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Abstract: In this scientific research article, the new Kudryashov method and the tanh-coth method,
which have not been applied before, are employed to construct analytical and soliton solutions of the
(2 + 1)-dimensional Hirota–Maccari system. The (2 + 1)-dimensional Hirota–Maccari system is a
special kind of nonlinear Schrödinger equation (NLSEs) that models the motion of isolated waves
localized in a small part of space, and is used in such various fields as fiber optics telecommunication
systems, nonlinear optics, plasma physics, and hydrodynamics. In addition, the Hirota–Maccari
system defines the dynamical characters of femtosecond soliton pulse propagation in single-mode
fibers. Analytical solutions of the model are successfully acquired with the assistance of symbolic
computation utilizing these methods. Finally, 3D, 2D, and contour graphs of solutions are depicted
at specific values of parameters. It is shown that the new Kudryashov method and the tanh-coth
method are uncomplicated, very effective, easily applicable, reliable, and indeed vital mathematical
tools in solving nonlinear models.

Keywords: new Kudryashov method; tanh-coth method; isolated waves; single-mode fiber; optic soliton

1. Introduction

Nonlinear evolution equations play an important role in the study of nonlinearity
in physical phenomena in many areas of the natural and engineering sciences, such as
population models, nonlinear optics, fluid mechanics, solid-state physics, plasma physics,
etc. [1–12]. Because searching the analytical and soliton solutions for nonlinear evolution
equations (NLEEs) is a considerable undertaking in examining of the dynamics of these
phenomena, a variety of approaches have been produced to examine analytical and soliton
solutions for NLEEs, such as the Weiss–Tabor–Carnevale method [13], Jacobi elliptic func-
tion expansion method [14], enhanced Kudryashov method [15,16], modified extended tanh
expansion scheme [17,18], the modified extended tanh expansion method enhanced with
new Riccati solutions [19], generalized exponential rational function method [20], extended
sinh-Gordon equation expansion method [21], sech-csch function method [22], (G′/G)-
expansion scheme [23], Bernoulli sub-equation function method [24], Riccati–Bernoulli
sub-ODE method [25], Nucci’s reduction method [26], Sardar subequation method [27],
Darboux transformation method [28,29], ( 1

G′ )-expansion method [30], rational sine-Gordon
expansion method [31], modified exponential function method [31], p-Laplacian opera-
tor [32], Daubechies wavelet technique [33], and many more.

It is possible to add several dozen more to the methods mentioned above, and each
method has its unique advantages and disadvantages. Among the factors that determine the
use of a method according to the purpose of the researcher are the suitability of the method
to the model being applied, whether the applied method responds to the goal, whether it is
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easy to use, whether it requires more technically equipped calculation tools, and whether it
allows for obtaining more and more different solution functions. At this point, our aim in
using the new Kudryashov and tanh-coth methods that we discuss in the study is not to
obtain a large number of soliton solutions; rather, our interest is because these methods can
be easily applied for both nonlinear partial differential equation (NLPDE), a fractional form
of NLPDE, a system of NLPDEs, and high-order optical problems; moreover, they require
little processing and are effective methods that provide basic soliton types (bright, dark,
singular). As is known, the application of many of the methods for obtaining solutions to
NLPDE problems requires long processing, takes a lot of time, and may involve complex
situations. For certain problems, the results cannot be obtained even when the methods are
effectively applied. At this point, the new Kudryashov and tanh-coth methods presented
in this study provide researchers with the opportunity to get an idea of whether many
problems to be investigated produce soliton solutions or not, and allowing researchers to
turn to other methods to obtain different soliton solutions if they wish.

In this study, we consider the (2 + 1)-dimensional Hirota–Maccari system introduced
by Maccari [34]:

iψt + ψxy + iψxxx + ψϕ− i|ψ|2ψx = 0,

3ϕx +
(
|ψ|2

)
y
= 0, (1)

where i =
√
−1, ψ, and ϕ are the complex and real scalar fields, the functions of the indepen-

dent coordinates x, y and t. The (2 + 1)-dimensional Hirota–Maccari system represents the
motion of isolated waves localized in a small part of space, that is, the interaction of large-
amplitude lower-hybrid waves with finite-frequency density perturbations in various fields
such as hydrodynamic, plasma physics, nonlinear optics, and more. The (2 + 1)-dimensional
Hirota–Maccari system was obtained from the well-recognized two-dimensional general-
izations of the KdV equation [35,36]. If we consider that x = y, Equation (1) is converted to
the (1 + 1)-dimensional Hirota equation [34]. Over the past two decades, many authors
have successfully examined the Hirota–Maccari system, applying diverse techniques to
evaluate and acquire analytic and soliton solutions. Methods which have been presented
include the improved tan( φ(ρ)

