
Citation: Schwarz, A. Scattering in

Geometric Approach to Quantum

Theory. Universe 2022, 8, 663.

https://doi.org/10.3390/

universe8120663

Academic Editor:Gerald B. Cleaver

Received: 2 November 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Scattering in Geometric Approach to Quantum Theory
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Abstract: We define inclusive scattering matrix in the framework of a geometric approach to quantum
field theory. We review the definitions of scattering theory in the algebraic approach and relate them to
the definitions in the geometric approach.
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1. Introduction

The geometric approach to quantum theory where the starting point is the set of states
was suggested in [1,2]. In this approach, one can work with convex set C0 of normalized
states or with convex cone C of not necessarily normalized states (proportional points of
the cone C specify equivalent states)1. In present paper, we discuss scattering theory in the
geometric approach. Our starting point is a convex cone C and a subgroup V of the group of
automorphisms of this cone.

We notice at the end of the paper that one can use also a subsemiringW of the semiring of
endomorphisms EndC. (Endomorphisms of cone C form a semiring EndC because the set of
endomorphisms is closed with respect to addition and composition. Notice that the semiring
EndC is closed also with respect to multiplication by a non-negative number; we assume that
W also has this property.)

We review geometric and algebraic approaches to quantum theory and the relation be-
tween these approaches. We give definitions of scattering matrix and inclusive scattering
in algebraic approach. This makes the present paper independent of papers [1,2] and of the
papers [3,4] devoted to the scattering in algebraic approach.

Let us recall the relation of the geometric approach with the algebraic approach to quantum
theory [2]. In algebraic approach, a starting point is an associative algebra A with involution
∗ (a ∗-algebra). The cone C of not necessarily normalized states is defined as a set of linear
functionals onA obeying f (A∗A) ≥ 0. Every element B ∈ A specifies two operators onA∨ (on
the dual space); one of them, denoted by the same symbol B, transforms a functional f (A) into
the functional f (AB), another, denoted by the symbol B̃, transforms f (A) into the functional
f (B∗A). The operator B̃B is an endomorphism of the cone C. We define V as the group of
all involution preserving automorphisms of A acting in natural way on C. The semiringW
is defined as the minimal set of endomorphisms of C containing all endomorphisms of the
form B̃B and closed with respect to addition and composition (it is closed also with respect to
multiplication by a non-negative number as all semirings we consider).

To define scattering in any approach to quantum field theory, we need notions of time
and spatial translations. In the algebraic approach, translations (as any symmetries) are
automorphisms of the algebra A; these automorphisms induce automorphisms of the cone C
and other objects related to the algebra A. In the geometric approach, translations should be
regarded as elements of the group V consisting of automorphisms of the cone C; their action on
the cone should induce an action on the semiringW .
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Particles and quasiparticles are defined as elementary excitations of stationary translation-
invariant state ω.

In the algebraic approach, one can define the notion of scattering matrix of elementary
excitations. Probably, it is impossible to generalize this notion to the geometric approach;
however, in the geometric approach, one can give a very natural definition of inclusive scattering
matrix of elementary excitations of stationary translation-invariant state ω. It is easy to show
that this notion agrees with the analogous notion in the algebraic approach.

Notice that our constructions can be applied also to the scattering of quasiparticles in
equilibrium and non-equilibrium statistical physics. (The conventional scattering matrix does
not make sense in this situation, but the inclusive scattering matrix does; see [3,5]).

In [6], we apply the notions of present paper to define scattering in the framework of
Jordan algebras.

2. Geometric Approach

In the geometric approach to quantum theory, we start with a convex closed cone C of
(non-normalized) states in Banach space L (or, more generally, in complete topological linear
space L). We fix a subgroup V of the group of automorphisms of the cone C. (By definition, an
endomorphism of C is a continuous linear operator in L transforming the cone into itself. An
automorphism is an invertible endomorphism.)

In some cases, it is useful to add to these data a subsemiringW of the semiring End(C) of
endomorphisms of the cone; we assume thatW is invariant with respect to the action of the
group V .

The dynamics in quantum theory is governed by a one-parameter group of time transla-
tions Tτ acting on the cone C. We assume that Tτ ∈ V . (Here, τ stands for a real number.) Time
translations can be considered also as transformations ofW denoted by the same symbol Tτ . If
A ∈ V or A ∈ W , the time translation acts as a conjugation: Tτ(A) = Tτ AT−τ ; we will use the
notation Tτ(A) = A(τ).

