. J. 2009, 691, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Marcillac, D.; Rigby, J.R.; Rieke, G.H.; Kelly, D.M. Strong dusty bursts of star formation in galaxies falling into the cluster rx J0152.7–1357. Astrophys. J. 2007, 654, 10. [Google Scholar] [CrossRef] [Green Version]
- Saintonge, A.; Tran, K.V.H.; Holden, B.P. Spitzer/MIPS 24um Observations of Galaxy Clusters: An Increasing Fraction of Obscured Star-forming Members from Z = 0.02 to Z = 0.83. Astrophys. J. 2008, 685, L113–L116. [Google Scholar] [CrossRef] [Green Version]
- Koyama, Y.; Kodama, T.; Shimasaku, K.; Okamura, S.; Tanaka, M.; Lee, H.M.; Im, M.; Matsuhara, H.; Takagi, T.; Wada, T.; et al. Mapping Dusty Star Formation in and around a Cluster at z = 0.81 by Wide-Field Imaging with AKARI. Mon. Not. R. Astron. Soc. 2008, 391, 1758–1770. [Google Scholar] [CrossRef] [Green Version]
- Oemler, A., Jr.; Dressler, A.; Kelson, D.; Rigby, J.; Poggianti, B.M.; Fritz, J.; Morrison, G.; Smail, I. Abell 851 and the Role of Starbursts in Cluster Galaxy Evolution. Astrophys. J. 2009, 693, 152–173. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.P.; Haines, C.P.; Pereira, M.J.; Egami, E.; Moran, S.M.; Hardegree-Ullman, E.; Babul, A.; Rex, M.; Rawle, T.D.; Zhang, Y.Y.; et al. LoCuSS: Probing Galaxy Transformation Physics with Herschel. Astron. Astrophys. 2010, 518, L18. [Google Scholar] [CrossRef] [Green Version]
- Koyama, Y.; Kodama, T.; Shimasaku, K.; Hayashi, M.; Okamura, S.; Tanaka, I.; Tokoku, C. Panoramic Hα and Mid-Infrared Mapping of Star Formation in a z = 0.8 Cluster. Mon. Not. R. Astron. Soc. 2010, 403, 1611–1624. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.V.H.; Papovich, C.; Saintonge, A.; Brodwin, M.; Dunlop, J.S.; Farrah, D.; Finkelstein, K.D.; Finkelstein, S.L.; Lotz, J.; McLure, R.J.; et al. REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT z = 1.62. Astrophys. J. 2010, 719, L126–L129. [Google Scholar] [CrossRef]
- Haines, C.P.; Smith, G.P.; Egami, E.; Ellis, R.S.; Moran, S.M.; Sanderson, A.J.R.; Merluzzi, P.; Busarello, G.; Smith, R.J. LOCUSS: The mid-infrared butcher-oemler effect. Astrophys. J. 2009, 704, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Haines, C.P.; Pereira, M.J.; Smith, G.P.; Egami, E.; Sanderson, A.J.R.; Babul, A.; Finoguenov, A.; Merluzzi, P.; Busarello, G.; Rawle, T.D.; et al. LoCuSS: The steady decline and slow quenching of star formation in cluster galaxies over the last four billion years. Astrophys. J. 2013, 775, 126. [Google Scholar] [CrossRef] [Green Version]
- Webb, T.M.A.; O’Donnell, D.; Yee, H.K.C.; Gilbank, D.; Coppin, K.; Ellingson, E.; Faloon, A.; Geach, J.E.; Gladders, M.; Noble, A.; et al. The evolution of dusty star formation in galaxy clusters to z = 1: Spitzer infrared observations of the first red-sequence cluster survey. Astron. J. 2013, 146, 84. [Google Scholar] [CrossRef] [Green Version]
- Rieke, G.H.; Young, E.T.; Engelbracht, C.W.; Kelly, D.M.; Low, F.J.; Haller, E.E.; Beeman, J.W.; Gordon, K.D.; Stansberry, J.A.; Misselt, K.A.; et al. The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. Ser. 2004, 154, 25–29. [Google Scholar] [CrossRef]
- Le Floc’h, E.; Papovich, C.; Dole, H.; Bell, E.F.; Lagache, G.; Rieke, G.H.; Egami, E.; Pérez-González, P.G.; Alonso-Herrero, A.; Rieke, M.J.; et al. Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 < z < 1. Astrophys. J. 2005, 632, 169–190. [Google Scholar] [CrossRef]
- Rujopakarn, W.; Eisenstein, D.J.; Rieke, G.H.; Papovich, C.; Cool, R.J.; Moustakas, J.; Jannuzi, B.T.; Kochanek, C.S.; Rieke, M.J.; Dey, A.; et al. The evolution of the star formation rate of galaxies at 0.0 ⩽z⩽ 1.2. Astrophys. J. 2010, 718, 1171–1185. [Google Scholar] [CrossRef] [Green Version]
- Sargent, M.T.; Béthermin, M.; Daddi, E.; Elbaz, D. The Contribution of Starbursts and Normal Galaxies to Infrared Luminosity Functions at z < 2. Astrophys. J. 2012, 747, L31. [Google Scholar] [CrossRef] [Green Version]
- Ilbert, O.; Arnouts, S.; Le Floc’h, E.; Aussel, H.; Bethermin, M.; Capak, P.; Hsieh, B.C.; Kajisawa, M.; Karim, A.; Le Fèvre, O.; et al. Evolution of the Specific Star Formation Rate Function at Z< 1.4 Dissecting the Mass-SFR Plane in COSMOS and GOODS. Astron. Astrophys. 2015, 579, A2. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.L.; Vlahakis, C.; Baes, M.; Bendo, G.J.; Bianchi, S.; Bomans, D.J.; Boselli, A.; Clemens, M.; Corbelli, E.; Cortese, L.; et al. The Herschel Virgo Cluster Survey. IV. Resolved Dust Analysis of Spiral Galaxies. Astron. Astrophys. 2010, 518, L51. [Google Scholar] [CrossRef] [Green Version]
- Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; et al. The Role of Massive Halos in the Star Formation History of the Universe. Astron. Astrophys. 2015, 579, A132. [Google Scholar] [CrossRef]
- Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; et al. The Evolution of Galaxy Star Formation Activity in Massive Haloes. Astron. Astrophys. 2015, 574, A105. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Marcillac, D.; Rieke, G.H.; Rieke, M.J.; Tran, K.V.H.; Hinz, J.L.; Rudnick, G.; Kelly, D.M.; Blaylock, M. IR Observations of MS 1054-03: Star Formation and Its Evolution in Rich Galaxy Clusters. Astrophys. J. 2007, 664, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Haines, C.P.; Smith, G.P.; Pereira, M.J.; Egami, E.; Moran, S.M.; Hardegree-Ullman, E.; Rawle, T.D.; Rex, M. LoCuSS: Shedding New Light on the Massive Lensing Cluster Abell 1689—The View from Herschel. Astron. Astrophys. 2010, 518, L19. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C. Star Formation in Galaxies Along the Hubble Sequence. Annu. Rev. Astron. Astrophys. 1998, 36, 189. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Rieke, G.H.; Rieke, M.J.; Christlein, D.; Zabludoff, A.I. The infrared luminosity functions of rich clusters. Astrophys. J. 2009, 693, 1840–1850. [Google Scholar] [CrossRef] [Green Version]
- Cowie, L.L.; Barger, A.J.; Fomalont, E.B.; Capak, P. The Evolution of the Ultraluminous Infrared Galaxy Population from Redshift 0 to 1.5. Astrophys. J. 2004, 603, L69–L72. [Google Scholar] [CrossRef] [Green Version]
- Biviano, A.; Fadda, D.; Durret, F.; Edwards, L.O.V.; Marleau, F. Spitzer Observations of Abell 1763: III. The Infrared Luminosity Function in Different Supercluster Environments. Astron. Astrophys. 2011, 532, A77. [Google Scholar] [CrossRef] [Green Version]
- Smail, I.; Geach, J.E.; Swinbank, A.M.; Tadaki, K.; Arumugam, V.; Hartley, W.; Almaini, O.; Bremer, M.N.; Chapin, E.; Chapman, S.C.; et al. The scuba-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster. Astrophys. J. 2014, 782, 19. [Google Scholar] [CrossRef] [Green Version]
- Popesso, P.; Biviano, A.; Rodighiero, G.; Baronchelli, I.; Salvato, M.; Saintonge, A.; Finoguenov, A.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; et al. The Evolution of the Star Formation Activity per Halo Mass up to Redshift ~1.6 as Seen by Herschel. Astron. Astrophys. 2012, 537, A58. [Google Scholar] [CrossRef] [Green Version]
- Noble, A.G.; Webb, T.M.A.; Muzzin, A.; Wilson, G.; Yee, H.K.C.; van der Burg, R.F.J. A kinematic approach to assessing environmental effects: Star-forming galaxies in a z ∼ 0.9 sparcs cluster using spitzer 24 Mm observations. Astrophys. J. 2013, 768, 118. [Google Scholar] [CrossRef]
- Rodríguez-Muñoz, L.; Rodighiero, G.; Mancini, C.; Pérez-González, P.G.; Rawle, T.D.; Egami, E.; Mercurio, A.; Rosati, P.; Puglisi, A.; Franceschini, A.; et al. Quantifying the Suppression of the (Un)-Obscured Star Formation in Galaxy Cluster Cores at 0.2≲z≲0.9. Mon. Not. R. Astron. Soc. 2019, 485, 586–619. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Mamon, G.A.; Raychaudhury, S. The Velocity Modulation of Galaxy Properties in and near Clusters: Quantifying the Decrease in Star Formation in Backsplash Galaxies. Mon. Not. R. Astron. Soc. 2011, 416, 2882–2902. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Fernández, J.D.; Haines, C.P.; Diaferio, A.; Iglesias-Páramo, J.; Mendes de Oliveira, C.; Vilchez, J.M. Star Formation Activity and Gas Stripping in the Cluster Projected Phase-Space (CPPS). Mon. Not. R. Astron. Soc. 2014, 438, 2186–2200. [Google Scholar] [CrossRef] [Green Version]
- Muzzin, A.; van der Burg, R.F.J.; McGee, S.L.; Balogh, M.; Franx, M.; Hoekstra, H.; Hudson, M.J.; Noble, A.; Taranu, D.S.; Webb, T.; et al. The Phase Space and Stellar Populations of Cluster Galaxies at z ~ 1: Simultaneous Constraints on the Location and Timescale of Satellite Quenching. Astrophys. J. 2014, 796, 65. [Google Scholar] [CrossRef] [Green Version]
- Oman, K.A.; Hudson, M.J.; Behroozi, P.S. Disentangling Satellite Galaxy Populations Using Orbit Tracking in Simulations. Mon. Not. R. Astron. Soc. 2013, 431, 2307–2316. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Smith, R.; Choi, H.; Yi, S.K.; Jaffé, Y.; Candlish, G.; Sánchez-Jánssen, R. Phase-Space Analysis in the Group and Cluster Environment: Time Since Infall and Tidal Mass Loss. Astrophys. J. 2017, 843, 128. [Google Scholar] [CrossRef]
- Bekki, K.; Couch, W.J.; Shioya, Y. Passive Spiral Formation from Halo Gas Starvation: Gradual Transformation into S0s. Astrophys. J. 2002, 577, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, A.R.; Tinker, J.L.; Conroy, C.; van den Bosch, F.C. Galaxy Evolution in Groups and Clusters: Satellite Star Formation Histories and Quenching Time-Scales in a Hierarchical Universe. Mon. Not. R. Astron. Soc. 2013, 432, 336–358. [Google Scholar] [CrossRef]
- Tomczak, A.R.; Lemaux, B.C.; Lubin, L.M.; Pelliccia, D.; Shen, L.; Gal, R.R.; Hung, D.; Kocevski, D.D.; Le Fèvre, O.; Mei, S.; et al. Conditional Quenching: A Detailed Look at the SFR-density Relation at z ∼ 0.9 from ORELSE. Mon. Not. R. Astron. Soc. 2019, 484, 4695–4710. [Google Scholar] [CrossRef] [Green Version]
- Tecce, T.E.; Cora, S.A.; Tissera, P.B.; Abadi, M.G.; Lagos, C.D.P. Ram Pressure Stripping in a Galaxy Formation Model—I. A Novel Numerical Approach. Mon. Not. R. Astron. Soc. 2010, 408, 2008–2021. [Google Scholar] [CrossRef]
- Bower, R.G.; Lucey, J.R.; Ellis, R.S. Precision Photometry of Early-Type Galaxies in the Coma and Virgo Clusters: A Test of the Universality of the Colour-Magnitude Relation—II. Analysis. Mon. Not. R. Astron. Soc. 1992, 254, 601. [Google Scholar] [CrossRef] [Green Version]
- Aragon-Salamanca, A.; Ellis, R.S.; Couch, W.J.; Carter, D. Evidence for Systematic Evolution in the Properties of Galaxies in Distant Clusters. Mon. Not. R. Astron. Soc. 1993, 262, 764–794. [Google Scholar] [CrossRef] [Green Version]
- Stanford, S.A.; Eisenhardt, P.R.; Dickinson, M. The Evolution of Early-Type Galaxies in Distant Clusters. Astrophys. J. 1998, 492, 461–479. [Google Scholar] [CrossRef] [Green Version]
- Blakeslee, J.P.; Holden, B.P.; Franx, M.; Rosati, P.; Bouwens, R.J.; Demarco, R.; Ford, H.C.; Homeier, N.L.; Illingworth, G.D.; Jee, M.J.; et al. Clusters at Half Hubble Time: Galaxy Structure and Colors in RX J0152.7-1357 and MS 1054-03. Astrophys. J. 2006, 644, 30–53. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Blakeslee, J.P.; Stanford, S.A.; Holden, B.P.; Rosati, P.; Strazzullo, V.; Homeier, N.; Postman, M.; Franx, M.; Rettura, A.; et al. Evolution of the Color-Magnitude Relation in High-Redshift Clusters: Blue Early-Type Galaxies and Red Pairs in RDCS J0910+5422. Astrophys. J. 2006, 639, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Holden, B.P.; Blakeslee, J.P.; Rosati, P.; Postman, M.; Jee, M.J.; Rettura, A.; Sirianni, M.; Demarco, R.; Ford, H.C.; et al. Evolution of the Color-Magnitude Relation in High-Redshift Clusters: Early-Type Galaxies in the Lynx Supercluster at z ~ 1.26. Astrophys. J. 2006, 644, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Holden, B.P.; Blakeslee, J.P.; Ford, H.C.; Franx, M.; Homeier, N.L.; Illingworth, G.D.; Jee, M.J.; Overzier, R.; Postman, M.; et al. Evolution of the Color-Magnitude Relation in Galaxy Clusters at z ~ 1 from the ACS Intermediate Redshift Cluster Survey. Astrophys. J. 2009, 690, 42–68. [Google Scholar] [CrossRef] [Green Version]
- Cooper, M.C.; Newman, J.A.; Weiner, B.J.; Yan, R.; Willmer, C.N.A.; Bundy, K.; Coil, A.L.; Conselice, C.J.; Davis, M.; Faber, S.M.; et al. The DEEP2 Galaxy Redshift Survey: The Role of Galaxy Environment in the Cosmic Star Formation History. Mon. Not. R. Astron. Soc. 2008, 383, 1058–1078. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Kodama, T.; Koyama, Y.; Tanaka, I.; Shimasaku, K.; Okamura, S. High Star Formation Activity in the Central Region of a Distant Cluster at z = 1.46. Mon. Not. R. Astron. Soc. 2010, 402, 1980–1990. [Google Scholar] [CrossRef] [Green Version]
- Hilton, M.; Lloyd-Davies, E.; Stanford, S.A.; Stott, J.P.; Collins, C.A.; Romer, A.K.; Hosmer, M.; Hoyle, B.; Kay, S.T.; Liddle, A.R.; et al. The XMM cluster survey: Active galactic nuclei and starburst galaxies in xmmxcS J2215.9–1738 at z = 1.46. Astrophys. J. 2010, 718, 133–147. [Google Scholar] [CrossRef]
- Lemaux, B.C.; Lubin, L.M.; Shapley, A.; Kocevski, D.; Gal, R.R.; Squires, G.K. The Origin of [O II] in Post-starburst and Red-sequence Galaxies in High-redshift Clusters. Astrophys. J. 2010, 716, 970–992. [Google Scholar] [CrossRef]
- Fassbender, R.; Nastasi, A.; Böhringer, H.; Šuhada, R.; Santos, J.S.; Rosati, P.; Pierini, D.; Mühlegger, M.; Quintana, H.; Schwope, A.D.; et al. The X-ray Luminous Galaxy Cluster XMMU J1007.4+1237 at z = 1.56. The Dawn of Starburst Activity in Cluster Cores. Astron. Astrophys. 2011, 527, L10. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Kodama, T.; Koyama, Y.; Tadaki, K.I.; Tanaka, I. Properties of Star-Forming Galaxies in a Cluster and Its Surrounding Structure at Z = 1.46. Mon. Not. R. Astron. Soc. 2011, 415, 2670–2687. [Google Scholar] [CrossRef] [Green Version]
- Tadaki, K.i.; Kodama, T.; Ota, K.; Hayashi, M.; Koyama, Y.; Papovich, C.; Brodwin, M.; Tanaka, M.; Iye, M. A Large-Scale Structure Traced by [O II] Emitters Hosting a Distant Cluster at z= 1.62. Mon. Not. R. Astron. Soc. 2012, 423, 2617–2626. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, M.B.; Ashby, M.L.N.; Ruel, J.; Brodwin, M.; Aird, K.A.; Bautz, M.W.; Benson, B.A.; Bleem, L.E.; Bocquet, S.; Carlstrom, J.E.; et al. SPT-CL J2040-4451: An SZ-selected Galaxy Cluster at z = 1.478 with Significant Ongoing Star Formation. Astrophys. J. 2014, 794, 12. [Google Scholar] [CrossRef] [Green Version]
- Fassbender, R.; Nastasi, A.; Santos, J.S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A.D.; et al. Galaxy Population Properties of the Massive X-ray Luminous Galaxy Cluster <ASTROBJ>XDCP J0044.0-2033</ASTROBJ> at z = 1.58. Red-sequence Formation, Massive Galaxy Assembly, and Central Star Formation Activity. Astron. Astrophys. 2014, 568, A5. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.S.; Altieri, B.; Valtchanov, I.; Nastasi, A.; Böhringer, H.; Cresci, G.; Elbaz, D.; Fassbender, R.; Rosati, P.; Tozzi, P.; et al. The Reversal of the SF–Density Relation in a Massive, X-ray-selected Galaxy Cluster at z = 1.58: Results from Herschel. Mon. Not. R. Astron. Soc. 2015, 447, L65–L69. [Google Scholar] [CrossRef] [Green Version]