2 )-expansion method and general projective Riccati equation
method [37], the extended trial equation method and generalized Kudryashov method [38],
the extended sinh-Gordon equation expansion method [39], the exp(−φ(ζ)) expansion
method and addendum to Kudryashov’s method [40], the Weierstrass elliptic function
expansion method [41], and the ( 1

G′ )-expansion method [42].
The present study is laid out as follows. In Section 2, the mathematical analysis of the

(2 + 1)-dimensional Hirota–Maccari system is provided and the new Kudryashov method
is structured and applied to this model. In Section 3, the tanh-coth method is presented and
applied, then the analytical and soliton solutions of the (2 + 1)-dimensional Hirota–Maccari
system are acquired using the proposed method. The consequences of this acquisition are
noted in Section 4, and our conclusions are presented in Section 5.

2. Obtaining the Nonlinear Ordinary Differential form of Equation (1) and the
Description of the New Kudryashov Method

If we use the following wave transformations, then we acquire the explicit and analyt-
ical traveling wave solutions of Equation (1):

ψ(x, y, t) = U(ζ)eiθ , ϕ(x, y, t) = V(ζ), ζ = x + y + ωt, θ = px + qy + rt, (2)

where p, q, r, and ω are the coefficients of the spatial variable x which is the frequency of
the wave, the spatial variable y, the temporal variable t which represents time, and the
velocity of the wave, respectively. In addition, p, q, r, and ω are nonzero arbitrary real
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values. Substituting Equation (2) into the second segment of Equation (1), the following
relation is acquired:

V(ζ) = −U2(ζ)

3
. (3)

Again, substituting Equation (2) into the first segment of Equation (1) by considering
Equation (3), then classifying the real and imaginary parts of the obtained Equation,
provides the following nonlinear ordinary differential equation (NODE) in Equation (4)
and the relation in Equation (5):

3(1− 3p)U′′ + 3(p3 − qp− r)U + (3p− 1)U3 = 0, (4)

ω =
8p3 − 6p2 − 2qp + p + q + r

3p− 1
, p 6= 1

3
. (5)

Now, the principal steps of the new Kudryashov method [43–45] are proposed as
follows. Presume that Equation (6) is the solution of Equation (4):

U(ζ) =
N

∑
i=0

AiΨi(ζ), AN 6= 0, (6)

in which A0, A1, . . . , AN are calculated real constants. The function Ψ(ζ) fulfils the next
first-order differential equation

(Ψ′(ζ))2 = δ2Ψ2(ζ)[1− χΨ2(ζ)], (7)

in which χ and δ are nonzero values to be determined later. In this case, the solution of
Equation (7) can be provided as follows:

Ψ(ζ) =
4a

4a2eδζ + χe−δζ
, (8)

where a is a nonzero real constant.

Application of the New Kudryashov Method to the Hirota–Maccari System

In this section, the new Kudryashov method is efficiently applied to the (2 + 1)-dimensional
Hirota–Maccari system in Equation (1). With the help of the homogeneous balance rule U′′ and
U3 in Equation (4), N = 1 is acquired. Thus, Equation (6) can be transformed as follows:

U(ζ) = A0 + A1Ψ(ζ), A1 6= 0. (9)

By substituting Equation (9) into Equation (4) when considering Equation (7) and
equating the coefficients of Ψj(ζ) to zero, the following system of algebraic equations
is obtained:

Ψ0(ζ) : 3A0(p3 + (A2
0 − q)p−

A2
0

3
− r) = 0,

Ψ (ζ) : 3(p3 + (−3δ2 + 3A2
0 − q)p + δ2 − A2

0 − r)A1 = 0,

Ψ2(ζ) : A0(3p− 1)A2
1 = 0,

Ψ3(ζ) :
(

6χ δ2 + A2
1

)
(3p− 1)A1 = 0.