Quantum field theory in the geometric approach is specified by a cone C with the action of
spatial translations Tx where x ∈ Rd and time translations Tτ (the translations should constitute
a commutative subgroup of the group V .) The same data specify statistical physics in the space
Rd where d stands for the dimension of the group of spatial translations. We use the notations

TτTx(A) = TτTx AT−τT−x = A(τ, x)

for an operator A acting in L.
Let us discuss the relation of the above definitions to the quantum theory in the algebraic

approach. In this approach, as in the geometric one, we need time and spatial translations to
define elementary excitations and scattering. The time translations Tτ and spatial translations
Tx act as automorphisms of A; these automorphisms induce automorphisms of the cone C and
of the semiringW denoted by the same symbols. If ω ∈ C is a translation-invariant stationary
state, we can consider a representation of A in a pre-Hilbert space H such that there exists
a cyclic vector θ ∈ H obeying ω(A) = 〈θ, Aθ〉. This representation is called GNS (Gelfand–
Naimark–Segal) representation. We denote an operator in this representation corresponding
to A ∈ A by the same symbol A. (Notice that these operators are bounded.) We can consider
also the representation of A in the Hilbert space H̄ (in the completion ofH). Time and spatial
translations descend toH and to H̄.

For every vector Ψ in the Hilbert space H̄, we define the corresponding state σ by the
formula σ(A) = 〈Ψ, AΨ〉. If Ψ = θ, we have σ = ω; if Ψ = Bθ, we have σ = B̃Bω.

3. Elementary Excitations

Let us repeat the definitions and statements from [2] with small modifications.
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We consider a translation-invariant stationary state ω ∈ C. Let us start with the definition
of excitation of ω in geometric approach. We say that σ ∈ C is an excitation of ω if Txσ tends to
Cω as x tends to ∞ for some constant C. ( We have in mind weak convergence in this definition.
Recall that u is a weak limit of uα ∈ L if for every f ∈ L∨ (in the dual space) the limit of f (uα)
is equal to f (u).) We say that proportional elements of a cone specify the same state; hence,
this condition means that for large x, the state Txσ is close to ω.

To define the notion of elementary excitation, we need a notion of elementary space.
Recall that elementary space h is defined as a space of smooth real-valued or complex-

valued functions on Rd × I with all derivatives decreasing faster than any power (here, I
denotes a finite set consisting of m elements). One can identify this space with Sm (with the
direct sum of m copies of Schwartz space S = S(Rd). The space h can be regarded as pre-
Hilbert space (as a dense subspace of L2). The spatial translations act naturally on h (shifting
the argument); we assume that the time translations also act on h and commute with spatial
translations. In momentum representation, an element φ of h should be considered as a complex
function of k ∈ Rd and discrete variable i ∈ I . If h consists of real-valued functions, then
in momentum representation, we should impose the condition φ̄(−k) = φ(k). The spatial
translation Tx is represented as multiplication by eixk and the time translation Tτ is represented
as a multiplication by a matrix e−iτE(k) where E(k) is a non-degenerate Hermitian matrix. We
assume that E(k) is a smooth function of at most polynomial growth; then, the multiplication
by E(k) is an operator acting in h. The eigenvalues of E(k) are denoted by εs(k).

We need some facts about the time evolution of elements of h in coordinate representation.
If

|(Tτφ)(x, j)| < Cn(1 + |x|2 + τ2)−n

for all x ∈ Rd obeying x
τ /∈ U and all n ∈ N, we say that τU is an essential support of Tτφ in

coordinate representation. Notice that the set U is not defined uniquely; if U′ is a subset of Rd

containing U and τU is an essential support of Tτφ in coordinate representation, then τU′ is
also an essential support of Tτφ.

Let us consider functions f1, . . . , fn ∈ h and essential supports τUi of functions Tτ( fi) in
coordinate representation. We say that these functions do not overlap if the distances between sets Ui
are positive (the distances between essential supports grow linearly with τ).

ASSUMPTION. We assume that collections ( f1, . . . , fn) of non-overlapping functions
are dense in hn = Smn

It is easy to verify that this assumption is almost always satisfied (in particular, it is
satisfied if all functions εs(k) are strictly convex). The proof can be based on the following
lemma.

Lemma 1. Let us denote by Uφ , where φ ∈ h, an open subset of Rd containing all points having the
form ∇εs(k) where k belongs to supp(φ) = ∪jsupp(φj) (to the union of supports of the functions
φ(k, j) in momentum representation).