- Stach, S.M.; Swinbank, A.M.; Smail, I.; Hilton, M.; Simpson, J.M.; Cooke, E.A. ALMA Pinpoints a Strong Overdensity of U/LIRGs in the Massive Cluster XCS J2215 at z = 1.46. Astrophys. J. 2017, 849, 154. [Google Scholar] [CrossRef] [Green Version]
- Moster, B.P.; Naab, T.; White, S.D.M. Galactic Star Formation and Accretion Histories from Matching Galaxies to Dark Matter Haloes. Mon. Not. R. Astron. Soc. 2013, 428, 3121–3138. [Google Scholar] [CrossRef]
- Tran, K.V.H.; Nanayakkara, T.; Yuan, T.; Kacprzak, G.G.; Glazebrook, K.; Kewley, L.J.; Momcheva, I.; Papovich, C.J.; Quadri, R.; Rudnick, G.; et al. Zfire: Galaxy cluster kinematics, H α star formation rates, and gas phase metallicities of xmm-lss J02182-05102 at zcl = 1.6233. Astrophys. J. 2015, 811, 28. [Google Scholar] [CrossRef]
- Papovich, C.; Momcheva, I.; Willmer, C.N.A.; Finkelstein, K.D.; Finkelstein, S.L.; Tran, K.V.; Brodwin, M.; Dunlop, J.S.; Farrah, D.; Khan, S.A.; et al. A Spitzer-selected Galaxy Cluster at z = 1.62. Astrophys. J. 2010, 716, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Finoguenov, A.; Ueda, Y. A Spectroscopically Confirmed X-ray Cluster at z = 1.62 with a Possible Companion in the Subaru/XMM-Newton Deep Field. Astrophys. J. 2010, 716, L152–L156. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.M.A.; Gear, W.K.; Smith, M.W.L.; Papageorgiou, A.; Eales, S.A. Revealing Dust Obscured Star Formation in CLJ1449+0856, a Cluster at Z = 2. Mon. Not. R. Astron. Soc. 2019, 486, 4304–4319. [Google Scholar] [CrossRef] [Green Version]
- Gobat, R.; Strazzullo, V.; Daddi, E.; Onodera, M.; Carollo, M.; Renzini, A.; Finoguenov, A.; Cimatti, A.; Scarlata, C.; Arimoto, N. WFC3 GRISM Confirmation of the Distant Cluster Cl J1449+0856 at Langzrang = 2.00: Quiescent and Star-forming Galaxy Populations. Astrophys. J. 2013, 776, 9. [Google Scholar] [CrossRef] [Green Version]
- Poglitsch, A.; Waelkens, C.; Geis, N.; Feuchtgruber, H.; Vandenbussche, B.; Rodriguez, L.; Krause, O.; Renotte, E.; van Hoof, C.; Saraceno, P.; et al. The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. Astron. Astrophys. 2010, 518, L2. [Google Scholar] [CrossRef] [Green Version]
- Noble, A.G.; Webb, T.M.A.; Yee, H.K.C.; Muzzin, A.; Wilson, G.; van der Burg, R.F.J.; Balogh, M.L.; Shupe, D.L. The phase space of $z\sim 1.2$ sparcs clusters: Using herschel to probe dust temperature as a function of environment and accretion history. Astrophys. J. 2016, 816, 48. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.R.; Courteau, S.; Brodwin, M.; Stanford, S.A.; Snyder, G.F.; Stern, D. The evolution of star formation activity in cluster galaxies over 0.15 <z< 1.5. Astrophys. J. 2016, 834, 53. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.R.; Brodwin, M.; Snyder, G.F.; Gonzalez, A.H.; Stanford, S.A.; Alberts, S.; Pope, A.; Stern, D.; Zeimann, G.R.; Chary, R.R.; et al. Star formation in high-redshift cluster ellipticals. Astrophys. J. 2015, 800, 107. [Google Scholar] [CrossRef] [Green Version]
- Alberts, S.; Pope, A.; Brodwin, M.; Chung, S.M.; Cybulski, R.; Dey, A.; Eisenhardt, P.R.M.; Galametz, A.; Gonzalez, A.H.; Jannuzi, B.T.; et al. Star formation and agn activity in galaxy clusters from z = 1–2: A multi-wavelength analysis featuring herschel/pacs. Astrophys. J. 2016, 825, 72. [Google Scholar] [CrossRef] [Green Version]
- Cooke, E.A.; Smail, I.; Stach, S.M.; Swinbank, A.M.; Bower, R.G.; Chen, C.C.; Koyama, Y.; Thomson, A.P. The Submillimetre View of Massive Clusters at Z ~0.8–1.6. Mon. Not. R. Astron. Soc. 2019, 486, 3047–3058. [Google Scholar] [CrossRef]
- Lemaux, B.C.; Cucciati, O.; Le Fèvre, O.; Zamorani, G.; Lubin, L.M.; Hathi, N.; Ilbert, O.; Pelliccia, D.; Amorín, R.; Bardelli, S.; et al. The VIMOS Ultra Deep Survey: The Reversal of the Star-Formation Rate—Density Relation at 2 < z < 5. Astron. Astrophys. 2022, 662, A33. [Google Scholar] [CrossRef]
- Le Fèvre, O.; Tasca, L.A.M.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; et al. The VIMOS Ultra-Deep Survey: ~10 000 Galaxies with Spectroscopic Redshifts to Study Galaxy Assembly at Early Epochs 2 < z ≃ 6. Astron. Astrophys. 2015, 576, A79. [Google Scholar] [CrossRef] [Green Version]
- Cucciati, O.; Lemaux, B.C.; Zamorani, G.; Le Fèvre, O.; Tasca, L.A.M.; Hathi, N.P.; Lee, K.G.; Bardelli, S.; Cassata, P.; Garilli, B.; et al. The Progeny of a Cosmic Titan: A Massive Multi-Component Proto-Supercluster in Formation at z = 2.45 in VUDS. Astron. Astrophys. 2018, 619, A49. [Google Scholar] [CrossRef] [Green Version]
- Chartab, N.; Mobasher, B.; Darvish, B.; Finkelstein, S.; Guo, Y.; Kodra, D.; Lee, K.S.; Newman, J.A.; Pacifici, C.; Papovich, C.; et al. Large-Scale Structures in the CANDELS Fields: The Role of the Environment in Star Formation Activity. Astrophys. J. 2020, 890, 7. [Google Scholar] [CrossRef]
- Hwang, H.S.; Shin, J.; Song, H. Evolution of Star Formation Rate–Density Relation over Cosmic Time in a Simulated Universe: The Observed Reversal Reproduced. Mon. Not. R. Astron. Soc. 2019, 489, 339–348. [Google Scholar] [CrossRef]
- De Lucia, G.; Kauffmann, G.; White, S.D.M. Chemical Enrichment of the Intracluster and Intergalactic Medium in a Hierarchical Galaxy Formation Model. Mon. Not. R. Astron. Soc. 2004, 349, 1101–1116. [Google Scholar] [CrossRef] [Green Version]
- Tonnesen, S.; Cen, R. On the Reversal of Star Formation Rate-Density Relation at z = 1: Insights from Simulations. Astrophys. J. 2014, 788, 133. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.A.; Ivison, R.J.; Dunlop, J.S.; Smail, I.R.; Percival, W.J.; Hughes, D.H.; Rottgering, H.J.A.; van Breugel, W.J.M.; Reuland, M. The Formation of Cluster Elliptical Galaxies as Revealed by Extensive Star Formation. arXiv 2003, arXiv:0309495. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, R.H.; Tinker, J.L. The Connection Between Galaxies and Their Dark Matter Halos. Annu. Rev. Astron. Astrophys. 2018, 56, 435–487. [Google Scholar] [CrossRef] [Green Version]
- Daddi, E.; Dannerbauer, H.; Krips, M.; Walter, F.; Dickinson, M.; Elbaz, D.; Morrison, G.E. A CO Emission Line from the Optical and Near-IR Undetected Submillimeter Galaxy GN10. Astrophys. J. 2009, 695, L176–L180. [Google Scholar] [CrossRef]
- Walter, F.; Decarli, R.; Carilli, C.; Bertoldi, F.; Cox, P.; da Cunha, E.; Daddi, E.; Dickinson, M.; Downes, D.; Elbaz, D.; et al. The Intense Starburst HDF 850.1 in a Galaxy Overdensity at z ≈ 5.2 in the Hubble Deep Field. Nature 2012, 486, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Pope, A.; Borys, C.; Scott, D.; Conselice, C.; Dickinson, M.; Mobasher, B. The Hubble Deep Field North SCUBA Super-map—III. Optical and near-Infrared Properties of Submillimetre Galaxies. Mon. Not. R. Astron. Soc. 2005, 358, 149–167. [Google Scholar] [CrossRef] [Green Version]
- Hodge, J.A.; Carilli, C.L.; Walter, F.; Daddi, E.; Riechers, D. High-Resolution Spectroscopic Imaging of CO in a z = 4.05 Proto-cluster. Astrophys. J. 2013, 776, 22. [Google Scholar] [CrossRef] [Green Version]
- Riechers, D.A.; Capak, P.L.; Carilli, C.L.; Cox, P.; Neri, R.; Scoville, N.Z.; Schinnerer, E.; Bertoldi, F.; Yan, L. A Massive Molecular Gas Reservoir in the z = 5.3 Submillimeter Galaxy AzTEC-3. Astrophys. J. 2010, 720, L131–L136. [Google Scholar] [CrossRef] [Green Version]
- Pavesi, R.; Riechers, D.A.; Sharon, C.E.; Smolčić, V.; Faisst, A.L.; Schinnerer, E.; Carilli, C.L.; Capak, P.L.; Scoville, N.; Stacey, G.J. Hidden in Plain Sight: A Massive, Dusty Starburst in a Galaxy Protocluster at z = 5.7 in the COSMOS Field. Astrophys. J. 2018, 861, 43. [Google Scholar] [CrossRef] [Green Version]
- Bacon, R.; Accardo, M.; Adjali, L.; Anwand, H.; Bauer, S.; Biswas, I.; Blaizot, J.; Boudon, D.; Brau-Nogue, S.; Brinchmann, J.; et al. The MUSE second-generation VLT instrument. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy III, San Diego, CA, USA, 14 July 2010; McLean, I.S., Ramsay, S.K., Takami, H., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume 7735, p. 773508. [Google Scholar] [CrossRef]
- Shimakawa, R.; Kodama, T.; Hayashi, M.; Tanaka, I.; Matsuda, Y.; Kashikawa, N.; Shibuya, T.; Tadaki, K.I.; Koyama, Y.; Suzuki, T.L.; et al. Direct Evidence for Lyboldsymbol{alpha } Depletion in the Protocluster Core. Mon. Not. R. Astron. Soc. 2017, 468, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Yamada, T.; Hayashino, T.; Tamura, H.; Yamauchi, R.; Ajiki, M.; Fujita, S.S.; Murayama, T.; Nagao, T.; Ohta, K.; et al. A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1. Astron. J. 2004, 128, 569–584. [Google Scholar] [CrossRef] [Green Version]
- Geach, J.E.; Dunlop, J.S.; Halpern, M.; Smail, I.; van der Werf, P.; Alexander, D.M.; Almaini, O.; Aretxaga, I.; Arumugam, V.; Asboth, V.; et al. The SCUBA-2 Cosmology Legacy Survey: 850 Mm Maps, Catalogues and Number Counts. Mon. Not. R. Astron. Soc. 2017, 465, 1789–1806. [Google Scholar] [CrossRef] [Green Version]
- Behroozi, P.S.; Marchesini, D.; Wechsler, R.H.; Muzzin, A.; Papovich, C.; Stefanon, M. Using Cumulative Number Densities to Compare Galaxies across Cosmic Time. Astrophys. J. 2013, 777, L10. [Google Scholar] [CrossRef]
- Lemaux, B.C.; Cucciati, O.; Tasca, L.A.M.; Le Fèvre, O.; Zamorani, G.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; et al. VIMOS Ultra-Deep Survey (VUDS): Witnessing the Assembly of a Massive Cluster at z ~ 3.3. Astron. Astrophys. 2014, 572, A41. [Google Scholar] [CrossRef] [Green Version]
- Mihos, J.C.; Hernquist, L. Gasdynamics and Starbursts in Major Mergers. Astrophys. J. 1996, 464, 641. [Google Scholar] [CrossRef]
- Swinbank, A.M.; Simpson, J.M.; Smail, I.; Harrison, C.M.; Hodge, J.A.; Karim, A.; Walter, F.; Alexander, D.M.; Brandt, W.N.; de Breuck, C.; et al. An ALMA Survey of Sub-Millimetre Galaxies in the Extended Chandra Deep Field South: The Far-Infrared Properties of SMGs. Mon. Not. R. Astron. Soc. 2014, 438, 1267–1287. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, D.; Turk, M.; Feldmann, R.; Robitaille, T.; Hopkins, P.; Thompson, R.; Hayward, C.; Ball, D.; Faucher-Giguère, C.A.; Kereš, D. The Formation of Submillimetre-Bright Galaxies from Gas Infall over a Billion Years. Nature 2015, 525, 496–499. [Google Scholar] [CrossRef]
- Martizzi, D.; Vogelsberger, M.; Artale, M.C.; Haider, M.; Torrey, P.; Marinacci, F.; Nelson, D.; Pillepich, A.; Weinberger, R.; Hernquist, L.; et al. Baryons in the Cosmic Web of IllustrisTNG—I: Gas in Knots, Filaments, Sheets, and Voids. Mon. Not. R. Astron. Soc. 2019, 486, 3766–3787. [Google Scholar] [CrossRef]
- Umehata, H.; Fumagalli, M.; Smail, I.; Matsuda, Y.; Swinbank, A.M.; Cantalupo, S.; Sykes, C.; Ivison, R.J.; Steidel, C.C.; Shapley, A.E.; et al. Gas Filaments of the Cosmic Web Located around Active Galaxies in a Proto-Cluster. Science 2019, 366, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Daddi, E.; Valentino, F.; Rich, R.M.; Neill, J.D.; Gronke, M.; O’Sullivan, D.; Elbaz, D.; Bournaud, F.; Finoguenov, A.; Marchal, A.; et al. Three Lyman-α-emitting Filaments Converging to a Massive Galaxy Group at z = 2.91: Discussing the Case for Cold Gas Infall. Astron. Astrophys. 2021, 649, A78. [Google Scholar] [CrossRef]
- Christensen, C.R.; Davé, R.; Governato, F.; Pontzen, A.; Brooks, A.; Munshi, F.; Quinn, T.; Wadsley, J. In-N-Out: The Gas Cycle from Dwarfs to Spiral Galaxies. Astrophys. J. 2016, 824, 57. [Google Scholar] [CrossRef]
- Walter, F.; Carilli, C.; Neeleman, M.; Decarli, R.; Popping, G.; Somerville, R.S.; Aravena, M.; Bertoldi, F.; Boogaard, L.; Cox, P.; et al. The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space. Astrophys. J. 2020, 902, 111. [Google Scholar] [CrossRef]
- Kereš, D.; Katz, N.; Weinberg, D.H.; Davé, R. How Do Galaxies Get Their Gas? Mon. Not. R. Astron. Soc. 2005, 363, 2–28. [Google Scholar] [CrossRef]
- Shi, K.; Toshikawa, J.; Lee, K.S.; Wang, T.; Cai, Z.; Fang, T. Accelerated Galaxy Growth and Environmental Quenching in a Protocluster at z = 3.24. Astrophys. J. 2021, 911, 46. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455. [Google Scholar] [CrossRef] [Green Version]
- Voit, G.M.; Donahue, M. An Observationally Motivated Framework for AGN Heating of Cluster Cores. Astrophys. J. 2005, 634, 955–963. [Google Scholar] [CrossRef]
- Kauffmann, G.; White, S.D.M.; Heckman, T.M.; Ménard, B.; Brinchmann, J.; Charlot, S.; Tremonti, C.; Brinkmann, J. The Environmental Dependence of the Relations between Stellar Mass, Structure, Star Formation and Nuclear Activity in Galaxies. Mon. Not. R. Astron. Soc. 2004, 353, 713–731. [Google Scholar] [CrossRef] [Green Version]
- Popesso, P.; Biviano, A. The AGN Fraction-Velocity Dispersion Relation in Clusters of Galaxies. Astron. Astrophys. 2006, 460, L23. [Google Scholar] [CrossRef] [Green Version]
- Lopes, P.A.A.; Ribeiro, A.L.B.; Rembold, S.B. NoSOCS in SDSS—VI. The Environmental Dependence of AGN in Clusters and Field in the Local Universe. Mon. Not. R. Astron. Soc. 2017, 472, 409–418. [Google Scholar] [CrossRef]
- Galametz, A.; Stern, D.; Eisenhardt, P.R.M.; Brodwin, M.; Brown, M.J.I.; Dey, A.; Gonzalez, A.H.; Jannuzi, B.T.; Moustakas, L.A.; Stanford, S.A. The Cosmic Evolution of Active Galactic Nuclei in Galaxy Clusters. Astrophys. J. 2009, 694, 1309–1316. [Google Scholar] [CrossRef] [Green Version]
- Fassbender, R.; Šuhada, R.; Nastasi, A. AGN Triggering in the Infall Regions of Distant X-ray Luminous Galaxy Clusters at 0.9 < z < 1.6. Adv. Astron. 2012, 2012, 138380. [Google Scholar] [CrossRef] [Green Version]
- Martini, P.; Sivakoff, G.R.; Mulchaey, J.S. The Evolution of Active Galactic Nuclei in Clusters of Galaxies to Redshift 1.3. Astrophys. J. 2009, 701, 66–85. [Google Scholar] [CrossRef] [Green Version]
- Martini, P.; Miller, E.D.; Brodwin, M.; Stanford, S.A.; Gonzalez, A.H.; Bautz, M.; Hickox, R.C.; Stern, D.; Eisenhardt, P.R.; Galametz, A.; et al. The Cluster and Field Galaxy Active Galactic Nucleus Fraction at z = 1–1.5: Evidence for a Reversal of the Local Anticorrelation between Environment and AGN Fraction. Astrophys. J. 2013, 768, 1. [Google Scholar] [CrossRef]
- Bufanda, E.; Hollowood, D.; Jeltema, T.E.; Rykoff, E.S.; Rozo, E.; Martini, P.; Abbott, T.M.C.; Abdalla, F.B.; Allam, S.; Banerji, M.; et al. The Evolution of Active Galactic Nuclei in Clusters of Galaxies from the Dark Energy Survey. Mon. Not. R. Astron. Soc. 2017, 465, 2531–2539. [Google Scholar] [CrossRef] [Green Version]