When this algebraic system is solved using computer algebra software, the following
solution set is generated:

Case 1: δ =

√
p1m1

p1
, A0 = 0, A1 = ∓

√
−6p1χm1

p1
(10)
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where p1 = 3p− 1, p 6= 1
3 , m1 = p3 − qp− r, and p1m1 > 0. Substituting Equation (10)

into Equations (9) and (8) together with Equation (2), we obtain the next solutions for
Equation (1):

ψ+
1 (x, y, t) =

4
√
−6p1χm1 a ei(px+qy+rt)

p1

(
4a2e

√p1m1 (x+y+ωt)
p1 + χ e−

√p1m1 (x+y+ωt)
p1

) , (11)

ϕ∓1 (x, y, t) =
32χm1a2

p1

(
4a2e

√p1m1 (x+y+ωt)
p1 + χ e−

√p1m1 (x+y+ωt)
p1

)2 , (12)

ψ−2 (x, y, t) = −
4
√
−6p1χm1 a ei(px+qy+rt)

p1

(
4a2e

√p1m1 (x+y+ωt)
p1 + χ e−

√p1m1 (x+y+ωt)
p1

) , (13)

in which ω =
(8p3−6p2−2qp+p+q+r)

3p−1 . The graph (Figure 1) of Equation (11) for various
parameters is given below.
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Figure 1. 3D plots of ψ+

1 (x, 1, t) in Equation (11): (a) the graph of the square of the modulus; (b) the
graph of the real part; and (c) the graph of the imaginary part. Contour plots of ψ+

1 (x, 1, t) in
Equation (11): (d) the graph of the square of the modulus; (e) the graph of the real part; and (f) the
graph of the imaginary part. 2D plots of ψ+

1 (x, 1, t) in Equation (11): (g) the graph of the square of
the modulus; (h) the graph of the real part; and (i) the graph of the imaginary part of ψ+

1 (x, 1, t) for
the parameters p = 1, q = 1, r = −0.5, a = 10 and χ = −0.5.
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Case 2:
r = −3δ2 p + p3 + δ2 − qp, A0 = 0, A1 = ∓

√
−6χ δ. (14)

Inserting Equation (14) into Equation (9) and Equation (8) by taking into account the
wave transformation Equation (2), we have the next solutions for Equation (1):

ψ3(x, y, t) =
4
√
−6χ δa ei(px+qy+(−3δ2 p+p3+δ2−qp)t)

4a2e−δ(x+y+r1t) + χ e−δ(x+y+r1t)
, (15)

ϕ3(x, y, t) =
32χδa2(

4a2e−δ(x+y+r1t) + χ e−δ(x+y+r1t)
)2 , (16)

in which r1 = −3δ2 p+9p3+δ2−6p2−3qp+p+q
3p−1 . The graph (Figure 2) of Equation (15) for various

parameters is given below.
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Figure 2. 3D plots of ψ3(x, 1, t) in Equation (15): (a) the graph of the square of the modulus; (b) the
graph of the real part; and (c) the graph of the imaginary part. Contour plots of ψ3(x, 1, t) in
Equation (15): (d) the graph of the square of the modulus; (e) the graph of the real part; and (f) the
graph of the imaginary part. 2D plots of ψ3(x, 1, t) in Equation (15): (g) the graph of the square of
the modulus; (h) the graph of the real part; and (i) the graph of the imaginary part of ψ3(x, 1, t) in
Equation (15) for the parameters p = −1, q = 1.5, δ = 2, a = 0.5, and χ = −1.
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3. Description and Application of the Tanh-Coth Method
3.1. Description of the Tanh-Coth Method

In this section, the principal steps of the tanh-coth method discovered by Wazwaz [46]
are provided. We first contemplate a general form of the nonlinear partial differential
equation

K(ψ, ψt, ψx, ψxx, ψxxx, . . . ) = 0. (17)

To seek the travelling wave solution of Equation (17) utilizing ζ = x− vt, Equation (17)
can be transformed into an ordinary differential equation (ODE):

L(ψ, ψ′, ψ′′, ψ′′′, . . . ) = 0, (18)

where ψ = ψ(ζ), ψ′ = dψ
dζ , ψ′′ = d2ψ

dζ2 , etc. A new independent variable,

Ψ = tanh(κζ), or Ψ = coth(κζ), ζ = x− vt, (19)

is formed, and the derivative is changed:

d
dζ

= κ(1−Ψ2)
d

dΨ
, (20)

d2

dζ2 = κ2(1−Ψ2)

(
−2ψ

d
dΨ

+ ψ(1−Ψ2)
d2

dΨ2

)
. (21)

Herein, κ is defined as the wave number.
The tanh-coth method [46] permits the use of the finite expansion

ψ(κζ) =
N

∑
i=0

AiΨi +
N

∑
i=1

BiΨ−i (22)

and

Ψ′ = κ(1−Ψ2), (23)

in which N is a positive integer. By substituting Equations (22) and (23) into Equation (4),
Equation (4) can be transformed into an algebraic equation in powers of Ψ. To compute the
parameter N, the highest order linear terms are balanced with the highest order nonlinear
terms in the resulting equation. Then, by collecting all the coefficients of powers of Ψ in the
obtained algebraic equation and vanishing them to these coefficients, we acquire a system
of algebraic equations involving A0, Ai, Bi, (i = 1, . . . , N) and κ. After determining these
parameters, a closed analytical solution form is obtained.