- Kocevski, D.D.; Lubin, L.M.; Gal, R.; Lemaux, B.C.; Fassnacht, C.D.; Squires, G.K. Chandra Observations of the Cl1604 Supercluster at z = 0.9: Evidence for an Overdensity of Active Galactic Nuclei. Astrophys. J. 2009, 690, 295–318. [Google Scholar] [CrossRef] [Green Version]
- Digby-North, J.A.; Nandra, K.; Laird, E.S.; Steidel, C.C.; Georgakakis, A.; Bogosavljević, M.; Erb, D.K.; Shapley, A.E.; Reddy, N.A.; Aird, J. Excess AGN Activity in the z = 2.30 Protocluster in HS 1700+64. Mon. Not. R. Astron. Soc. 2010, 407, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.; Toshikawa, J.; Kashikawa, N.; Chiang, Y.K.; Overzier, R.; Uchiyama, H.; Clements, D.L.; Alexander, D.M.; Matsuda, Y.; Kodama, T.; et al. Planck Far-infrared Detection of Hyper Suprime-Cam Protoclusters at z ∼ 4: Hidden AGN and Star Formation Activity. Astrophys. J. 2019, 887, 214. [Google Scholar] [CrossRef] [Green Version]
- Macuga, M.; Martini, P.; Miller, E.D.; Brodwin, M.; Hayashi, M.; Kodama, T.; Koyama, Y.; Overzier, R.A.; Shimakawa, R.; Tadaki, K.i.; et al. The Fraction of Active Galactic Nuclei in the USS 1558-003 Protocluster at z = 2.53. Astrophys. J. 2019, 874, 54. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.M.; Hickox, R.C. What Drives the Growth of Black Holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef] [Green Version]
- Brandt, W.N.; Alexander, D.M. Cosmic X-ray Surveys of Distant Active Galaxies. The Demographics, Physics, and Ecology of Growing Supermassive Black Holes. Astron. Astrophys. Rev. 2015, 23, 1. [Google Scholar] [CrossRef]
- Mendez, A.J.; Coil, A.L.; Aird, J.; Diamond-Stanic, A.M.; Moustakas, J.; Blanton, M.R.; Cool, R.J.; Eisenstein, D.J.; Wong, K.C.; Zhu, G. PRIMUS: Infrared and X-Ray AGN Selection Techniques at 0.2 < z < 1.2. Astrophys. J. 2013, 770, 40. [Google Scholar] [CrossRef] [Green Version]
- Azadi, M.; Coil, A.L.; Aird, J.; Reddy, N.; Shapley, A.; Freeman, W.R.; Kriek, M.; Leung, G.C.K.; Mobasher, B.; Price, S.H.; et al. The MOSDEF Survey: AGN Multi-wavelength Identification, Selection Biases, and Host Galaxy Properties. Astrophys. J. 2017, 835, 27. [Google Scholar] [CrossRef] [Green Version]
- Lyu, J.; Alberts, S.; Rieke, G.H.; Rujopakarn, W. AGN Selection and Demographics in GOODS-S/HUDF from X-ray to Radio. arXiv 2022, arXiv:220906219L. [Google Scholar]
- Lacy, M.; Storrie-Lombardi, L.J.; Sajina, A.; Appleton, P.N.; Armus, L.; Chapman, S.C.; Choi, P.I.; Fadda, D.; Fang, F.; Frayer, D.T.; et al. Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey. Astrophys. J. Suppl. Ser. 2004, 154, 166–169. [Google Scholar] [CrossRef]
- Stern, D.; Eisenhardt, P.; Gorjian, V.; Kochanek, C.S.; Caldwell, N.; Eisenstein, D.; Brodwin, M.; Brown, M.J.I.; Cool, R.; Dey, A.; et al. Mid-Infrared Selection of Active Galaxies. Astrophys. J. 2005, 631, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.; Assef, R.J.; Benford, D.J.; Blain, A.; Cutri, R.; Dey, A.; Eisenhardt, P.; Griffith, R.L.; Jarrett, T.H.; Lake, S.; et al. Mid-Infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS. Astrophys. J. 2012, 753, 30. [Google Scholar] [CrossRef] [Green Version]
- Assef, R.J.; Kochanek, C.S.; Brodwin, M.; Brown, M.J.I.; Caldwell, N.; Cool, R.J.; Eisenhardt, P.; Eisenstein, D.; Gonzalez, A.H.; Jannuzi, B.T.; et al. Low-Resolution Spectral Templates for Galaxies from 0.2 to 10 Mm. Astrophys. J. 2008, 676, 286–303. [Google Scholar] [CrossRef] [Green Version]
- Assef, R.J.; Kochanek, C.S.; Brodwin, M.; Cool, R.; Forman, W.; Gonzalez, A.H.; Hickox, R.C.; Jones, C.; Le Floc’h, E.; Moustakas, J.; et al. Low-Resolution Spectral Templates for Active Galactic Nuclei and Galaxies from 0.03 to 30 Mm. Astrophys. J. 2010, 713, 970–985. [Google Scholar] [CrossRef] [Green Version]
- Treister, E.; Urry, C.M.; Virani, S. The Space Density of Compton-Thick Active Galactic Nucleus and the X-Ray Background. Astrophys. J. 2009, 696, 110–120. [Google Scholar] [CrossRef]
- Akylas, A.; Georgakakis, A.; Georgantopoulos, I.; Brightman, M.; Nandra, K. Constraining the Fraction of Compton-thick AGN in the Universe by Modelling the Diffuse X-ray Background Spectrum. Astron. Astrophys. 2012, 546, A98. [Google Scholar] [CrossRef] [Green Version]
- Akylas, A.; Georgantopoulos, I.; Ranalli, P.; Gkiokas, E.; Corral, A.; Lanzuisi, G. Compton-Thick AGN in the 70-Month Swift-BAT All-Sky Hard X-ray Survey: A Bayesian Approach. Astron. Astrophys. 2016, 594, A73. [Google Scholar] [CrossRef] [Green Version]
- Georgantopoulos, I.; Akylas, A. NuSTAR Observations of Heavily Obscured Swift/BAT AGNs: Constraints on the Compton-thick AGNs Fraction. Astron. Astrophys. 2019, 621, A28. [Google Scholar] [CrossRef] [Green Version]
- Mishra, H.D.; Dai, X. Lower AGN Abundance in Galaxy Clusters at z < 0.5. Astron. J. 2020, 159, 69. [Google Scholar] [CrossRef] [Green Version]
- Hickox, R.C.; Jones, C.; Forman, W.R.; Murray, S.S.; Kochanek, C.S.; Eisenstein, D.; Jannuzi, B.T.; Dey, A.; Brown, M.J.I.; Stern, D.; et al. Host Galaxies, Clustering, Eddington Ratios, and Evolution of Radio, X-ray, and Infrared-Selected AGNs. Astrophys. J. 2009, 696, 891–919. [Google Scholar] [CrossRef]
- Brodwin, M.; Dey, A.; Brown, M.J.I.; Pope, A.; Armus, L.; Bussmann, S.; Desai, V.; Jannuzi, B.T.; Le Floc’h, E. Clustering of Dust-Obscured Galaxies at z ~ 2. Astrophys. J. 2008, 687, L65. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Soifer, B.T.; Desai, V.; Brand, K.; Le Floc’h, E.; Brown, M.J.I.; Jannuzi, B.T.; Armus, L.; Bussmann, S.; Brodwin, M.; et al. A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2. Astrophys. J. 2008, 677, 943–956. [Google Scholar] [CrossRef] [Green Version]
- Ellison, S.L.; Patton, D.R.; Mendel, J.T.; Scudder, J.M. Galaxy Pairs in the Sloan Digital Sky Survey—IV. Interactions Trigger Active Galactic Nuclei. Mon. Not. R. Astron. Soc. 2011, 418, 2043–2053. [Google Scholar] [CrossRef]
- Ellison, S.L.; Mendel, J.T.; Scudder, J.M.; Patton, D.R.; Palmer, M.J.D. Galaxy Pairs in the Sloan Digital Sky Survey—VII. The Merger-Luminous Infrared Galaxy Connection. Mon. Not. R. Astron. Soc. 2013, 430, 3128–3141. [Google Scholar] [CrossRef] [Green Version]
- Ellison, S.L.; Patton, D.R.; Hickox, R.C. Galaxy Pairs in the Sloan Digital Sky Survey—XII. The Fuelling Mechanism of Low-Excitation Radio-Loud AGN. Mon. Not. R. Astron. Soc. 2015, 451, L35–L39. [Google Scholar] [CrossRef] [Green Version]
- Ellison, S.L.; Viswanathan, A.; Patton, D.R.; Bottrell, C.; McConnachie, A.W.; Gwyn, S.; Cuillandre, J.C. A Definitive Merger-AGN Connection at Z~0 with CFIS: Mergers Have an Excess of AGN and AGN Hosts Are More Frequently Disturbed. Mon. Not. R. Astron. Soc. 2019, 487, 2491–2504. [Google Scholar] [CrossRef]
- Weston, M.E.; McIntosh, D.H.; Brodwin, M.; Mann, J.; Cooper, A.; McConnell, A.; Nielsen, J.L. Incidence of WISE -Selected Obscured AGNs in Major Mergers and Interactions from the SDSS. Mon. Not. R. Astron. Soc. 2017, 464, 3882–3906. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, T.; Lacy, M.; Becker, R.H. Evidence for Quasar Activity Triggered by Galaxy Mergers in HST Observations of Dust-reddened Quasars. Astrophys. J. 2008, 674, 80–96. [Google Scholar] [CrossRef] [Green Version]
- Glikman, E.; Simmons, B.; Mailly, M.; Schawinski, K.; Urry, C.M.; Lacy, M. Major Mergers Host the Most-luminous Red Quasars at z ~ 2: A Hubble Space Telescope WFC3/IR Study. Astrophys. J. 2015, 806, 218. [Google Scholar] [CrossRef] [Green Version]
- Donley, J.L.; Kartaltepe, J.; Kocevski, D.; Salvato, M.; Santini, P.; Suh, H.; Civano, F.; Koekemoer, A.M.; Trump, J.; Brusa, M.; et al. Evidence for Merger-driven Growth in Luminous, High-z, Obscured AGNs in the CANDELS/COSMOS Field. Astrophys. J. 2018, 853, 63. [Google Scholar] [CrossRef]
- Blecha, L.; Snyder, G.F.; Satyapal, S.; Ellison, S.L. The Power of Infrared AGN Selection in Mergers: A Theoretical Study. Mon. Not. R. Astron. Soc. 2018, 478, 3056–3071. [Google Scholar] [CrossRef]
- Decarli, R.; Walter, F.; Gónzalez-López, J.; Aravena, M.; Boogaard, L.; Carilli, C.; Cox, P.; Daddi, E.; Popping, G.; Riechers, D.; et al. The ALMA Spectroscopic Survey in the HUDF: CO Luminosity Functions and the Molecular Gas Content of Galaxies through Cosmic History. Astrophys. J. 2019, 882, 138. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Aravena, M.; Boogaard, L.; Carilli, C.; González-López, J.; Walter, F.; Cortes, P.C.; Cox, P.; da Cunha, E.; Daddi, E.; et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Multiband Constraints on Line-luminosity Functions and the Cosmic Density of Molecular Gas. Astrophys. J. 2020, 902, 110. [Google Scholar] [CrossRef]
- Whitaker, K.E.; Franx, M.; Leja, J.; van Dokkum, P.G.; Henry, A.; Skelton, R.E.; Fumagalli, M.; Momcheva, I.G.; Brammer, G.B.; Labbé, I.; et al. Constraining the Low-mass Slope of the Star Formation Sequence at 0.5 < z < 2.5. Astrophys. J. 2014, 795, 104. [Google Scholar] [CrossRef] [Green Version]
- Speagle, J.S.; Steinhardt, C.L.; Capak, P.L.; Silverman, J.D. A Highly Consistent Framework for the Evolution of the Star-Forming “Main Sequence” from z ~ 0–6. Astrophys. J. Suppl. Ser. 2014, 214, 15. [Google Scholar] [CrossRef] [Green Version]
- Geach, J.E.; Smail, I.; Moran, S.M.; MacArthur, L.A.; Lagos, C.d.P.; Edge, A.C. On the Evolution of the Molecular Gas Fraction of Star-Forming Galaxies. Astrophys. J. 2011, 730, L19. [Google Scholar] [CrossRef]
- Genzel, R.; Tacconi, L.J.; Lutz, D.; Saintonge, A.; Berta, S.; Magnelli, B.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; et al. Combined CO and Dust Scaling Relations of Depletion Time and Molecular Gas Fractions with Cosmic Time, Specific Star-formation Rate, and Stellar Mass. Astrophys. J. 2015, 800, 20. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N.M.; Lilly, S.; et al. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. Astrophys. J. 2018, 853, 179. [Google Scholar] [CrossRef]
- Davé, R.; Finlator, K.; Oppenheimer, B.D. An Analytic Model for the Evolution of the Stellar, Gas and Metal Content of Galaxies. Mon. Not. R. Astron. Soc. 2012, 421, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Saintonge, A.; Catinella, B.; Cortese, L.; Genzel, R.; Giovanelli, R.; Haynes, M.P.; Janowiecki, S.; Kramer, C.; Lutz, K.A.; Schiminovich, D.; et al. Molecular and Atomic Gas along and across the Main Sequence of Star-Forming Galaxies. Mon. Not. R. Astron. Soc. 2016, 462, 1749–1756. [Google Scholar] [CrossRef]
- Saintonge, A.; Catinella, B.; Tacconi, L.J.; Kauffmann, G.; Genzel, R.; Cortese, L.; Davé, R.; Fletcher, T.J.; Graciá-Carpio, J.; Kramer, C.; et al. xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies. Astrophys. J. Suppl. Ser. 2017, 233, 22. [Google Scholar] [CrossRef] [Green Version]
- Bolatto, A.D.; Wong, T.; Utomo, D.; Blitz, L.; Vogel, S.N.; Sánchez, S.F.; Barrera-Ballesteros, J.; Cao, Y.; Colombo, D.; Dannerbauer, H.; et al. The EDGE-CALIFA Survey: Interferometric Observations of 126 Galaxies with CARMA. Astrophys. J. 2017, 846, 159. [Google Scholar] [CrossRef]
- Lin, L.; Pan, H.A.; Ellison, S.L.; Belfiore, F.; Shi, Y.; Sánchez, S.F.; Hsieh, B.C.; Rowlands, K.; Ramya, S.; Thorp, M.D.; et al. The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence. Astrophys. J. 2019, 884, L33. [Google Scholar] [CrossRef]
- Ellison, S.L.; Thorp, M.D.; Lin, L.; Pan, H.A.; Bluck, A.F.L.; Scudder, J.M.; Teimoorinia, H.; Sánchez, S.F.; Sargent, M. The ALMaQUEST Survey—III. Scatter in the Resolved Star-Forming Main Sequence Is Primarily Due to Variations in Star Formation Efficiency. Mon. Not. R. Astron. Soc. 2020, 493, L39–L43. [Google Scholar] [CrossRef]
- Baars, J.W.M.; Hooghoudt, B.G.; Mezger, P.G.; de Jonge, M.J. The IRAM 30-m Millimeter Radio Telescope on Pico Veleta, Spain. Astron. Astrophys. 1987, 175, 319. [Google Scholar]
- Saintonge, A.; Kauffmann, G.; Kramer, C.; Tacconi, L.J.; Buchbender, C.; Catinella, B.; Fabello, S.; Graciá-Carpio, J.; Wang, J.; Cortese, L.; et al. COLD GASS, an IRAM Legacy Survey of Molecular Gas in Massive Galaxies—I. Relations between H2, H I, Stellar Content and Structural Properties. Mon. Not. R. Astron. Soc. 2011, 415, 32–60. [Google Scholar] [CrossRef] [Green Version]
- Tacconi, L.J.; Neri, R.; Genzel, R.; Combes, F.; Bolatto, A.; Cooper, M.C.; Wuyts, S.; Bournaud, F.; Burkert, A.; Comerford, J.; et al. Phibss: Molecular Gas Content and Scaling Relations in z ~ 1-3 Massive, Main-sequence Star-forming Galaxies. Astrophys. J. 2013, 768, 74. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, J.; Combes, F.; Tacconi, L.J.; Genzel, R.; Garcia-Burillo, S.; Neri, R.; Contini, T.; Bolatto, A.; Lilly, S.; Salomé, P.; et al. PHIBSS2: Survey Design and z = 0.5–0.8 Results. Molecular Gas Reservoirs during the Winding-down of Star Formation. Astron. Astrophys. 2019, 622, A105. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S.; Koyama, Y.; Yamashita, T.; Morokuma-Matsui, K.; Matsuhara, H.; Nakagawa, T.; Hayashi, M.; Kodama, T.; Shimakawa, R.; Suzuki, T.L.; et al. A Universal Correlation between Star Formation Activity and Molecular Gas Properties Across Environments. Astrophys. J. 2017, 847, 137. [Google Scholar] [CrossRef] [Green Version]
- Bolatto, A.D.; Wolfire, M.; Leroy, A.K. The CO-to-H2 Conversion Factor. Annu. Rev. Astron. Astrophys. 2013, 51, 207. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, D.; Krumholz, M.R. A Theory for the Excitation of CO in Star-Forming Galaxies. Mon. Not. R. Astron. Soc. 2014, 442, 1411–1428. [Google Scholar] [CrossRef]
- Papadopoulos, P.P.; van der Werf, P.P.; Xilouris, E.M.; Isaak, K.G.; Gao, Y.; Mühle, S. The Molecular Gas in Luminous Infrared Galaxies—I. CO Lines, Extreme Physical Conditions and Their Drivers. Mon. Not. R. Astron. Soc. 2012, 426, 2601–2629. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, D.; Krumholz, M.R.; Ostriker, E.C.; Hernquist, L. A General Model for the CO-H2 Conversion Factor in Galaxies with Applications to the Star Formation Law: The Effect of Galactic Environment on XCO. Mon. Not. R. Astron. Soc. 2012, 421, 3127–3146. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Tacconi, L.J.; Combes, F.; Bolatto, A.; Neri, R.; Sternberg, A.; Cooper, M.C.; Bouché, N.; Bournaud, F.; Burkert, A.; et al. The metallicity dependence of the co → H 2 conversion factor in z ⩾ 1 star-forming galaxies. Astrophys. J. 2012, 746, 69. [Google Scholar] [CrossRef] [Green Version]
- Janowiecki, S.; Cortese, L.; Catinella, B.; Goodwin, A.J. Lurking Systematics in Predicting Galaxy Cold Gas Masses Using Dust Luminosities and Star Formation Rates. Mon. Not. R. Astron. Soc. 2018, 476, 1390–1404. [Google Scholar] [CrossRef] [Green Version]
- Draine, B.T.; Li, A. Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era. Astrophys. J. 2007, 657, 810–837. [Google Scholar] [CrossRef] [Green Version]
- Dunne, L.; Maddox, S.J.; Papadopoulos, P.P.; Ivison, R.J.; Gomez, H.L. Dust, CO and [CI]: Cross-calibration of Molecular Gas Mass Tracers in Metal-Rich Galaxies across Cosmic Time. Mon. Not. R. Astron. Soc. 2022, 517, 962–999. [Google Scholar] [CrossRef]
- Leroy, A.K.; Bolatto, A.; Gordon, K.; Sandstrom, K.; Gratier, P.; Rosolowsky, E.; Engelbracht, C.W.; Mizuno, N.; Corbelli, E.; Fukui, Y.; et al. The CO-to-H2 Conversion Factor from Infrared Dust Emission across the Local Group. Astrophys. J. 2011, 737, 12. [Google Scholar] [CrossRef] [Green Version]
- Sandstrom, K.M.; Leroy, A.K.; Walter, F.; Bolatto, A.D.; Croxall, K.V.; Draine, B.T.; Wilson, C.D.; Wolfire, M.; Calzetti, D.; Kennicutt, R.C.; et al. The CO-to-H2 Conversion Factor and Dust-to-gas Ratio on Kiloparsec Scales in Nearby Galaxies. Astrophys. J. 2013, 777, 5. [Google Scholar] [CrossRef] [Green Version]
- Eales, S.; Smith, M.W.L.; Auld, R.; Baes, M.; Bendo, G.J.; Bianchi, S.; Boselli, A.; Ciesla, L.; Clements, D.; Cooray, A.; et al. Can Dust Emission Be Used to Estimate the Mass of the Interstellar Medium in Galaxies—A Pilot Project with the Herschel Reference Survey. Astrophys. J. 2012, 761, 168. [Google Scholar] [CrossRef] [Green Version]
- Kaasinen, M.; Scoville, N.; Walter, F.; Da Cunha, E.; Popping, G.; Pavesi, R.; Darvish, B.; Casey, C.M.; Riechers, D.A.; Glover, S. The Molecular Gas Reservoirs of z ∼ 2 Galaxies: A Comparison of CO(1-0) and Dust-based Molecular Gas Masses. Astrophys. J. 2019, 880, 15. [Google Scholar] [CrossRef]
- Groves, B.A.; Schinnerer, E.; Leroy, A.; Galametz, M.; Walter, F.; Bolatto, A.; Hunt, L.; Dale, D.; Calzetti, D.; Croxall, K.; et al. Dust Continuum Emission as a Tracer of Gas Mass in Galaxies. Astrophys. J. 2015, 799, 96. [Google Scholar] [CrossRef] [Green Version]
- Roman-Duval, J.; Bot, C.; Chastenet, J.; Gordon, K. Dust Abundance Variations in the Magellanic Clouds: Probing the Life-cycle of Metals with All-sky Surveys. Astrophys. J. 2017, 841, 72. [Google Scholar] [CrossRef] [Green Version]
- Gould, R.J.; Salpeter, E.E. The Interstellar Abundance of the Hydrogen Molecule. I. Basic Processes. Astrophys. J. 1963, 138, 393. [Google Scholar] [CrossRef]
- Le Bourlot, J.; Le Petit, F.; Pinto, C.; Roueff, E.; Roy, F. Surface Chemistry in the Interstellar Medium. I. H2 Formation by Langmuir-Hinshelwood and Eley-Rideal Mechanisms. Astron. Astrophys. 2012, 541, A76. [Google Scholar] [CrossRef] [Green Version]
- Cortese, L.; Bekki, K.; Boselli, A.; Catinella, B.; Ciesla, L.; Hughes, T.M.; Baes, M.; Bendo, G.J.; Boquien, M.; de Looze, I.; et al. The Selective Effect of Environment on the Atomic and Molecular Gas-to-Dust Ratio of Nearby Galaxies in the Herschel Reference Survey. Mon. Not. R. Astron. Soc. 2016, 459, 3574–3584. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, H.; Kuno, N.; Sofue, Y.; Sato, N.; Nakai, N.; Shioya, Y.; Tosaki, T.; Onodera, S.; Sorai, K.; Egusa, F.; et al. Environmental Effects on Gaseous Disks of the Virgo Spiral Galaxies. Astrophys. J. 2006, 651, 804–810. [Google Scholar] [CrossRef]
- Henderson, B.; Bekki, K. Significant Enhancement of H2 Formation in Disk Galaxies under Strong Ram Pressure. Astrophys. J. 2016, 822, L33. [Google Scholar] [CrossRef] [Green Version]
- Haynes, M.P.; Giovanelli, R.; Chincarini, G.L. The Influence of Envirionment on the H I Content of Galaxies. Annu. Rev. Astron. Astrophys. 1984, 22, 445–470. [Google Scholar] [CrossRef]
- Davies, R.D.; Lewis, B.M. Neutral Hydrogen in Virgo Cluster Galaxies. Mon. Not. R. Astron. Soc. 1973, 165, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Haynes, M.P.; Giovanelli, R. Neutral Hydrogen in Isolated Galaxies. IV. Results for the Arecibo Sample. Astron. J. 1984, 89, 758–800. [Google Scholar] [CrossRef]
- Giovanelli, R.; Haynes, M.P. Gas Deficiency in Cluster Galaxies: A Comparison of Nine Clusters. Astrophys. J. 1985, 292, 404–425. [Google Scholar] [CrossRef]
- Wong, T.; Blitz, L. The Relationship between Gas Content and Star Formation in Molecule-rich Spiral Galaxies. Astrophys. J. 2002, 569, 157–183. [Google Scholar] [CrossRef] [Green Version]
- Kenney, J.D.P.; Young, J.S. The Effects of Environment on the Molecular and Atomic Gas Properties of Large Virgo Cluster Spirals. Astrophys. J. 1989, 344, 171. [Google Scholar] [CrossRef]
- Stark, A.A.; Knapp, G.R.; Bally, J.; Wilson, R.W.; Penzias, A.A.; Rowe, H.E. Molecules in Galaxies. III. The Virgo Cluster. Astrophys. J. 1986, 310, 660. [Google Scholar] [CrossRef]
- Boselli, A. Multifrequency Windows on Spiral Galaxies. IV. Gas Content and Star Formation in the Virgo Cluster. Astron. Astrophys. 1994, 292, 1–12. [Google Scholar]
- Boselli, A.; Lequeux, J.; Gavazzi, G. Molecular Gas in Normal Late-Type Galaxies. Astron. Astrophys. 2002, 384, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Casoli, F.; Dickey, J.; Kazes, I.; Boselli, A.; Gavazzi, P.; Baumgardt, K. H I, H_2_ and Star Formation in Spiral Galaxies in the Region of the Coma Supercluster. Astron. Astrophys. 1996, 309, 43–58. [Google Scholar]
- Casoli, F.; Boisse, P.; Combes, F.; Dupraz, C. Are HI-deficient Galaxies of the Coma Supercluster Deficient in Moleculargas? Astron. Astrophys. 1991, 249, 359. [Google Scholar]
- Boselli, A.; Gavazzi, G.; Lequeux, J.; Buat, V.; Casoli, F.; Dickey, J.; Donas, J. The Molecular Gas Content of Spiral Galaxies in the Coma/A1367 Supercluster. Astron. Astrophys. 1997, 327, 522–538. [Google Scholar]
- Horellou, C.; Casoli, F.; Dupraz, C. The CO and HI Emission of Spiral and Lenticular Galaxies in the Fornax Cluster. Astron. Astrophys. 1995, 303, 361. [Google Scholar]
- Young, J.S.; Xie, S.; Kenney, J.D.P.; Rice, W.L. Global Properties of Infrared Bright Galaxies. Astrophys. J. Suppl. Ser. 1989, 70, 699. [Google Scholar] [CrossRef]
- Rengarajan, T.N.; Iyengar, K.V.K. Are Virgo Cluster Spirals Deficient in Molecular Gas ? Mon. Not. R. Astron. Soc. 1992, 259, 559–562. [Google Scholar] [CrossRef] [Green Version]
- Young, J.S.; Xie, S.; Tacconi, L.; Knezek, P.; Viscuso, P.; Tacconi-Garman, L.; Scoville, N.; Schneider, S.; Schloerb, F.P.; Lord, S.; et al. The FCRAO Extragalactic CO Survey. I. The Data. Astrophys. J. Suppl. Ser. 1995, 98, 219. [Google Scholar] [CrossRef]
- Young, J.S.; Scoville, N.Z. Molecular Gas in Galaxies. Annu. Rev. Astron. Astrophys. 1991, 29, 581. [Google Scholar] [CrossRef]
- Casoli, F.; Sauty, S.; Gerin, M.; Boselli, A.; Fouque, P.; Braine, J.; Gavazzi, G.; Lequeux, J.; Dickey, J. Molecular Gas in Spiral Galaxies. Astron. Astrophys. 1998, 331, 451–462. [Google Scholar]
- Sage, L.J. Molecular Gas in Nearby Galaxies. I. CO Observations of a Distance-Limited Sample. Astron. Astrophys. 1993, 272, 123–136. [Google Scholar]
- Vollmer, B.; Balkowski, C.; Cayatte, V.; van Driel, W.; Huchtmeier, W. NGC 4569: Recent Evidence for a Past Ram Pressure Stripping Event. Astron. Astrophys. 2004, 419, 35–46. [Google Scholar] [CrossRef]
- Crowl, H.H.; Kenney, J.D.P. The Stellar Populations of Stripped Spiral Galaxies in the Virgo Cluster. Astron. J. 2008, 136, 1623–1644. [Google Scholar] [CrossRef] [Green Version]
- Leroy, A.K.; Walter, F.; Brinks, E.; Bigiel, F.; de Blok, W.J.G.; Madore, B.; Thornley, M.D. The Star Formation Efficiency in Nearby Galaxies: Measuring Where Gas Forms Stars Effectively. Astron. J. 2008, 136, 2782–2845. [Google Scholar] [CrossRef] [Green Version]
- Fumagalli, M.; Gavazzi, G. The Relationship between Gas Content and Star Formation Rate in Spiral Galaxies. Comparing the Local Field with the Virgo Cluster. Astron. Astrophys. 2008, 490, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Helfer, T.T.; Thornley, M.D.; Regan, M.W.; Wong, T.; Sheth, K.; Vogel, S.N.; Blitz, L.; Bock, D.C.J. The BIMA Survey of Nearby Galaxies (BIMA SONG). II. The CO Data. Astrophys. J. Suppl. Ser. 2003, 145, 259–327. [Google Scholar] [CrossRef] [Green Version]
- Kuno, N.; Sato, N.; Nakanishi, H.; Hirota, A.; Tosaki, T.; Shioya, Y.; Sorai, K.; Nakai, N.; Nishiyama, K.; Vila-Vilaró, B. Nobeyama CO Atlas of Nearby Spiral Galaxies: Distribution of Molecular Gas in Barred and Nonbarred Spiral Galaxies. Publ. Astron. Soc. Jpn. 2007, 59, 117–166. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.C.; Usero, A.; Brinks, E.; Boselli, A.; Cortese, L.; Bravo-Alfaro, H. CO in Late-Type Galaxies within the Central Region of Abell 1367. Mon. Not. R. Astron. Soc. 2013, 429, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Scott, T.C.; Bravo-Alfaro, H.; Brinks, E.; Caretta, C.A.; Cortese, L.; Boselli, A.; Hardcastle, M.J.; Croston, J.H.; Plauchu, I. Probing Evolutionary Mechanisms in Galaxy Clusters: Neutral Atomic Hydrogen in Abell1367. Mon. Not. R. Astron. Soc. 2010, 403, 1175–1192. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Eales, S.; Cortese, L.; Bendo, G.; Chanial, P.; Buat, V.; Davies, J.; Auld, R.; Rigby, E.; Baes, M.; et al. The Herschel Reference Survey. Publ. Astron. Soc. Pac. 2010, 122, 261. [Google Scholar] [CrossRef]
- Corbelli, E.; Bianchi, S.; Cortese, L.; Giovanardi, C.; Magrini, L.; Pappalardo, C.; Boselli, A.; Bendo, G.J.; Davies, J.; Grossi, M.; et al. The Herschel Virgo Cluster Survey. X. The Relationship between Cold Dust and Molecular Gas Content in Virgo Spirals. Astron. Astrophys. 2012, 542, A32. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Cortese, L.; Boquien, M.; Boissier, S.; Catinella, B.; Gavazzi, G.; Lagos, C.; Saintonge, A. Cold Gas Properties of the Herschel Reference Survey. III. Molecular Gas Stripping in Cluster Galaxies. Astron. Astrophys. 2014, 564, A67. [Google Scholar] [CrossRef]
- Zabel, N.; Davis, T.A.; Smith, M.W.L.; Sarzi, M.; Loni, A.; Serra, P.; Lara-López, M.A.; Cigan, P.; Baes, M.; Bendo, G.J.; et al. AlFoCS + F3D—II. Unexpectedly Low Gas-to-Dust Ratios in the Fornax Galaxy Cluster. Mon. Not. R. Astron. Soc. 2021, 502, 4723–4742. [Google Scholar] [CrossRef]
- Morokuma-Matsui, K.; Kodama, T.; Morokuma, T.; Nakanishi, K.; Koyama, Y.; Yamashita, T.; Koyama, S.; Okamoto, T. A Phase-space View of Cold-gas Properties of Virgo Cluster Galaxies: Multiple Quenching Processes at Work? Astrophys. J. 2021, 914, 145. [Google Scholar] [CrossRef]
- Castignani, G.; Combes, F.; Jablonka, P.; Finn, R.A.; Rudnick, G.; Vulcani, B.; Desai, V.; Zaritsky, D.; Salomé, P. Virgo Filaments. I. Processing of Gas in Cosmological Filaments around the Virgo Cluster. Astron. Astrophys. 2022, 657, A9. [Google Scholar] [CrossRef]
- Wilson, C.D.; Warren, B.E.; Israel, F.P.; Serjeant, S.; Attewell, D.; Bendo, G.J.; Butner, H.M.; Chanial, P.; Clements, D.L.; Golding, J.; et al. The JCMT Nearby Galaxies Legacy Survey—VIII. CO Data and the LCO(3-2)-LFIR Correlation in the SINGS Sample. Mon. Not. R. Astron. Soc. 2012, 424, 3050–3080. [Google Scholar] [CrossRef] [Green Version]
- Mok, A.; Wilson, C.D.; Golding, J.; Warren, B.E.; Israel, F.P.; Serjeant, S.; Knapen, J.H.; Sánchez-Gallego, J.R.; Barmby, P.; Bendo, G.J.; et al. The JCMT Nearby Galaxies Legacy Survey—X. Environmental Effects on the Molecular Gas and Star Formation Properties of Spiral Galaxies. Mon. Not. R. Astron. Soc. 2016, 456, 4384–4406. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.; Stroe, A.; De Breuck, C.; Mroczkowski, T.; Clements, D. Large Molecular Gas Reservoirs in Star-forming Cluster Galaxies. Astrophys. J. 2019, 882, 132. [Google Scholar] [CrossRef]
- Cybulski, R.; Yun, M.S.; Erickson, N.; De la Luz, V.; Narayanan, G.; Montaña, A.; Sánchez, D.; Zavala, J.A.; Zeballos, M.; Chung, A.; et al. Early Science with the Large Millimeter Telescope: COOL BUDHIES I—A Pilot Study of Molecular and Atomic Gas at z ≃ 0.2. Mon. Not. R. Astron. Soc. 2016, 459, 3287–3306. [Google Scholar] [CrossRef] [Green Version]
- Jablonka, P.; Combes, F.; Rines, K.; Finn, R.; Welch, T. Cold Gas in the Inner Regions of Intermediate Redshift Clusters. Astron. Astrophys. 2013, 557, A103. [Google Scholar] [CrossRef] [Green Version]
- Castignani, G.; Jablonka, P.; Combes, F.; Haines, C.P.; Rawle, T.; Jauzac, M.; Egami, E.; Krips, M.; Spérone-Longin, D.; Arnaud, M.; et al. Molecular Gas and Star Formation Activity in Luminous Infrared Galaxies in Clusters at Intermediate Redshifts. Astron. Astrophys. 2020, 640, A64. [Google Scholar] [CrossRef]
- Betti, S.K.; Pope, A.; Scoville, N.; Yun, M.S.; Aussel, H.; Kartaltepe, J.; Sheth, K. Environmental Effect on the Interstellar Medium in Galaxies across the Cosmic Web at z = 0.73. Astrophys. J. 2019, 874, 53. [Google Scholar] [CrossRef]
- Spérone-Longin, D.; Jablonka, P.; Combes, F.; Castignani, G.; Krips, M.; Rudnick, G.; Zaritsky, D.; Finn, R.A.; De Lucia, G.; Desai, V. SEEDisCS. I. Molecular Gas in Galaxy Clusters and Their Large-Scale Structure: The Case of CL1411.1-1148 at z ∼ 0.5. Astron. Astrophys. 2021, 647, A156. [Google Scholar] [CrossRef]
- Spérone-Longin, D.; Jablonka, P.; Combes, F.; Castignani, G.; Krips, M.; Rudnick, G.; Desjardins, T.; Zaritsky, D.; Finn, R.A.; De Lucia, G.; et al. SEEDisCS. II. Molecular Gas in Galaxy Clusters and Their Large-Scale Structure: Low Gas Fraction Galaxies, the Case of CL1301.7-1139. Astron. Astrophys. 2021, 654, A69. [Google Scholar] [CrossRef]
- Noble, A.G.; McDonald, M.; Muzzin, A.; Nantais, J.; Rudnick, G.; van Kampen, E.; Webb, T.M.A.; Wilson, G.; Yee, H.K.C.; Boone, K.; et al. ALMA Observations of Gas-rich Galaxies in z ∼ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments. Astrophys. J. 2017, 842, L21. [Google Scholar] [CrossRef] [Green Version]
- Noble, A.G.; Muzzin, A.; McDonald, M.; Rudnick, G.; Matharu, J.; Cooper, M.C.; Demarco, R.; Lidman, C.; Nantais, J.; van Kampen, E.; et al. Resolving CO (2-1) in z ∼ 1.6 Gas-rich Cluster Galaxies with ALMA: Rotating Molecular Gas Disks with Possible Signatures of Gas Stripping. Astrophys. J. 2019, 870, 56. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, G.; Hodge, J.; Walter, F.; Momcheva, I.; Tran, K.V.; Papovich, C.; da Cunha, E.; Decarli, R.; Saintonge, A.; Willmer, C.; et al. Deep CO(1-0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies. Astrophys. J. 2017, 849, 27. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Tadaki, K.I.; Kodama, T.; Kohno, K.; Yamaguchi, Y.; Hatsukade, B.; Koyama, Y.; Shimakawa, R.; Tamura, Y.; Suzuki, T.L. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46. Astrophys. J. 2018, 856, 118. [Google Scholar] [CrossRef] [Green Version]
- Alberts, S.; Adams, J.; Gregg, B.; Pope, A.; Williams, C.C.; Eisenhardt, P.R.M. Significant Molecular Gas Deficiencies in Star-forming Cluster Galaxies at z 1.4. Astrophys. J. 2022, 927, 235. [Google Scholar] [CrossRef]
- Williams, C.C.; Alberts, S.; Spilker, J.S.; Noble, A.G.; Stefanon, M.; Willmer, C.N.A.; Bezanson, R.; Narayanan, D.; Whitaker, K.E. ALMA Measures Molecular Gas Reservoirs Comparable to Field Galaxies in a Low-mass Galaxy Cluster at z = 1.3. Astrophys. J. 2022, 929, 35. [Google Scholar] [CrossRef]