3.2. Application of the Tanh-Coth Method to the Hirota–Maccari System

The tanh-coth method is efficiently implemented in the (2 + 1)-dimensional Hirota–
Maccari system in Equation (1). With the assistance of the homogeneous balance rule
between U′′ and U3 in Equation (3), N = 1 can be determined. Therefore, Equation (22) is
transformed as follows:

U(ζ) = A0 + A1Ψ(ζ) + B1Ψ−1(ζ), A1, B1 6= 0. (24)

By inserting Equation (24) into Equation (4) while taking account of Equation (23) and
approving all the coefficients of Ψi(ζ) to zero, the following system of algebraic equations
is obtained:
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Ψ−3(ζ) : −6(3p− 1)κ2B1 + (3p− 1)B3
1 = 0,

Ψ−2(ζ) : 3(3p− 1)B2
1 A0 = 0,

Ψ−1(ζ) : (3p− 1)B1

(
6κ2 +

(
3A2

0 + 3B1 A1

))
+ 3
(

p3 − qp− r
)

B1 = 0,

Ψ0(ζ) : (3p− 1)
(

4B1 A0 A1 + A0

(
A2

0 + 2B1 A1

))
+ 3
(

p3 − qp− r
)

A0 = 0,

Ψ (ζ) : (3p− 1)A1

(
6κ2 + 3B1 A1 + 3A2

0

)
+ 3
(

p3 − qp− r
)

A1 = 0,

Ψ2(ζ) : 3(3p− 1)A0 A2
1 = 0,

Ψ3(ζ) : −6(3p− 1)κ2 A1 + (3p− 1)A3
1 = 0.

Solving the algebraic system using a computer algebra system produces the following
solution sets:

Case 1 : κ =

√
−2p1(m1)

4p1
, A0 = 0, A1 = −

√
−3p1(m1)

2p1
, B1 =

3
2

m1√
−3p1(m1)

, (25)

where p1 = 3p− 1, p 6= 1
3 , m1 = p3 − qp− r, and p1m1 > 0. Substituting Equation (25) into

Equations (24) and (19) by taking account of the wave transformation Equation (2), we
have the next solutions for Equation (1):

ψ5(x, y, t) =
(

A1 tanh(κ(ωt + x + y)) +
B1

tanh(κ(ωt + x + y))

)
eiθ , (26)

ϕ5(x, y, t) = −

(
A1 tanh(κ(ωt + x + y)) + B1

tanh(κ(ωt+x+y))

)2

3
, (27)

in which θ = px + qy + rt, ω =
(8p3−6p2−2qp+p+q+r)

p1
and κ, A1, and B1 are the same as in

Equation (25).

Case 2 : κ = −
√

p1(m1)

2p1
, A0 = 0, A1 =

√
p1(m1)

p1
, B1 = − m1√

p1(m1)
. (28)

where p1 = 3p− 1, p 6= 1
3 , m1 = p3 − qp− r, and p1m1 > 0. By substituting Equation (28)

into Equations (24) and (19) while taking account of the wave transformation Equation (2),
we have the soliton solutions for Equation (1):

ψ6(x, y, t) =

(√
6

2
A1 tanh(κ(ωt + x + y)) +

√
6B1

2 tanh(κ(ωt + x + y))

)
eiθ , (29)

ϕ6(x, y, t) = −

(√
6

2 A1 tanh(κ(ωt + x + y)) +
√

6B1
2 tanh(κ(ωt+x+y))

)2

3
, (30)

in which θ = px + qy + rt, ω =
(8p3−6p2−2qp+p+q+r)

p1
and κ, A1, and B1 are the same as in

Equation (28).