- Coogan, R.T.; Daddi, E.; Sargent, M.T.; Strazzullo, V.; Valentino, F.; Gobat, R.; Magdis, G.; Bethermin, M.; Pannella, M.; Onodera, M.; et al. Merger Driven Star-Formation Activity in Cl J1449+0856 at Z = 1.99 as Seen by ALMA and JVLA. Mon. Not. R. Astron. Soc. 2018. [Google Scholar] [CrossRef]
- Wagg, J.; Pope, A.; Alberts, S.; Armus, L.; Brodwin, M.; Bussmann, R.S.; Desai, V.; Dey, A.; Jannuzi, B.; Le Floc’h, E.; et al. CO J = 2-1 Line Emission in Cluster Galaxies at z ~ 1: Fueling Star Formation in Dense Environments. Astrophys. J. 2012, 752, 91. [Google Scholar] [CrossRef]
- Aravena, M.; Carilli, C.L.; Salvato, M.; Tanaka, M.; Lentati, L.; Schinnerer, E.; Walter, F.; Riechers, D.; Smolcić, V.; Capak, P.; et al. Deep Observations of CO Line Emission from Star-Forming Galaxies in a Cluster Candidate at Z = 1.5. Mon. Not. R. Astron. Soc. 2012, 426, 258–275. [Google Scholar] [CrossRef] [Green Version]
- Casasola, V.; Magrini, L.; Combes, F.; Mignano, A.; Sani, E.; Paladino, R.; Fontani, F. A Gas-Rich AGN near the Centre of a Galaxy Cluster at z ~ 1.4. Astron. Astrophys. 2013, 558, A60. [Google Scholar] [CrossRef] [Green Version]
- Castignani, G.; Combes, F.; Salomé, P.; Andreon, S.; Pannella, M.; Heywood, I.; Trinchieri, G.; Cicone, C.; Davies, L.J.M.; Owen, F.N.; et al. Molecular Gas in Two Companion Cluster Galaxies at z = 1.2. Astron. Astrophys. 2018, 617, A103. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Kodama, T.; Kohno, K.; Yamaguchi, Y.; Tadaki, K.i.; Hatsukade, B.; Koyama, Y.; Shimakawa, R.; Tamura, Y.; Suzuki, T.L. Evolutionary Phases of Gas-rich Galaxies in a Galaxy Cluster at z = 1.46. Astrophys. J. 2017, 841, L21. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, Q.; Gilli, R.; Prandoni, I.; Vignali, C.; Massardi, M.; Mignoli, M.; Cucciati, O.; Morishita, T.; Decarli, R.; Brusa, M.; et al. Discovery of Molecular Gas Fueling Galaxy Growth in a Protocluster at z = 1.7. Astron. Astrophys. 2020, 641, L6. [Google Scholar] [CrossRef]
- Bahé, Y.M.; McCarthy, I.G.; Crain, R.A.; Theuns, T. The Competition between Confinement and Ram Pressure and Its Implications for Galaxies in Groups and Clusters. Mon. Not. R. Astron. Soc. 2012, 424, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D. The Role of Penetrating Gas Streams in Setting the Dynamical State of Galaxy Clusters. Mon. Not. R. Astron. Soc. 2016, 461, 412–432. [Google Scholar] [CrossRef] [Green Version]
- Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A.V. Cold Fronts and Shocks Formed by Gas Streams in Galaxy Clusters. Mon. Not. R. Astron. Soc. 2018, 476, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Strazzullo, V.; Coogan, R.T.; Daddi, E.; Sargent, M.T.; Gobat, R.; Valentino, F.; Bethermin, M.; Pannella, M.; Dickinson, M.; Renzini, A.; et al. Deciphering the Activity and Quiescence of High-redshift Cluster Environments: ALMA Observations of Cl J1449+0856 at z = 2. Astrophys. J. 2018, 862, 64. [Google Scholar] [CrossRef] [Green Version]
- Daddi, E.; Dannerbauer, H.; Liu, D.; Aravena, M.; Bournaud, F.; Walter, F.; Riechers, D.; Magdis, G.; Sargent, M.; Béthermin, M.; et al. CO Excitation of Normal Star-Forming Galaxies out to z = 1.5 as Regulated by the Properties of Their Interstellar Medium. Astron. Astrophys. 2015, 577, A46. [Google Scholar] [CrossRef]
- Huang, Y.D.T.; Morata, O.; Koch, P.M.; Kemper, C.; Hwang, Y.J.; Chiong, C.C.; Ho, P.; Chu, Y.H.; Huang, C.D.; Liu, C.T.; et al. The Atacama Large Millimeter/sub-millimeter Array band-1 receiver. In Proceedings of the Modeling, Systems Engineering, and Project Management for Astronomy VI, Edinburgh, UK, 10 August 2016; Angeli, G.Z., Dierickx, P., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9911, p. 99111V. [Google Scholar] [CrossRef] [Green Version]
- Dannerbauer, H.; Lehnert, M.D.; Emonts, B.; Ziegler, B.; Altieri, B.; De Breuck, C.; Hatch, N.; Kodama, T.; Koyama, Y.; Kurk, J.D.; et al. The Implications of the Surprising Existence of a Large, Massive CO Disk in a Distant Protocluster. Astron. Astrophys. 2017, 608, A48. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, K.; Kodama, T.; Suzuki, T.L.; Tadaki, K.i.; Shimakawa, R.; Hayashi, M.; Koyama, Y.; Pérez-Martínez, J.M. The Environmental Dependence of Gas Properties in Dense Cores of a Protocluster at z 2.5 Revealed with ALMA. Astrophys. J. 2022, 924, 74. [Google Scholar] [CrossRef]
- Lee, M.M.; Tanaka, I.; Iono, D.; Kawabe, R.; Kodama, T.; Kohno, K.; Saito, T.; Tamura, Y. Revisited Cold Gas Content with Atomic Carbon [C i] in z = 2.5 Protocluster Galaxies. Astrophys. J. 2021, 909, 181. [Google Scholar] [CrossRef]
- Tanaka, I.; De Breuck, C.; Kurk, J.D.; Taniguchi, Y.; Kodama, T.; Matsuda, Y.; Packham, C.; Zirm, A.; Kajisawa, M.; Ichikawa, T.; et al. Discovery of an Excess of Hα Emitters around 4C 23.56 at z = 2.48. Publ. Astron. Soc. Jpn. 2011, 63, 415. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.M.; Tanaka, I.; Kawabe, R.; Kohno, K.; Kodama, T.; Kajisawa, M.; Yun, M.S.; Nakanishi, K.; Iono, D.; Tamura, Y.; et al. A Radio-to-mm Census of Star-forming Galaxies in Protocluster 4C23.56 at Z = 2.5: Gas Mass and Its Fraction Revealed with ALMA. Astrophys. J. 2017, 842, 55. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Walter, F.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Ivison, R.J.; Popping, G.; Riechers, D.; et al. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas. Astrophys. J. 2016, 833, 69. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, C.; Bianchi, S.; Corbelli, E.; Giovanardi, C.; Hunt, L.; Bendo, G.J.; Boselli, A.; Cortese, L.; Magrini, L.; Zibetti, S.; et al. The Herschel Virgo Cluster Survey. XI. Environmental Effects on Molecular Gas and Dust in Spiral Disks. Astron. Astrophys. 2012, 545, A75. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.A.; Alatalo, K.; Bureau, M.; Cappellari, M.; Scott, N.; Young, L.M.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; et al. The ATLAS3D Project—XIV. The Extent and Kinematics of the Molecular Gas in Early-Type Galaxies. Mon. Not. R. Astron. Soc. 2013, 429, 534–555. [Google Scholar] [CrossRef]
- Cortese, L.; Davies, J.I.; Pohlen, M.; Baes, M.; Bendo, G.J.; Bianchi, S.; Boselli, A.; De Looze, I.; Fritz, J.; Verstappen, J.; et al. The Herschel Virgo Cluster Survey. II. Truncated Dust Disks in H I-deficient Spirals. Astron. Astrophys. 2010, 518, L49. [Google Scholar] [CrossRef]
- Chung, E.J.; Yun, M.S.; Verheijen, M.A.W.; Chung, A. 12 CO(J = 1 $\to $ 0) On-the-fly Mapping Survey of the Virgo Cluster Spirals. II. Molecular Gas Properties in Different Density Environments. Astrophys. J. 2017, 843, 50. [Google Scholar] [CrossRef] [Green Version]
- Mok, A.; Wilson, C.D.; Knapen, J.H.; Sánchez-Gallego, J.R.; Brinks, E.; Rosolowsky, E. The JCMT Nearby Galaxies Legacy Survey—XI. Environmental Variations in the Atomic and Molecular Gas Radial Profiles of Nearby Spiral Galaxies. Mon. Not. R. Astron. Soc. 2017, 467, 4282–4292. [Google Scholar] [CrossRef] [Green Version]
- Tonnesen, S.; Bryan, G.L. Gas Stripping in Simulated Galaxies with a Multiphase Interstellar Medium. Astrophys. J. 2009, 694, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Combes, F.; Dupraz, C.; Casoli, F.; Pagani, L. CO Emission in NGC 4438: A Case for Tidal Stripping? Astron. Astrophys. 1988, 203, L9–L12. [Google Scholar]
- Vollmer, B.; Braine, J.; Balkowski, C.; Cayatte, V.; Duschl, W.J. 12CO(1-0) Observations of NGC 4848: A Coma Galaxy after Stripping. Astron. Astrophys. 2001, 374, 824–838. [Google Scholar] [CrossRef]
- Scott, T.C.; Usero, A.; Brinks, E.; Bravo-Alfaro, H.; Cortese, L.; Boselli, A.; Argudo-Fernández, M. Highly Perturbed Molecular Gas in Infalling Cluster Galaxies: The Case of CGCG97-079. Mon. Not. R. Astron. Soc. 2015, 453, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Wang, J.; Chung, A.; Ho, L.C.; Wang, R.; Michiyama, T.; Molina, J.; Kim, Y.; Shao, L.; Kilborn, V.; et al. ALMA/ACA CO Survey of the IC 1459 and NGC 4636 Groups: Environmental Effects on the Molecular Gas of Group Galaxies. Astrophys. J. Suppl. Ser. 2022, 262, 31. [Google Scholar] [CrossRef]
- Chung, A.; van Gorkom, J.H.; Kenney, J.D.P.; Crowl, H.; Vollmer, B. VLA Imaging of Virgo Spirals in Atomic Gas (VIVA). I. The Atlas and the H I Properties. Astron. J. 2009, 138, 1741–1816. [Google Scholar] [CrossRef] [Green Version]
- Leroy, A.K.; Walter, F.; Bigiel, F.; Usero, A.; Weiss, A.; Brinks, E.; de Blok, W.J.G.; Kennicutt, R.C.; Schuster, K.F.; Kramer, C.; et al. Heracles: The HERA CO Line Extragalactic Survey. Astron. J. 2009, 137, 4670–4696. [Google Scholar] [CrossRef]
- Lee, B.; Chung, A. The ALMA Detection of Extraplanar 13CO in a Ram-pressure-stripped Galaxy and Its Implication. Astrophys. J. 2018, 866, L10. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, B.; Braine, J.; Pappalardo, C.; Hily-Blant, P. Ram-Pressure Stripped Molecular Gas in the Virgo Spiral Galaxy NGC 4522. Astron. Astrophys. 2008, 491, 455–464. [Google Scholar] [CrossRef]
- Verdugo, C.; Combes, F.; Dasyra, K.; Salomé, P.; Braine, J. Ram Pressure Stripping in the Virgo Cluster. Astron. Astrophys. 2015, 582, A6. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Paladino, R.; Poggianti, B.M.; D’Onofrio, M.; Bettoni, D.; Gullieuszik, M.; Jaffé, Y.L.; Vulcani, B.; Fasano, G.; Fritz, J.; et al. GASP—X. APEX Observations of Molecular Gas in the Discs and in the Tails of Ram-Pressure Stripped Galaxies. Mon. Not. R. Astron. Soc. 2018, 480, 2508–2520. [Google Scholar] [CrossRef] [Green Version]
- Jáchym, P.; Combes, F.; Cortese, L.; Sun, M.; Kenney, J.D.P. Abundant Molecular Gas and Inefficient Star Formation in Intracluster Regions: Ram Pressure Stripped Tail of the Norma Galaxy ESO137-001. Astrophys. J. 2014, 792, 11. [Google Scholar] [CrossRef]
- Jáchym, P.; Sun, M.; Kenney, J.D.P.; Cortese, L.; Combes, F.; Yagi, M.; Yoshida, M.; Palouš, J.; Roediger, E. Molecular Gas Dominated 50 Kpc Ram Pressure Stripped Tail of the Coma Galaxy D100. Astrophys. J. 2017, 839, 114. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.J.; Kenney, J.D.P.; Cortes, J.R.; Cortes P., C.; Vlahakis, C.; Jáchym, P.; Pompei, E.; Rubio, M. ALMA Evidence for Ram Pressure Compression and Stripping of Molecular Gas in the Virgo Cluster Galaxy NGC 4402. Astrophys. J. 2020, 901, 95. [Google Scholar] [CrossRef]
- Cramer, W.J.; Kenney, J.D.P.; Tonnesen, S.; Smith, R.; Wong, T.; Jáchym, P.; Cortés, J.R.; Cortés, P.C.; Wu, Y.T. Molecular Gas Filaments and Fallback in the Ram Pressure Stripped Coma Spiral NGC 4921. Astrophys. J. 2021, 921, 22. [Google Scholar] [CrossRef]
- Owers, M.S.; Couch, W.J.; Nulsen, P.E.J.; Randall, S.W. Shocking Tails in the Major Merger Abell 2744. Astrophys. J. 2012, 750, L23. [Google Scholar] [CrossRef]
- Poggianti, B.M.; Fasano, G.; Omizzolo, A.; Gullieuszik, M.; Bettoni, D.; Moretti, A.; Paccagnella, A.; Jaffé, Y.L.; Vulcani, B.; Fritz, J.; et al. Jellyfish Galaxy Candidates at Low Redshift. Astron. J. 2016, 151, 78. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, H.; Stephenson, L.N.; Edge, A.C. Jellyfish: Evidence of extreme ram-pressure stripping in massive galaxy clusters. Astrophys. J. 2014, 781, L40. [Google Scholar] [CrossRef] [Green Version]
- Fumagalli, M.; Fossati, M.; Hau, G.K.T.; Gavazzi, G.; Bower, R.; Sun, M.; Boselli, A. MUSE Sneaks a Peek at Extreme Ram-Pressure Stripping Events—I. A Kinematic Study of the Archetypal Galaxy ESO137-001. Mon. Not. R. Astron. Soc. 2014, 445, 4335–4344. [Google Scholar] [CrossRef]
- Rawle, T.D.; Altieri, B.; Egami, E.; Pérez-González, P.G.; Richard, J.; Santos, J.S.; Valtchanov, I.; Walth, G.; Bouy, H.; Haines, C.P.; et al. Star Formation in the Massive Cluster Merger Abell 2744. Mon. Not. R. Astron. Soc. 2014, 442, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Houck, J.R.; Roellig, T.L.; Van Cleve, J.; Forrest, W.J.; Herter, T.L.; Lawrence, C.R.; Matthews, K.; Reitsema, H.J.; Soifer, B.T.; Watson, D.M.; et al. The infrared spectrograph on the Spitzer Space Telescope. In Proceedings of the Optical, Infrared, and Millimeter Space Telescopes, Glasgow, UK, 12 October 2004; Mather, J.C., Ed.; SPIE: Bellingham, WA, USA, 2004; Volume 5487, pp. 62–76. [Google Scholar] [CrossRef] [Green Version]
- Sivanandam, S.; Rieke, M.J.; Rieke, G.H. A Warm Molecular Hydrogen Tail Due to Ram-pressure Stripping of a Cluster Galaxy. Astrophys. J. 2010, 717, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Sivanandam, S.; Rieke, M.J.; Rieke, G.H. Tracing Ram-pressure Stripping with Warm Molecular Hydrogen Emission. Astrophys. J. 2014, 796, 89. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Jones, C.; Forman, W.; Nulsen, P.E.J.; Donahue, M.; Voit, G.M. A 70 Kiloparsec X-ray Tail in the Cluster A3627. Astrophys. J. 2006, 637, L81–L84. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Donahue, M.; Voit, G.M. Hα Tail, Intracluster H II Regions, and Star Formation: ESO 137-001 in Abell 3627. Astrophys. J. 2007, 671, 190–202. [Google Scholar] [CrossRef] [Green Version]
- Jáchym, P.; Kenney, J.D.P.; Sun, M.; Combes, F.; Cortese, L.; Scott, T.C.; Sivanandam, S.; Brinks, E.; Roediger, E.; Palouš, J.; et al. ALMA Unveils Widespread Molecular Gas Clumps in the Ram Pressure Stripped Tail of the Norma Jellyfish Galaxy. Astrophys. J. 2019, 883, 145. [Google Scholar] [CrossRef] [Green Version]
- Kenney, J.D.P.; Geha, M.; Jáchym, P.; Crowl, H.H.; Dague, W.; Chung, A.; van Gorkom, J.; Vollmer, B. Transformation of a Virgo Cluster Dwarf Irregular Galaxy by Ram Pressure Stripping: IC3418 and Its Fireballs. Astrophys. J. 2014, 780, 119. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Chung, A.; Tonnesen, S.; Kenney, J.D.P.; Wong, O.I.; Vollmer, B.; Petitpas, G.R.; Crowl, H.H.; van Gorkom, J. The Effect of Ram Pressure on the Molecular Gas of Galaxies: Three Case Studies in the Virgo Cluster. Mon. Not. R. Astron. Soc. 2017, 466, 1382–1398. [Google Scholar] [CrossRef] [Green Version]
- Young, L.M.; Meier, D.S.; Crocker, A.; Davis, T.A.; Topal, S. Down but Not Out: Properties of the Molecular Gas in the Stripped Virgo Cluster Early-type Galaxy NGC 4526. Astrophys. J. 2022, 933, 90. [Google Scholar] [CrossRef]
- Lizée, T.; Vollmer, B.; Braine, J.; Nehlig, F. Gas Compression and Stellar Feedback in the Tidally Interacting and Ram-Pressure Stripped Virgo Spiral Galaxy NGC 4654. Astron. Astrophys. 2021, 645, A111. [Google Scholar] [CrossRef]
- Nehlig, F.; Vollmer, B.; Braine, J. Effects of Environmental Gas Compression on the Multiphase ISM and Star Formation. The Virgo Spiral Galaxies NGC 4501 and NGC 4567/68. Astron. Astrophys. 2016, 587, A108. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Paladino, R.; Poggianti, B.M.; Serra, P.; Ramatsoku, M.; Franchetto, A.; Deb, T.; Gullieuszik, M.; Tomičić, N.; Mingozzi, M.; et al. The High Molecular Gas Content, and the Efficient Conversion of Neutral into Molecular Gas, in Jellyfish Galaxies. Astrophys. J. 2020, 897, L30. [Google Scholar] [CrossRef]
- Roberts, I.D.; Parker, L.C. Ram Pressure Stripping Candidates in the Coma Cluster: Evidence for Enhanced Star Formation. Mon. Not. R. Astron. Soc. 2020, 495, 554–569. [Google Scholar] [CrossRef]
- Riechers, D.A.; Walter, F.; Brewer, B.J.; Carilli, C.L.; Lewis, G.F.; Bertoldi, F.; Cox, P. A Molecular Einstein Ring at z = 4.12: Imaging the Dynamics of a Quasar Host Galaxy Through a Cosmic Lens. Astrophys. J. 2008, 686, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Tacconi, L.J.; Genzel, R.; Neri, R.; Cox, P.; Cooper, M.C.; Shapiro, K.; Bolatto, A.; Bouché, N.; Bournaud, F.; Burkert, A.; et al. High Molecular Gas Fractions in Normal Massive Star-Forming Galaxies in the Young Universe. Nature 2010, 463, 781–784. [Google Scholar] [CrossRef] [Green Version]
- Bothwell, M.S.; Chapman, S.C.; Tacconi, L.; Smail, I.; Ivison, R.J.; Casey, C.M.; Bertoldi, F.; Beswick, R.; Biggs, A.; Blain, A.W.; et al. High-Resolution CO and Radio Imaging of ULIRGs: Extended CO Structures and Implications for the Universal Star Formation Law. Mon. Not. R. Astron. Soc. 2010, 405, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Hodge, J.A.; Carilli, C.L.; Walter, F.; de Blok, W.J.G.; Riechers, D.; Daddi, E.; Lentati, L. Evidence for a Clumpy, Rotating Gas Disk in a Submillimeter Galaxy at z = 4. Astrophys. J. 2012, 760, 11. [Google Scholar] [CrossRef] [Green Version]
- Cibinel, A.; Daddi, E.; Bournaud, F.; Sargent, M.T.; le Floc’h, E.; Magdis, G.E.; Pannella, M.; Rujopakarn, W.; Juneau, S.; Zanella, A.; et al. ALMA Constraints on Star-Forming Gas in a Prototypical z = 1.5 Clumpy Galaxy: The Dearth of CO(5-4) Emission from UV-bright Clumps. Mon. Not. R. Astron. Soc. 2017, 469, 4683–4704. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.; Ibar, E.; Smail, I.; Swinbank, A.M.; Villard, E.; Escala, A.; Sobral, D.; Hughes, T.M. The Kiloparsec-Scale Gas Kinematics in Two Star-Forming Galaxies at z ∼ 1.47 Seen with ALMA and VLT-SINFONI. Mon. Not. R. Astron. Soc. 2019, 487, 4856–4869. [Google Scholar] [CrossRef]
- Genzel, R.; Price, S.H.; Übler, H.; Förster Schreiber, N.M.; Shimizu, T.T.; Tacconi, L.J.; Bender, R.; Burkert, A.; Contursi, A.; Coogan, R.; et al. Rotation Curves in z ∼ 1-2 Star-forming Disks: Evidence for Cored Dark Matter Distributions. Astrophys. J. 2020, 902, 98. [Google Scholar] [CrossRef]
- Lee, M.M.; Tanaka, I.; Kawabe, R.; Aretxaga, I.; Hatsukade, B.; Izumi, T.; Kajisawa, M.; Kodama, T.; Kohno, K.; Nakanishi, K.; et al. A Radio-to-millimeter Census of Star-forming Galaxies in Protocluster 4C 23.56 at z = 2.5: Global and Local Gas Kinematics. Astrophys. J. 2019, 883, 92. [Google Scholar] [CrossRef] [Green Version]
- Cramer, W.J.; Noble, A.G.; Massingill, K.; Cairns, J.; Clements, D.L.; Cooper, M.C.; Demarco, R.; Matharu, J.; McDonald, M.; Muzzin, A.; et al. A large-scale kinematic study of molecular gas in high-z cluster galaxies: Evidence for high levels of kinematic asymmetry. arXiv 2022, arXiv:2209.06929. [Google Scholar]
- Dole, H.; Lagache, G.; Puget, J.L.; Caputi, K.I.; Fernández-Conde, N.; Le Floc’h, E.; Papovich, C.; Pérez-González, P.G.; Rieke, G.H.; Blaylock, M. The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. Astron. Astrophys. 2006, 451, 417. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.M.; Rieke, G.H. 60 Micron Luminosity Evolution of Rich Clusters of Galaxies. Astrophys. J. 1990, 361, 354. [Google Scholar] [CrossRef]
- Shchekinov, Y.A.; Nath, B.B.; Vasiliev, E.O. Dust in Clusters of Galaxies. Universe 2022, 8, 212. [Google Scholar] [CrossRef]
- Sarazin, C.L.; White, R.E., III. The X-Ray Emission of Normal Elliptical Galaxies: Steady State Cooling Flow Models. Astrophys. J. 1988, 331, 102. [Google Scholar] [CrossRef]
- Dwek, E.; Rephaeli, Y.; Mather, J.C. Infrared Emission from Dust in the Coma Cluster of Galaxies. Astrophys. J. 1990, 350, 104. [Google Scholar] [CrossRef]
- Draine, B.T.; Salpeter, E.E. On the Physics of Dust Grains in Hot Gas. Astrophys. J. 1979, 231, 77–94. [Google Scholar] [CrossRef]
- Dwek, E.; Arendt, R.G. Dust-Gas Interactions and the Infrared Emission from Hot Astrophysical Plasmas. Annu. Rev. Astron. Astrophys. 1992, 30, 11. [Google Scholar] [CrossRef]
- Popescu, C.C.; Tuffs, R.J.; Fischera, J.; Völk, H. On the FIR Emission from Intracluster Dust. Astron. Astrophys. 2000, 354, 480. [Google Scholar]
- Montier, L.A.; Giard, M. The Importance of Dust in Cooling and Heating the InterGalactic Medium. Astron. Astrophys. 2004, 417, 401. [Google Scholar] [CrossRef]
- Weingartner, J.C.; Draine, B.T.; Barr, D.K. Photoelectric Emission from Dust Grains Exposed to Extreme Ultraviolet and X-Ray Radiation. Astrophys. J. 2006, 645, 1188–1197. [Google Scholar] [CrossRef]
- Vogelsberger, M.; McKinnon, R.; O’Neil, S.; Marinacci, F.; Torrey, P.; Kannan, R. Dust in and around Galaxies: Dust in Cluster Environments and Its Impact on Gas Cooling. Mon. Not. R. Astron. Soc. 2019, 487, 4870–4883. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.C.; Catalano, A.; Montier, L.; Pointecouteau, E.; Lanoux, J.; Giard, M. The Impact of Dust on the Scaling Properties of Galaxy Clusters. Mon. Not. R. Astron. Soc. 2009, 396, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Nollenberg, J.G.; Williams, L.L.R.; Maddox, S.J. Determination of Reddening and Extinction Due to Dust in APM Galaxy Clusters. Astron. J. 2003, 125, 2927–2935. [Google Scholar] [CrossRef] [Green Version]
- Chelouche, D.; Koester, B.P.; Bowen, D.V. The Dust Content of Galaxy Clusters. Astrophys. J. 2007, 671, L97–L100. [Google Scholar] [CrossRef] [Green Version]
- Bovy, J.; Hogg, D.W.; Moustakas, J. The Transparency of Galaxy Clusters. Astrophys. J. 2008, 688, 198–207. [Google Scholar] [CrossRef]
- Gutiérrez, C.M.; López-Corredoira, M. On the Dust Content of Galaxy Clusters. Astron. Astrophys. 2014, 571, A66. [Google Scholar] [CrossRef] [Green Version]
- Longobardi, A.; Boselli, A.; Boissier, S.; Bianchi, S.; Andreani, P.; Sarpa, E.; Nanni, A.; Miville-Deschênes, M. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS): VIII. Diffuse Dust in the Virgo Intra-Cluster Space. Astron. Astrophys. 2020, 633, L7. [Google Scholar] [CrossRef] [Green Version]
- Stickel, M.; Klaas, U.; Lemke, D.; Mattila, K. Far-Infrared Emission from Intracluster Dust in Abell Clusters. Astron. Astrophys. 2002, 383, 367. [Google Scholar] [CrossRef]
- Bai, L.; Rieke, G.H.; Rieke, M.J. A Search for Infrared Emission from Intracluster Dust in Abell 2029. Astrophys. J. 2007, 668, L5–L8. [Google Scholar] [CrossRef]
- Kitayama, T.; Ito, Y.; Okada, Y.; Kaneda, H.; Takahashi, H.; Ota, N.; Onaka, T.; Tajiri, Y.Y.; Nagata, H.; Yamada, K. Constraints on the Intracluster Dust Emission in the Coma Cluster of Galaxies. Astrophys. J. 2009, 695, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, S.; Giovanardi, C.; Smith, M.W.L.; Fritz, J.; Davies, J.I.; Haynes, M.P.; Giovanelli, R.; Baes, M.; Bocchio, M.; Boissier, S.; et al. The Herschel Virgo Cluster Survey: XX. Dust and Gas in the Foreground Galactic Cirrus★★★. Astron. Astrophys. 2017, 597, A130. [Google Scholar] [CrossRef] [Green Version]
- Montier, L.A.; Giard, M. Dust Emission from Clusters of Galaxies: Statistical Detection. Astron. Astrophys. 2005, 439, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Giard, M.; Montier, L.; Pointecouteau, E.; Simmat, E. The Infrared Luminosity of Galaxy Clusters. Astron. Astrophys. 2008, 490, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Roncarelli, M.; Pointecouteau, E.; Giard, M.; Montier, L.; Pello, R. Infrared Properties of the SDSS-maxBCG Galaxy Clusters. Astron. Astrophys. 2010, 512, A20. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Adam, R.; Ade, P.A.R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck Intermediate Results: XLIII. Spectral Energy Distribution of Dust in Clusters of Galaxies. Astron. Astrophys. 2016, 596, A104. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, A.; Pope, A.; Alexander, D.M.; Charmandaris, V.; Daddi, E.; Dickinson, M.; Elbaz, D.; Gabor, J.; Hwang, H.S.; Ivison, R.; et al. GOODS-Herschel: Impact of Active Galactic Nuclei and Star Formation Activity on Infrared Spectral Energy Distributions at High Redshift. Astrophys. J. 2012, 759, 139. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.M. Far-Infrared Spectral Energy Distribution Fitting for Galaxies near and Far. Mon. Not. R. Astron. Soc. 2012, 425, 3094–3103. [Google Scholar] [CrossRef] [Green Version]
- Clemens, M.S.; Negrello, M.; De Zotti, G.; Gonzalez-Nuevo, J.; Bonavera, L.; Cosco, G.; Guarese, G.; Boaretto, L.; Salucci, P.; Baccigalupi, C.; et al. Dust and Star Formation Properties of a Complete Sample of Local Galaxies Drawn from the Planck Early Release Compact Source Catalogue. Mon. Not. R. Astron. Soc. 2013, 433, 695–711. [Google Scholar] [CrossRef] [Green Version]
- Dunne, L.; Gomez, H.L.; da Cunha, E.; Charlot, S.; Dye, S.; Eales, S.; Maddox, S.J.; Rowlands, K.; Smith, D.J.B.; Auld, R.; et al. Herschel-ATLAS: Rapid Evolution of Dust in Galaxies over the Last 5 Billion Years. Mon. Not. R. Astron. Soc. 2011, 417, 1510–1533. [Google Scholar] [CrossRef]
- Symeonidis, M.; Vaccari, M.; Berta, S.; Page, M.J.; Lutz, D.; Arumugam, V.; Aussel, H.; Bock, J.; Boselli, A.; Buat, V.; et al. The Herschel Census of Infrared SEDs through Cosmic Time. Mon. Not. R. Astron. Soc. 2013, 431, 2317–2340. [Google Scholar] [CrossRef]
- Gutiérrez, C.M.; López-Corredoira, M. Dust in clusters: Separating the contribution of galaxies and intracluster media. Astrophys. J. 2017, 835, 111. [Google Scholar] [CrossRef] [Green Version]
- Alberts, S.; Lee, K.S.; Pope, A.; Brodwin, M.; Chiang, Y.K.; McKinney, J.; Xue, R.; Huang, Y.; Brown, M.; Dey, A.; et al. Measuring the Total Infrared Light from Galaxy Clusters at z = 0.5–1.6: Connecting Stellar Populations to Dusty Star Formation. Mon. Not. R. Astron. Soc. 2021, 501, 1970–1998. [Google Scholar] [CrossRef]
- McKinney, J.; Ramakrishnan, V.; Lee, K.S.; Pope, A.; Alberts, S.; Chiang, Y.K.; Popescu, R. Measuring the Total Ultraviolet Light from Galaxy Clusters at z = 0.5-1.6: The Balance of Obscured and Unobscured Star Formation. Astrophys. J. 2022, 928, 88. [Google Scholar] [CrossRef]
- Kirkpatrick, A.; Pope, A.; Sajina, A.; Roebuck, E.; Yan, L.; Armus, L.; Díaz-Santos, T.; Stierwalt, S. The Role of Star Formation and an AGN in Dust Heating of z = 0.3-2.8 Galaxies. I. Evolution with Redshift and Luminosity. Astrophys. J. 2015, 814, 9. [Google Scholar] [CrossRef] [Green Version]
- Drew, P.M.; Casey, C.M. No Redshift Evolution of Galaxies’ Dust Temperatures Seen from 0 < z < 2. Astrophys. J. 2022, 930, 142. [Google Scholar] [CrossRef]
- Pereira, M.J.; Haines, C.P.; Smith, G.P.; Egami, E.; Moran, S.M.; Finoguenov, A.; Hardegree-Ullman, E.; Okabe, N.; Rawle, T.; Rex, M. LoCuSS: A Herschel View of Obscured Star Formation in Abell 1835. Astron. Astrophys. 2010, 518, L40. [Google Scholar] [CrossRef] [Green Version]
- Rawle, T.D.; Rex, M.; Egami, E.; Chung, S.M.; Pérez-González, P.G.; Smail, I.; Walth, G.; Altieri, B.; Appleton, P.; Alba, A.B.; et al. Discovery of “warm dust” galaxies in clusters at z ∼ 0.3: Evidence for stripping of cool dust in the dense environment? Astrophys. J. 2012, 756, 106. [Google Scholar] [CrossRef] [Green Version]
- Viero, M.P.; Moncelsi, L.; Quadri, R.F.; Arumugam, V.; Assef, R.J.; Béthermin, M.; Bock, J.; Bridge, C.; Casey, C.M.; Conley, A.; et al. HerMES: The Contribution to the Cosmic Infrared Background from Galaxies Selected by Mass and Redshift. Astrophys. J. 2013, 779, 32. [Google Scholar] [CrossRef] [Green Version]
- Béthermin, M.; Wu, H.Y.; Lagache, G.; Davidzon, I.; Ponthieu, N.; Cousin, M.; Wang, L.; Doré, O.; Daddi, E.; Lapi, A. The Impact of Clustering and Angular Resolution on Far-Infrared and Millimeter Continuum Observations. Astron. Astrophys. 2017, 607, A89. [Google Scholar] [CrossRef]
- Old, L.J.; Balogh, M.L.; van der Burg, R.F.J.; Biviano, A.; Yee, H.K.C.; Pintos-Castro, I.; Webb, K.; Muzzin, A.; Rudnick, G.; Vulcani, B.; et al. The GOGREEN Survey: The Environmental Dependence of the Star-Forming Galaxy Main Sequence at 1.0 < z < 1.5. Mon. Not. R. Astron. Soc. 2020, 493, 5987–6000. [Google Scholar] [CrossRef] [Green Version]
- Koyama, Y.; Kodama, T.; Nakata, F.; Shimasaku, K.; Okamura, S. Red Star-forming Galaxies and Their Environment at z = 0.4 Revealed by Panoramic Hα Imaging. Astrophys. J. 2011, 734, 66. [Google Scholar] [CrossRef] [Green Version]
- Hatch, N.A.; Muldrew, S.I.; Cooke, E.A.; Hartley, W.G.; Almaini, O.; Simpson, C.J.; Conselice, C.J. The Structure and Evolution of a Forming Galaxy Cluster at z = 1.62. Mon. Not. R. Astron. Soc. 2016, 459, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Sobral, D.; Stroe, A.; Koyama, Y.; Darvish, B.; Calhau, J.; Afonso, A.; Kodama, T.; Nakata, F. The Nature of Hα Star-Forming Galaxies at z ∼ 0.4 in and around Cl 0939+4713: The Environment Matters. Mon. Not. R. Astron. Soc. 2016, 458, 3443–3454. [Google Scholar] [CrossRef] [Green Version]
- Frenk, C.S.; White, S.D.M.; Bode, P.; Bond, J.R.; Bryan, G.L.; Cen, R.; Couchman, H.M.P.; Evrard, A.E.; Gnedin, N.; Jenkins, A.; et al. The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions. Astrophys. J. 1999, 525, 554–582. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Navarro, J.F.; Frenk, C.S.; Jenkins, A.; Springel, V.; White, S.D.M. The Phoenix Project: The Dark Side of Rich Galaxy Clusters. Mon. Not. R. Astron. Soc. 2012, 425, 2169–2186. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Dutton, A.A.; Macciò, A.V. Cold Dark Matter Haloes in the Planck Era: Evolution of Structural Parameters for Einasto and NFW Profiles. Mon. Not. R. Astron. Soc. 2014, 441, 3359–3374. [Google Scholar] [CrossRef] [Green Version]
- Klypin, A.; Yepes, G.; Gottlöber, S.; Prada, F.; Heß, S. MultiDark Simulations: The Story of Dark Matter Halo Concentrations and Density Profiles. Mon. Not. R. Astron. Soc. 2016, 457, 4340–4359. [Google Scholar] [CrossRef] [Green Version]
- Diemer, B.; Kravtsov, A.V. A Universal Model for Halo Concentrations. Astrophys. J. 2015, 799, 108. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Navarro, J.F.; Li, M.; Angulo, R.E.; Boylan-Kolchin, M.; Bett, P.E. The Dynamical State and Mass-Concentration Relation of Galaxy Clusters. Mon. Not. R. Astron. Soc. 2012, 427, 1322–1328. [Google Scholar] [CrossRef] [Green Version]
- Correa, C.A.; Wyithe, J.S.B.; Schaye, J.; Duffy, A.R. The Accretion History of Dark Matter Haloes—III. A Physical Model for the Concentration-Mass Relation. Mon. Not. R. Astron. Soc. 2015, 452, 1217–1232. [Google Scholar] [CrossRef] [Green Version]