Case 3:
r = 24κ2 p + p3 − 8κ2 − qp, A0 = 0, A1 = ∓κ, B1 = ∓κ. (31)

Substituting Equation (31) into Equations (24) and (19) by taking account of Equation (2),
we have the soliton solutions for Equation (1):
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ψ−7 (x, y, t) =

(
−
√

6A1 tanh(κ(ωt + x + y))−
√

6B1

tanh(κ(ωt + x + y))

)
eiθ , (32)

ϕ−7 (x, y, t) = −

(
−
√

6A1 tanh2(κ(ωt + x + y))−
√

6B1

)2

3 tanh(κ(ωt + x + y))2 , (33)

ψ+
8 (x, y, t) =

(
√

6A1 tanh(κ(ωt + x + y)) +
√

6B1

tanh(κ(ωt + x + y))

)
eiθ , (34)

ϕ+
8 (x, y, t) = −

(√
6A1 tanh2(κ(ωt + x + y)) +

√
6B1

)2

3 tanh(κ(ωt + x + y))2 , (35)

where θ = px + qy + rt, ω =
(24κ2 p+9p3−8κ2−6p2−3qp+p+q)

3p−1 and A1 and B1 are the same as
in Equation (31).

Below, we provide reviews of functions previously obtained between Equations (26)
and (35) for certain special values and asymptotic cases. Equations (26), (29), (32), and (34)
take the following forms.

For A1 = 0, B1 ∈ R,

ψj(x, y, t) =
Bj

tanh(ωt + x + y)
eiθ , (36)

for A1 = 0, B1 ∈ R, x = y = 0, t > 0,

ψj(0, 0, t) =
Bj

tanh(ωt)
eirt, (37)

where j = 5, 6, 7, 8, and B5 = B1, B6 =
√

6
2 B1, B7 = −

√
6B1, B8 =

√
6B1. Equations (36)

and (37) represent the singular solution.
For B1 = 0, A1 ∈ R,

ψj(x, y, t) = Ajtanh(ωt + x + y)eiθ , (38)

for B1 = 0, A1 ∈ R, x = y = 0, t > 0,

ψj(0, 0, t) = Ajtanh(ωt)eirt, (39)

where j = 5, 6, 7, 8, and A5 = A1, A6 =
√

6
2 A1, A7 = −

√
6A1, A8 =

√
6A1. Equations (38)

and (39) depict the dark soliton.
Equations (27), (30), (33), and (35) collapse into the following forms.
For A1 = 0, B1 ∈ R,

ϕj(x, y, t) = −1
3

( Bj

tanh(ωt + x + y)

)2

, (40)

for A1 = 0, B1 ∈ R, x = y = 0, t > 0,

ϕj(0, 0, t) = −1
3

( Bj

tanh(ωt)

)2

, (41)

where j = 5, 6, 7, 8, and B5 = B1, B6 =
√

6
2 B1, B7 = −

√
6B1, B8 =

√
6B1. Equations (40)

and (41) represent the singular solution.
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For B1 = 0, A1 ∈ R,

ϕj(x, y, t) = −1
3
(

Ajtanh(ωt + x + y)
)2, (42)

for B1 = 0, A1 ∈ R, x = y = 0, t > 0,

ϕj(0, 0, t) = −1
3
(

Ajtanh(ωt)
)2, (43)

where j = 5, 6, 7, 8, and A5 = A1, A6 =
√

6
2 A1, A7 = −

√
6A1, A8 =

√
6A1. Equations (42)

and (43) signify the dark soliton.
If we consider ψj(x, y, t) in Equations (26), (29), (32), and (34), for all solution functions

we have the following asymptotic behavior:

lim
x→±∞
y→y0
t→t0

|ψj(x, y, t)| = 0, lim
x→x0

y→±∞
t→t0

|ψj(x, y, t)| = 0, lim
x→x0
y→y0

t→+∞

|ψj(x, y, t)| = 0, j = 5, 6, 7, 8. (44)

Taking into account ϕj(x, y, t) in Equations (27), (30), (33) and (35), the following
asymptotic equations can be written:

lim
x→±∞
y→y0
t→t0

ϕj(x, y, t) = 0, lim
x→x0

y→±∞
t→t0

ϕj(x, y, t) = 0, lim
x→x0
y→y0

t→+∞

ϕj(x, y, t) = 0, j = 5, 6, 7, 8. (45)

In Equations (44) and (45), x0, y0, t0 are real values in which t0 ≥ 0. Let us consider
Figure 3 and Equation (29). Figure 3 represents the various graphical simulations of ψ6(x, y, t)
in Equation (29). From Figure 3a,g, the following asymptotic approach is obtained:

lim
x→±∞

y→y0=3
t→t0

|ψ6(x, y, t)|2 = 0, t0 = 1, 2, 3. (46)
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Universe 2022, 8, 584 10 of 12