- Biviano, A.; Moretti, A.; Paccagnella, A.; Poggianti, B.M.; Bettoni, D.; Gullieuszik, M.; Vulcani, B.; Fasano, G.; D’Onofrio, M.; Fritz, J.; et al. The Concentration–Mass Relation of Clusters of Galaxies from the OmegaWINGS Survey. Astron. Astrophys. 2017, 607, A81. [Google Scholar] [CrossRef] [Green Version]
- Gnedin, O.Y.; Kravtsov, A.V.; Klypin, A.A.; Nagai, D. Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model. Astrophys. J. 2004, 616, 16–26. [Google Scholar] [CrossRef]
- Rozo, E.; Nagai, D.; Keeton, C.; Kravtsov, A. The Impact of Baryonic Cooling on Giant Arc Abundances. Astrophys. J. 2008, 687, 22–38. [Google Scholar] [CrossRef] [Green Version]
- De Boni, C.; Ettori, S.; Dolag, K.; Moscardini, L. Hydrodynamical Simulations of Galaxy Clusters in Dark Energy Cosmologies—II. c-M Relation. Mon. Not. R. Astron. Soc. 2013, 428, 2921–2938. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Navarro, J.F.; Cole, S.; Frenk, C.S.; White, S.D.M.; Springel, V.; Jenkins, A.; Neto, A.F. The Redshift Dependence of the Structure of Massive Λ Cold Dark Matter Haloes. Mon. Not. R. Astron. Soc. 2008, 387, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Muzzin, A.; Yee, H.K.C.; Hall, P.B.; Ellingson, E.; Lin, H. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Luminosity Functions and Density Profiles. Astrophys. J. 2007, 659, 1106–1124. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, D.; Collins, C.A.; Stott, J.P.; Hilton, M. The Evolution of K* and the Halo Occupation Distribution since z= 1.5: Observations versus Simulations. Mon. Not. R. Astron. Soc. 2012, 419, 2821–2835. [Google Scholar] [CrossRef]
- Budzynski, J.M.; Koposov, S.E.; McCarthy, I.G.; McGee, S.L.; Belokurov, V. The Radial Distribution of Galaxies in Groups and Clusters: Satellite Profiles in Groups and Clusters. Mon. Not. R. Astron. Soc. 2012, 423, 104–121. [Google Scholar] [CrossRef] [Green Version]
- van der Burg, R.F.J.; Muzzin, A.; Hoekstra, H.; Wilson, G.; Lidman, C.; Yee, H.K.C. A Census of Stellar Mass in Ten Massive Haloes at z ~ 1 from the GCLASS Survey. Astron. Astrophys. 2014, 561, A79. [Google Scholar] [CrossRef] [Green Version]
- van der Burg, R.F.J.; Hoekstra, H.; Muzzin, A.; Sifón, C.; Balogh, M.L.; McGee, S.L. Evidence for the Inside-out Growth of the Stellar Mass Distribution in Galaxy Clusters since Z~1. Astron. Astrophys. 2015, 577, A19. [Google Scholar] [CrossRef] [Green Version]
- Zenteno, A.; Mohr, J.J.; Desai, S.; Stalder, B.; Saro, A.; Dietrich, J.P.; Bayliss, M.; Bocquet, S.; Chiu, I.; Gonzalez, A.H.; et al. Galaxy Populations in the 26 Most Massive Galaxy Clusters in the South Pole Telescope SPT-SZ Survey. Mon. Not. R. Astron. Soc. 2016, 462, 830–843. [Google Scholar] [CrossRef] [Green Version]
- Hennig, C.; Mohr, J.J.; Zenteno, A.; Desai, S.; Dietrich, J.P.; Bocquet, S.; Strazzullo, V.; Saro, A.; Abbott, T.M.C.; Abdalla, F.B.; et al. Galaxy Populations in Massive Galaxy Clusters to z = 1.1: Colour Distribution, Concentration, Halo Occupation Number and Red Sequence Fraction. Mon. Not. R. Astron. Soc. 2017, 467, 4015–4035. [Google Scholar] [CrossRef]
- Diemer, B.; Joyce, M. An Accurate Physical Model for Halo Concentrations. Astrophys. J. 2019, 871, 168. [Google Scholar] [CrossRef] [Green Version]
- Diemer, B. COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos. Astrophys. J. Suppl. Ser. 2018, 239, 35. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; et al. Planck 2015 Results. XIII. Cosmological Parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Kawata, D.; Mulchaey, J.S. Strangulation in Galaxy Groups. Astrophys. J. 2008, 672, L103. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, I.G.; Frenk, C.S.; Font, A.S.; Lacey, C.G.; Bower, R.G.; Mitchell, N.L.; Balogh, M.L.; Theuns, T. Ram Pressure Stripping the Hot Gaseous Haloes of Galaxies in Groups and Clusters. Mon. Not. R. Astron. Soc. 2008, 383, 593–605. [Google Scholar] [CrossRef]
- Vijayaraghavan, R.; Ricker, P.M. Ram Pressure Stripping of Hot Coronal Gas from Group and Cluster Galaxies and the Detectability of Surviving X-ray Coronae. Mon. Not. R. Astron. Soc. 2015, 449, 2312–2335. [Google Scholar] [CrossRef] [Green Version]
- Gabor, J.M.; Davé, R. Hot Gas in Massive Haloes Drives Both Mass Quenching and Environment Quenching. Mon. Not. R. Astron. Soc. 2015, 447, 374–391. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Jones, C.; Forman, W.; Vikhlinin, A.; Donahue, M.; Voit, M. X-ray Thermal Coronae of galaxies in Hot Clusters: Ubiquity of Embedded Mini-Cooling Cores. Astrophys. J. 2007, 657, 197–231. [Google Scholar] [CrossRef] [Green Version]
- Goulding, A.D.; Greene, J.E.; Ma, C.P.; Veale, M.; Bogdan, A.; Nyland, K.; Blakeslee, J.P.; McConnell, N.J.; Thomas, J. The MASSIVE Survey. IV. The X-ray Halos of the Most Massive Early-type Galaxies in the Nearby Universe. Astrophys. J. 2016, 826, 167. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.R.; McDonald, M.; Courteau, S. Stripping of the Hot Gas Halos in Member Galaxies of Abell 1795. Astrophys. J. 2018, 867, 14. [Google Scholar] [CrossRef]
- Quilis, V.; Planelles, S.; Ricciardelli, E. Is Ram-Pressure Stripping an Efficient Mechanism to Remove Gas in Galaxies? Mon. Not. R. Astron. Soc. 2017, 469, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Bekki, K. Galactic Star Formation Enhanced and Quenched by Ram Pressure in Groups and Clusters. Mon. Not. R. Astron. Soc. 2014, 438, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Merluzzi, P.; Busarello, G.; Dopita, M.A.; Haines, C.P.; Steinhauser, D.; Mercurio, A.; Rifatto, A.; Smith, R.J.; Schindler, S. ACCESS—V. Dissecting Ram-Pressure Stripping through Integral-Field Spectroscopy and Multiband Imaging. Mon. Not. R. Astron. Soc. 2013, 429, 1747–1773. [Google Scholar] [CrossRef] [Green Version]
- Merluzzi, P.; Busarello, G.; Dopita, M.A.; Haines, C.P.; Steinhauser, D.; Bourdin, H.; Mazzotta, P. Shapley Supercluster Survey: Ram-Pressure Stripping versus Tidal Interactions in the Shapley Supercluster. Mon. Not. R. Astron. Soc. 2016, 460, 3345–3369. [Google Scholar] [CrossRef] [Green Version]
- Tonnesen, S. The Journey Counts: The Importance of Including Orbits When Simulating Ram Pressure Stripping. Astrophys. J. 2019, 874, 161. [Google Scholar] [CrossRef]
- Yagi, M.; Yoshida, M.; Komiyama, Y.; Kashikawa, N.; Furusawa, H.; Okamura, S.; Graham, A.W.; Miller, N.A.; Carter, D.; Mobasher, B.; et al. A Dozen New Galaxies Caught in the Act: Gas Stripping and Extended Emission Line Regions in the Coma Cluster. Astron. J. 2010, 140, 1814–1829. [Google Scholar] [CrossRef]
- Gavazzi, G.; Consolandi, G.; Gutierrez, M.L.; Boselli, A.; Yoshida, M. Ubiquitous Ram Pressure Stripping in the Coma Cluster of Galaxies. Astron. Astrophys. 2018, 618, A130. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yee, H.K.C.; Drissen, L.; Sivanandam, S.; Pintos-Castro, I.; Alcorn, L.Y.; Hsieh, B.C.; Lin, L.; Lin, Y.T.; Muzzin, A.; et al. SITELLE Hα Imaging Spectroscopy of z ∼ 0.25 Clusters: Emission-line Galaxy Detection and Ionized Gas Offset in Abell 2390 and Abell 2465. Astrophys. J. 2021, 908, 228. [Google Scholar] [CrossRef]
- Roberts, I.D.; Parker, L.C.; Brown, T.; Joshi, G.D.; Hlavacek-Larrondo, J.; Wadsley, J. Quenching Low-mass Satellite Galaxies: Evidence for a Threshold ICM Density. Astrophys. J. 2019, 873, 42. [Google Scholar] [CrossRef] [Green Version]
- Ryu, D.; Kang, H. Shock Waves in the Large-Scale Structure of the Universe. Astrophys. Space Sci. 2009, 322, 65. [Google Scholar] [CrossRef]
- Schmidt, W.; Engels, J.F.; Niemeyer, J.C.; Almgren, A.S. Hot and Turbulent Gas in Clusters. Mon. Not. R. Astron. Soc. 2016, 459, 701–719. [Google Scholar] [CrossRef] [Green Version]
- Vulcani, B.; Treu, T.; Schmidt, K.B.; Morishita, T.; Dressler, A.; Poggianti, B.M.; Abramson, L.; Bradač, M.; Brammer, G.B.; Hoag, A.; et al. The Grism Lens-Amplified Survey from Space (GLASS). VII. The Diversity of the Distribution of Star Formation in Cluster and Field Galaxies at 0.3 Less than or Equal to z Less than or Equal to 0.7. Astrophys. J. 2016, 833, 178. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Epinat, B.; Contini, T.; Abril-Melgarejo, V.; Boogaard, L.A.; Pointecouteau, E.; Ventou, E.; Brinchmann, J.; Carton, D.; Finley, H.; et al. Evidence for Ram-Pressure Stripping in a Cluster of Galaxies at z = 0.7. Astron. Astrophys. 2019, 631, A114. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.A.; Desai, V.; Rudnick, G.; Balogh, M.; Haynes, M.P.; Jablonka, P.; Koopmann, R.A.; Moustakas, J.; Peng, C.Y.; Poggianti, B.; et al. The Local Cluster Survey. I. Evidence of Outside-in Quenching in Dense Environments. Astrophys. J. 2018, 862, 149. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, R.; Tadaki, K.I.; Iono, D.; Kodama, T.; Chan, J.C.C.; Hatsukade, B.; Hayashi, M.; Izumi, T.; Kohno, K.; Koyama, Y.; et al. High-Resolution ALMA Study of CO (2-1) Line and Dust Continuum Emissions in Cluster Galaxies at z = 1.46. Astrophys. J. 2022, 933, 18. [Google Scholar] [CrossRef]
- Ramos-Martínez, M.; Gómez, G.C.; Pérez-Villegas, Á. MHD Simulations of Ram Pressure Stripping of a Disc Galaxy. Mon. Not. R. Astron. Soc. 2018, 476, 3781–3792. [Google Scholar] [CrossRef] [Green Version]
- Vulcani, B.; Poggianti, B.M.; Jaffé, Y.L.; Moretti, A.; Fritz, J.; Gullieuszik, M.; Bettoni, D.; Fasano, G.; Tonnesen, S.; McGee, S. GASP—XII. The Variety of Physical Processes Occurring in a Single Galaxy Group in Formation. Mon. Not. R. Astron. Soc. 2018, 480, 3152–3169. [Google Scholar] [CrossRef] [Green Version]
- Durret, F.; Chiche, S.; Lobo, C.; Jauzac, M. Jellyfish Galaxy Candidates in MACS J0717.5+3745 and 39 Other Clusters of the DAFT/FADA and CLASH Surveys. Astron. Astrophys. 2021, 648, A63. [Google Scholar] [CrossRef]
- Troncoso-Iribarren, P.; Padilla, N.; Santander, C.; Lagos, C.D.P.; García-Lambas, D.; Rodríguez, S.; Contreras, S. The Better Half—Asymmetric Star Formation Due to Ram Pressure in the EAGLE Simulations. Mon. Not. R. Astron. Soc. 2020, 497, 4145–4161. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Gulati, M.; Bagla, J.S. Ram Pressure Stripping: An Analytical Approach. Mon. Not. R. Astron. Soc. 2019, 489, 5582–5593. [Google Scholar] [CrossRef] [Green Version]
- van der Wel, A.; Franx, M.; van Dokkum, P.G.; Skelton, R.E.; Momcheva, I.G.; Whitaker, K.E.; Brammer, G.B.; Bell, E.F.; Rix, H.W.; Wuyts, S.; et al. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3. Astrophys. J. 2014, 788, 28. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Walter, F.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Elbaz, D.; Riechers, D.; Smail, I.; et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies. Astrophys. J. 2016, 833, 70. [Google Scholar] [CrossRef] [Green Version]
- Lagos, C.D.P.; Baugh, C.M.; Lacey, C.G.; Benson, A.J.; Kim, H.S.; Power, C. Cosmic Evolution of the Atomic and Molecular Gas Contents of Galaxies. Mon. Not. R. Astron. Soc. 2011, 418, 1649–1667. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.; Ponman, T.J.; Mulchaey, J.S. Gas Stripping in Galaxy Groups—The Case of the Starburst Spiral NGC 2276. Mon. Not. R. Astron. Soc. 2006, 370, 453–467. [Google Scholar] [CrossRef]
- George, K.; Poggianti, B.M.; Bellhouse, C.; Radovich, M.; Fritz, J.; Paladino, R.; Bettoni, D.; Jaffé, Y.; Moretti, A.; Gullieuszik, M.; et al. GASP XVIII: Star Formation Quenching Due to AGN Feedback in the Central Region of a Jellyfish Galaxy. Mon. Not. R. Astron. Soc. 2019, 487, 3102–3111. [Google Scholar] [CrossRef]
- Radovich, M.; Poggianti, B.; Jaffé, Y.L.; Moretti, A.; Bettoni, D.; Gullieuszik, M.; Vulcani, B.; Fritz, J. GASP—XIX. AGN and Their Outflows at the Centre of Jellyfish Galaxies. Mon. Not. R. Astron. Soc. 2019, 486, 486–503. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Martini, P.; Robertson, B.; Springel, V. Black Holes in Galaxy Mergers: Evolution of Quasars. Astrophys. J. 2005, 630, 705–715. [Google Scholar] [CrossRef]
- Silk, J. Unleashing Positive Feedback: Linking the Rates of Star Formation, Supermassive Black Hole Accretion, and Outflows in Distant Galaxies. Astrophys. J. 2013, 772, 112. [Google Scholar] [CrossRef]
- Somerville, R.S.; Popping, G.; Trager, S.C. Star Formation in Semi-Analytic Galaxy Formation Models with Multiphase Gas. Mon. Not. R. Astron. Soc. 2015, 453, 4337–4367. [Google Scholar] [CrossRef] [Green Version]
- Beckmann, R.S.; Devriendt, J.; Slyz, A.; Peirani, S.; Richardson, M.L.A.; Dubois, Y.; Pichon, C.; Chisari, N.E.; Kaviraj, S.; Laigle, C.; et al. Cosmic Evolution of Stellar Quenching by AGN Feedback: Clues from the Horizon-AGN Simulation. Mon. Not. R. Astron. Soc. 2017, 472, 949–965. [Google Scholar] [CrossRef] [Green Version]
- Donnari, M.; Pillepich, A.; Joshi, G.D.; Nelson, D.; Genel, S.; Marinacci, F.; Rodriguez-Gomez, V.; Pakmor, R.; Torrey, P.; Vogelsberger, M.; et al. Quenched Fractions in the IllustrisTNG Simulations: The Roles of AGN Feedback, Environment, and Pre-Processing. Mon. Not. R. Astron. Soc. 2021, 500, 4004–4024. [Google Scholar] [CrossRef]
- Harshan, A.; Gupta, A.; Tran, K.V.; Rodriguez-Gomez, V.; Pillepich, A.; Alcorn, L.Y.; Nanayakkara, T.; Kacprzak, G.G.; Glazebrook, K. ZFIRE: The Beginning of the End for Massive Galaxies at z 2 and Why Environment Matters. Astrophys. J. 2021, 919, 57. [Google Scholar] [CrossRef]
- Haines, C.P.; Gargiulo, A.; La Barbera, F.; Mercurio, A.; Merluzzi, P.; Busarello, G. The Different Physical Mechanisms That Drive the Star Formation Histories of Giant and Dwarf Galaxies. Mon. Not. R. Astron. Soc. 2007, 381, 7–32. [Google Scholar] [CrossRef] [Green Version]
- Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G. The Origin of Dwarf Ellipticals in the Virgo Cluster. Astrophys. J. 2008, 674, 742–767. [Google Scholar] [CrossRef] [Green Version]
- Benítez-Llambay, A.; Navarro, J.F.; Abadi, M.G.; Gottlöber, S.; Yepes, G.; Hoffman, Y.; Steinmetz, M. Dwarf Galaxies and the Cosmic Web. Astrophys. J. 2013, 763, L41. [Google Scholar] [CrossRef]
- Fillingham, S.P.; Cooper, M.C.; Wheeler, C.; Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S. Taking Care of Business in a Flash: Constraining the Time-Scale for Low-Mass Satellite Quenching with ELVIS. Mon. Not. R. Astron. Soc. 2015, 454, 2039–2049. [Google Scholar] [CrossRef]
- Wetzel, A.R.; Tollerud, E.J.; Weisz, D.R. Rapid Environmental Quenching of Satellite Dwarf Galaxies in the Local Group. Astrophys. J. 2015, 808, L27. [Google Scholar] [CrossRef] [Green Version]
- Steinhauser, D.; Schindler, S.; Springel, V. Simulations of Ram-Pressure Stripping in Galaxy-Cluster Interactions. Astron. Astrophys. 2016, 591, A51. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Annu. Rev. Astron. Astrophys. 2017, 55, 343. [Google Scholar] [CrossRef] [Green Version]
- McQuinn, K.B.W.; van Zee, L.; Skillman, E.D. Galactic Winds in Low-mass Galaxies. Astrophys. J. 2019, 886, 74. [Google Scholar] [CrossRef] [Green Version]
- Trussler, J.; Maiolino, R.; Maraston, C.; Peng, Y.; Thomas, D.; Goddard, D.; Lian, J. Both Starvation and Outflows Drive Galaxy Quenching. Mon. Not. R. Astron. Soc. 2020, 491, 5406–5434. [Google Scholar] [CrossRef] [Green Version]
- Roberts, I.D.; Parker, L.C.; Gwyn, S.; Hudson, M.J.; Carlberg, R.; McConnachie, A.; Cuillandre, J.C.; Chambers, K.C.; Duc, P.A.; Furusawa, H.; et al. Ram Pressure Candidates in UNIONS. Mon. Not. R. Astron. Soc. 2022, 509, 1342–1357. [Google Scholar] [CrossRef]
- Yoon, I.; Rosenberg, J.L. The Effect of Halo Mass on the H I Content of Galaxies in Groups and Clusters. Astrophys. J. 2015, 812, 4. [Google Scholar] [CrossRef] [Green Version]
- Odekon, M.C.; Koopmann, R.A.; Haynes, M.P.; Finn, R.A.; McGowan, C.; Micula, A.; Reed, L.; Giovanelli, R.; Hallenbeck, G. The HI Content of Galaxies in Groups and Clusters as Measured by ALFALFA. Astrophys. J. 2016, 824, 110. [Google Scholar] [CrossRef]
- De Lucia, G.; Weinmann, S.; Poggianti, B.M.; Aragón-Salamanca, A.; Zaritsky, D. The Environmental History of Group and Cluster Galaxies in a Λ Cold Dark Matter Universe. Mon. Not. R. Astron. Soc. 2012, 423, 1277–1292. [Google Scholar] [CrossRef]
- Oman, K.A.; Bahé, Y.M.; Healy, J.; Hess, K.M.; Hudson, M.J.; Verheijen, M.A.W. A Homogeneous Measurement of the Delay between the Onsets of Gas Stripping and Star Formation Quenching in Satellite Galaxies of Groups and Clusters. Mon. Not. R. Astron. Soc. 2021, 501, 5073–5095. [Google Scholar] [CrossRef]
- Diemer, B.; Mansfield, P.; Kravtsov, A.V.; More, S. The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology. Astrophys. J. 2017, 843, 140. [Google Scholar] [CrossRef] [Green Version]
- Shin, T.; Jain, B.; Adhikari, S.; Baxter, E.J.; Chang, C.; Pandey, S.; Salcedo, A.; Weinberg, D.H.; Amsellem, A.; Battaglia, N.; et al. The Mass and Galaxy Distribution around SZ-selected Clusters. Mon. Not. R. Astron. Soc. 2021, 507, 5758–5779. [Google Scholar] [CrossRef]
- Keshet, U.; Kushnir, D.; Loeb, A.; Waxman, E. Preliminary Evidence for a Virial Shock around the Coma Galaxy Cluster. Astrophys. J. 2017, 845, 24. [Google Scholar] [CrossRef] [Green Version]
- Keshet, U.; Reiss, I. Evidence for an X-Ray to Gamma-Ray Virial Shock Signal from the Coma Cluster. Astrophys. J. 2018, 869, 53. [Google Scholar] [CrossRef] [Green Version]
- Keshet, U.; Reiss, I.; Hurier, G. Coincident Sunyaev-Zel’dovich and Gamma-Ray Signals from Cluster Virial Shocks. Astrophys. J. 2020, 895, 72. [Google Scholar] [CrossRef]
- Voit, G.M.; Balogh, M.L.; Bower, R.G.; Lacey, C.G.; Bryan, G.L. On the Origin of Intracluster Entropy. Astrophys. J. 2003, 593, 272–290. [Google Scholar] [CrossRef] [Green Version]
- Molnar, S.M.; Hearn, N.; Haiman, Z.; Bryan, G.; Evrard, A.E.; Lake, G. Accretion Shocks in Clusters of Galaxies and Their SZ Signature from Cosmological Simulations. Astrophys. J. 2009, 696, 1640–1656. [Google Scholar] [CrossRef] [Green Version]
- Book, L.G.; Benson, A.J. The Role of Ram Pressure Stripping in the Quenching of Cluster Star Formation. Astrophys. J. 2010, 716, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Lau, E.T.; Nagai, D.; Avestruz, C.; Nelson, K.; Vikhlinin, A. Mass Accretion and Its Effects on the Self-similarity of Gas Profiles in the Outskirts of Galaxy Clusters. Astrophys. J. 2015, 806, 68. [Google Scholar] [CrossRef]
- Hurier, G.; Adam, R.; Keshet, U. First Detection of a Virial Shock with SZ Data: Implication for the Mass Accretion Rate of Abell 2319. Astron. Astrophys. 2019, 622, A136. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.S.; Heald, G.H.; Eilek, J.A.; Lenc, E.; Gaensler, B.M.; Rudnick, L.; Van Eck, C.L.; O’Sullivan, S.P.; Stil, J.M.; Chippendale, A.; et al. Early Science from POSSUM: Shocks, Turbulence, and a Massive New Reservoir of Ionised Gas in the Fornax Cluster. Publ. Astron. Soc. Aust. 2021, 38, e020. [Google Scholar] [CrossRef]
- Baxter, E.J.; Adhikari, S.; Vega-Ferrero, J.; Cui, W.; Chang, C.; Jain, B.; Knebe, A. Shocks in the Stacked Sunyaev-Zel’dovich Profiles of Clusters—I. Analysis with the Three Hundred Simulations. Mon. Not. R. Astron. Soc. 2021, 508, 1777–1787. [Google Scholar] [CrossRef]
- Tonnesen, S. Environmentally-Driven Evolution of Simulated Cluster Galaxies. New Astron. Rev. 2007, 51, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Lotz, M.; Remus, R.S.; Dolag, K.; Biviano, A.; Burkert, A. Gone after One Orbit: How Cluster Environments Quench Galaxies. Mon. Not. R. Astron. Soc. 2019, 488, 5370–5389. [Google Scholar] [CrossRef] [Green Version]
- Cen, R.; Roxana Pop, A.; Bahcall, N.A. Gas Loss in Simulated Galaxies as They Fall into Clusters. Proc. Natl. Acad. Sci. USA 2014, 111, 7914–7919. [Google Scholar] [CrossRef] [Green Version]
- Jaffé, Y.L.; Smith, R.; Candlish, G.N.; Poggianti, B.M.; Sheen, Y.K.; Verheijen, M.A.W. BUDHIES II: A Phase-Space View of H I Gas Stripping and Star Formation Quenching in Cluster Galaxies. Mon. Not. R. Astron. Soc. 2015, 448, 1715–1728. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Churazov, E.; Dolag, K.; Forman, W.R.; Zhuravleva, I. Encounters of Merger and Accretion Shocks in Galaxy Clusters and Their Effects on Intracluster Medium. Mon. Not. R. Astron. Soc. 2020, 494, 4539–4547. [Google Scholar] [CrossRef]
- Lotz, J.M.; Papovich, C.; Faber, S.M.; Ferguson, H.C.; Grogin, N.; Guo, Y.; Kocevski, D.; Koekemoer, A.M.; Lee, K.S.; McIntosh, D.; et al. Caught in the Act: The Assembly of Massive Cluster Galaxies at z = 1.62. Astrophys. J. 2013, 773, 154. [Google Scholar] [CrossRef] [Green Version]
- Hine, N.K.; Geach, J.E.; Alexander, D.M.; Lehmer, B.D.; Chapman, S.C.; Matsuda, Y. An Enhanced Merger Fraction within the Galaxy Population of the SSA22 Protocluster at z = 3.1. Mon. Not. R. Astron. Soc. 2016, 455, 2363–2370. [Google Scholar] [CrossRef]
- Deger, S.; Rudnick, G.; Kelkar, K.; Aragón-Salamanca, A.; Desai, V.; Lotz, J.M.; Jablonka, P.; Moustakas, J.; Zaritsky, D. Tidal Interactions and Mergers in Intermediate-redshift EDisCS Clusters. Astrophys. J. 2018, 869, 6. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.; Tran, K.V.; Tomczak, A.; Alcorn, L.; Salazar, I.V.; Gupta, A.; Momcheva, I.; Papovich, C.; van Dokkum, P.; Brammer, G.; et al. Galaxy Merger Fractions in Two Clusters at Z ∼ 2 Using the Hubble Space Telescope. Astrophys. J. 2019, 874, 63. [Google Scholar] [CrossRef] [Green Version]
- Sazonova, E.; Alatalo, K.; Lotz, J.; Rowlands, K.; Snyder, G.F.; Boone, K.; Brodwin, M.; Hayden, B.; Lanz, L.; Perlmutter, S.; et al. The Morphology–Density Relationship in 1 < z < 2 Clusters. Astrophys. J. 2020, 899, 85. [Google Scholar] [CrossRef]
- Delahaye, A.G.; Webb, T.M.A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H.K.C.; Foltz, R.; Noble, A.G.; Demarco, R.; et al. Galaxy Merger Candidates in High-redshift Cluster Environments. Astrophys. J. 2017, 843, 126. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Herrero, A.; Rieke, G.H.; Rieke, M.J.; Scoville, N.Z. Extreme Star Formation in the Interacting Galaxy Arp 299 (IC 694+NGC 3690). Astrophys. J. 2000, 532, 845–866. [Google Scholar] [CrossRef] [Green Version]
- Barnes, J.E. Shock-Induced Star Formation in a Model of the Mice. Mon. Not. R. Astron. Soc. 2004, 350, 798–808. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.S.; Vavilkin, T.; Pizagno, J.; Modica, F.; Mazzarella, J.M.; Iwasawa, K.; Howell, J.H.; Surace, J.A.; Armus, L.; Petric, A.O.; et al. Off-Nuclear Star Formation and Obscured Activity in the Luminous Infrared Galaxy NGC 2623. Astrophys. J. 2008, 675, L69. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, K.A.; Barnes, J.E. Go with the Flow: Understanding Inflow Mechanisms in Galaxy Collisions. Mon. Not. R. Astron. Soc. 2018, 479, 3952–3965. [Google Scholar] [CrossRef]
- Scudder, J.M.; Ellison, S.L.; Momjian, E.; Rosenberg, J.L.; Torrey, P.; Patton, D.R.; Fertig, D.; Mendel, J.T. Galaxy Pairs in the Sloan Digital Sky Survey—X. Does Gas Content Alter Star Formation Rate Enhancement in Galaxy Interactions? Mon. Not. R. Astron. Soc. 2015, 449, 3719–3740. [Google Scholar] [CrossRef] [Green Version]
- Fensch, J.; Renaud, F.; Bournaud, F.; Duc, P.A.; Agertz, O.; Amram, P.; Combes, F.; Di Matteo, P.; Elmegreen, B.; Emsellem, E.; et al. High-Redshift Major Mergers Weakly Enhance Star Formation. Mon. Not. R. Astron. Soc. 2017, 465, 1934–1949. [Google Scholar] [CrossRef]
- Abruzzo, M.W.; Narayanan, D.; Davé, R.; Thompson, R. Identifying Mergers Using Quantitative Morphologies in Zoom Simulations of High-Redshift Galaxies. arXiv 2018, arXiv:1803.02374. [Google Scholar]
- Capelo, P.R.; Volonteri, M.; Dotti, M.; Bellovary, J.M.; Mayer, L.; Governato, F. Growth and Activity of Black Holes in Galaxy Mergers with Varying Mass Ratios. Mon. Not. R. Astron. Soc. 2015, 447, 2123–2143. [Google Scholar] [CrossRef] [Green Version]
- Koss, M.J.; Glidden, A.; Baloković, M.; Stern, D.; Lamperti, I.; Assef, R.; Bauer, F.; Ballantyne, D.; Boggs, S.E.; Craig, W.W.; et al. NuSTAR Resolves the First Dual AGN above 10 keV in SWIFT J2028.5+2543. Astrophys. J. 2016, 824, L4. [Google Scholar] [CrossRef]
- Koss, M.J.; Blecha, L.; Bernhard, P.; Hung, C.L.; Lu, J.R.; Trakhtenbrot, B.; Treister, E.; Weigel, A.; Sartori, L.F.; Mushotzky, R.; et al. A Population of Luminous Accreting Black Holes with Hidden Mergers. Nature 2018, 563, 214–216. [Google Scholar] [CrossRef] [Green Version]
- Kocevski, D.D.; Brightman, M.; Nandra, K.; Koekemoer, A.M.; Salvato, M.; Aird, J.; Bell, E.F.; Hsu, L.T.; Kartaltepe, J.S.; Koo, D.C.; et al. Are Compton-thick AGNs the Missing Link between Mergers and Black Hole Growth? Astrophys. J. 2015, 814, 104. [Google Scholar] [CrossRef] [Green Version]
- Ricci, C.; Bauer, F.E.; Treister, E.; Schawinski, K.; Privon, G.C.; Blecha, L.; Arevalo, P.; Armus, L.; Harrison, F.; Ho, L.C.; et al. Growing Supermassive Black Holes in the Late Stages of Galaxy Mergers Are Heavily Obscured. Mon. Not. R. Astron. Soc. 2017, 468, 1273–1299. [Google Scholar] [CrossRef] [Green Version]
- Knebe, A.; Power, C.; Gill, S.P.D.; Gibson, B.K. The Importance of Interactions for Mass Loss from Satellite Galaxies in Cold Dark Matter Haloes. Mon. Not. R. Astron. Soc. 2006, 368, 741–750. [Google Scholar] [CrossRef]
- Vijayaraghavan, R.; Ricker, P.M. Pre-Processing and Post-Processing in Group-Cluster Mergers. Mon. Not. R. Astron. Soc. 2013, 435, 2713–2735. [Google Scholar] [CrossRef] [Green Version]
- Bahé, Y.M.; Schaye, J.; Barnes, D.J.; Dalla Vecchia, C.; Kay, S.T.; Bower, R.G.; Hoekstra, H.; McGee, S.L.; Theuns, T. Disruption of Satellite Galaxies in Simulated Groups and Clusters: The Roles of Accretion Time, Baryons, and Pre-Processing. Mon. Not. R. Astron. Soc. 2019, 485, 2287–2311. [Google Scholar] [CrossRef]
- Benavides, J.A.; Sales, L.V.; Abadi, M.G. Accretion of Galaxy Groups into Galaxy Clusters. Mon. Not. R. Astron. Soc. 2020, 498, 3852–3862. [Google Scholar] [CrossRef]
- Doré, O.; Werner, M.W.; Ashby, M.; Banerjee, P.; Battaglia, N.; Bauer, J.; Benjamin, R.A.; Bleem, L.E.; Bock, J.; Boogert, A.; et al. Science Impacts of the SPHEREx All-Sky Optical to Near-Infrared Spectral Survey: Report of a Community Workshop Examining Extragalactic, Galactic, Stellar and Planetary Science. arXiv 2016, arXiv:1606.07039. [Google Scholar]
- Wang, Y.; Armus, L.; Benson, A.; Daddi, E.; Faisst, A.; Gonzalez, A.; Papovich, C.; Ninkov, Z.; Robberto, M.; Rose, R.J.; et al. Illuminating Galaxy Evolution at Cosmic Noon with ISCEA: The Infrared Satellite for Cosmic Evolution Astrophysics. arXiv 2021, arXiv:2112.02387. [Google Scholar]
- Dannerbauer, H.; van Kampen, E.; Afonso, J.; Andreani, P.; Battaia, F.A.; Bertoldi, F.; Casey, C.; Chen, C.C.; Clements, D.L.; De Breuck, C.; et al. Mapping Galaxy Clusters in the Distant Universe. Bull. Am. Astron. Soc. 2019, 51, 293. [Google Scholar]
- Adam, R.; Adane, A.; Ade, P.A.R.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; et al. The NIKA2 Large-Field-of-View Millimetre Continuum Camera for the 30 m IRAM Telescope. Astron. Astrophys. 2018, 609, A115. [Google Scholar] [CrossRef]
- Dicker, S.R.; Ade, P.A.R.; Aguirre, J.; Brevik, J.A.; Cho, H.M.; Datta, R.; Devlin, M.J.; Dober, B.; Egan, D.; Ford, J.; et al. MUSTANG2: A large focal plan array for the 100 meter Green Bank Telescope. In Proceedings of the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montréal, QC, Canada, 23 July 2014; Holland, W.S., Zmuidzinas, J., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9153, p. 91530J. Available online: https://spie.org/Publications/Proceedings/Volume/9153?SSO=1 (accessed on 2 September 2022). [CrossRef]
- Klaassen, P.D.; Mroczkowski, T.K.; Cicone, C.; Hatziminaoglou, E.; Sartori, S.; De Breuck, C.; Bryan, S.; Dicker, S.R.; Duran, C.; Groppi, C.; et al. The Atacama Large Aperture Submillimeter Telescope (AtLAST). In Proceedings of the SPIE Conference Series, Online, 13 December 2020; Volume 11445, p. 114452F. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Astropy Collaboration; Price-Whelan, A.M.; Sipocz, B.M.; Günther, H.M.; Lim, P.L.; Crawford, S.M.; Conseil, S.; Shupe, D.L.; Craig, M.W.; Dencheva, N.; et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018, 156, 123. [Google Scholar] [CrossRef]
- Reback, J.; Jbrockmendel; McKinney, W.; Van den Bossche, J.; Augspurger, T.; Cloud, P.; Hawkins, S.; Gfyoung; Roeschke, M.; Sinhrks; et al. Pandas-Dev/Pandas: Pandas 1.3.4. Zenodo 2021. [Google Scholar] [CrossRef]
- Waskom, M. Seaborn: Statistical Data Visualization. Zenodo 2021. [Google Scholar] [CrossRef]
- van der Velden, E. CMasher: Scientific Colormaps for Making Accessible, Informative and ’cmashing’ Plots. J. Open Source Softw. 2020, 5, 2004. [Google Scholar] [CrossRef]
- Liu, D.; Schinnerer, E.; Groves, B.; Magnelli, B.; Lang, P.; Leslie, S.; Jiménez-Andrade, E.; Riechers, D.A.; Popping, G.; Magdis, G.E.; et al. Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. Astrophys. J. 2019, 887, 235. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberts, S.; Noble, A. From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution. Universe 2022, 8, 554. https://doi.org/10.3390/universe8110554
Alberts S, Noble A. From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution. Universe. 2022; 8(11):554. https://doi.org/10.3390/universe8110554
Chicago/Turabian StyleAlberts, Stacey, and Allison Noble. 2022. "From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution" Universe 8, no. 11: 554. https://doi.org/10.3390/universe8110554
APA StyleAlberts, S., & Noble, A. (2022). From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution. Universe, 8(11), 554. https://doi.org/10.3390/universe8110554