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

|
6
(x,1,1)|

2

|
6
(x,1,2)|

2

|
6
(x,1,3)|

2

(g)

0 1 2 3 4 5 6 7 8 9 10

-20

-15

-10

-5

0

5

10

15

20 Re(
6
(x,3,1))

Re(
6
(x,3,2))

Re(
6
(x,3,3))

(h)

0 1 2 3 4 5 6 7 8 9 10

-20

-15

-10

-5

0

5

10

15

20

Im(
6
(x,3,1))

Im(
6
(x,3,2))

Im(
6
(x,3,3))

(i)

Figure 3. 3D plots of ψ6(x, 3, t) in Equation (29): (a) the graph of the square of the modulus; (b) the graph
of the real part; and (c) the graph of the imaginary part. Contour plots of ψ6(x, 3, t) in Equation (29): (d) the
graph of the square of the modulus; (e) the graph of the real part; and (f) the graph of the imaginary part.
2D plots of ψ6(x, 3, t) in Equation (29): (g) the graph of the square of the modulus; (h) the graph of the real
part; and (i) the graph of the imaginary part for p = 0.75, q = 0.5, and r = −0.5.

Furthermore, in Equation (29), if we consider the special value for temporal t as zero,
the following form of Equation (29) is obtained:

lim
x→±∞
y→y0

t→t0=0

|ψ6(x, y, t)|2 =

(√
6

2
A1 tanh(κ(x + y)) +

√
6B1

2 tanh(κ(+x + y))

)
ei(px+qy). (47)

Graphically, Equation (47) has the same character as Equation (29). Similarly, it is
possible to construct such asymptotic relations for other functions.

4. Results and Discussion

In physical studies, solitary waves are beneficial for comprehending nonlinear mod-
els [47–51]. Bright solitons, periodic solitons, singular solitons, and other types of solitons
have been utilized to understand whether nonlinear models in fields such as nonlinear
optics, plasmas, and fluid dynamics are stable or unstable. From Figures 1–3, it can be
seen that these methods can be utilized for searching the nonlinear complex equation
and nonlinear equation systems in optical soliton structures. In Figure 1, we depict the
3D, 2D, and contour plots for the modulus and the real and imaginary parts of ψ+

1 (x, 1, t)
for the values p = 1, q = 1, r = −0.5, a = 10, and χ = −0.5. The graph of |ψ+

1 (x, 1, t)|2
indicates the periodic bright and dark solitons. In Figure 2, we depict the 3D, 2D, and
contour plots for the modulus and the real and imaginary parts of ψ3(x, 1, t) for the values
p = −1, q = 1.5, δ = 2, a = 0.5, and χ = −1. The plot of |ψ3(x, 1, t)|2 indicates the bright
soliton. In Figure 3, we present the 3D, 2D, and contour plots for the modulus and the
real and imaginary parts of ψ6(x, 3, t) for the values p = 0.75, q = 0.5 and, r = −0.5. The
graph of the solution |ψ6(x, 3, t)|2 indicates the singular soliton. We to emphasize that
in Figures 3a, 1a and 2a, 3D graphs were drawn for ψ+

1 (x, 1, t) in Equation (11), ψ3(x, 1, t)
in Equation (15), and ψ6(x, 3, t) in Equation (29), respectively. However, the graphs of
ϕ1(x, 1, t) in Equation (12), ϕ3(x, 1, t) in Equation (16), and ϕ6(x, 3, t) in Equation (30),
which are scalar field functions, are not plotted separately because of the differences in
amplitude according to Equation (3); nonetheless, all are of the same type graphically. In
addition, we emphasize that all soliton solutions obtained within the scope of this article
provide the main equation, Equation (1), that we have investigated.

5. Conclusions

In this work, we used the new Kudryashov and tanh-coth methods to investigate the
existence of analytical and soliton solutions for the (2 + 1)-dimensional Hirota–Maccari
system. As a result, singular, bright, and periodic soliton solutions of the model were
successfully captured. The 3D, 2D, and contour plots of the obtained soliton solution
show the correct parameter values. We strongly believe that the solution resulting from
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this study can contribute and add value to the research in this area of the literature,
especially considering that the system, higher order, and dispersive nonlinear partial
differential equations involve complex and unique challenges, and the method selection
gains importance at this point. In this study, we understood well that the presented
methods have proven to be efficient and robust approaches that acquire successful results
when analyzing and investigating soliton solutions of different nonlinear models.
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