Let us assume that supp(φ) is a compact subset of Rd. Then, for large |τ|, we have

|(Tτφ)(x, j)| < Cn(1 + |x|2 + τ2)−n

where x
τ /∈ Uφ, the initial data φ = φ(x, j) is the Fourier transform of φ(k, j), and n is an arbitrary

integer. (In other words, τUφ is an essential support of Tτφ in coordinate representation.)

The proof of this lemma (Lemma 2 in [2]) can be given by means of the stationary phase
method; see Section 4.2 of [4] for more detail.
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An elementary excitation of ω is defined as a map σ : h→ C of an elementary space h into the set
of excitations of ω. This map should commute with translations and satisfy the following additional
requirement: one can define a map L : h→ End(L) obeying σ(φ) = L(φ)ω.

Notice that the conditions we imposed on L(φ) do not specify it uniquely. Later, we
impose some extra conditions on these operators. Not very precisely, one can say that the
operators L(φ) and L(ψ) should almost commute if supports of φ and ψ are far away (see (11)
for precise formulation). Still, these extra conditions leave some freedom in the choice of L. We
assume that the operators L(φ) are chosen in some way.

In the algebraic approach, we define an excitation of ω as a vector in the space of GNS
representation H; assuming cluster property, one can verify that the state corresponding to
such a vector is an excitation in the sense of the geometric approach. An elementary excitation
of ω is defined as an isometric map Φ of elementary space h intoH commuting with time and
spatial translations. This definition agrees with the definition of the geometric approach. To
verify this fact, we notice that the assumption that θ is a cyclic vector implies the existence
of operators B(φ) obeying Φ(φ) = B(φ)θ. (Here, φ ∈ h.) We define a map σ : h → C saying
that σ(φ) is a linear functional on A assigning a number 〈Φ(φ), AΦ(φ)〉 to A ∈ A. The map
σ is quadratic if we are working over R, and it is Hermitian if we are working over C. It
commutes with time and spatial translations. Representing σ(φ) in the form σ(φ) = L(φ)ω
where L(φ) = B̃(φ)B(φ) ∈ End(C), we obtain that this map specifies an elementary excitation
in the geometric approach.

We assume that B(φ) is linear with respect to φ; then, L(φ) is quadratic or Hermitian.
We say that a map σ of real vector spaces is quadratic if the expression σ(u + v)− σ(u)−

σ(v) is linear with respect to u and v. A map σ of complex vector spaces is Hermitian if
σ(u + v)− σ(u)− σ(v) is linear with respect to u and antilinear with respect to v. If V is a real
vector space, then the corresponding cone C(V) is defined as a convex envelope of the set of
vectors of the form v⊗ v in the tensor square V ⊗V. (If we are dealing with topological vector
spaces, there exist different definitions of tensor product and of topology in the tensor product.
In this case, we should consider the closure of convex envelope in the appropriate topology of
the tensor product.) A quadratic map V → V′ induces a linear map of the cone C(V) → V′;
a quadratic map of V into a cone C′ ⊂ V′ induces a linear map of cones C(V) → C′. Similar
statements are true for complex vector spaces and Hermitian maps. (The cone corresponding
to complex vector space is defined as a convex envelope of the set of vectors of the form f ⊗ f̄
in the tensor product V ⊗ V̄.) If V is a Hilbert space, the corresponding cone can be identified
with the cone of positive definite self-adjoint operators belonging to the trace class.

It is natural to assume that in the geometric approach, the maps σ and L are quadratic or
Hermitian, but this assumption is not used in most of our statements.

Elementary excitations should be identified with particles or quasiparticles. Notice that
particles and quasiparticles can be unstable; this means that we should consider also objects
that only approximately obey the conditions we imposed on elementary excitations. The
definition of inclusive scattering matrix given in the next section works also for such objects,
but instead of the time τ tending to ±∞, we should consider large but finite τ. (This is true also
for the conventional scattering matrix in algebraic approach; see Appendix to [4] for detail.)

4. Scattering Møller Matrices

Let us consider the scattering of elementary excitations defined by the map σ( f ) = L( f )ω.
We define the operator L( f , τ) where f ∈ h by the formula

L( f , τ) = Tτ(L(T−τ f )) = Tτ L(T−τ f )T−τ .

(We are using the same notation for time translations in C and in h. The time translation acts
on operators as conjugation with Tτ .) We assume that supτ∈R ||Tτ || < ∞ and the operators L( f )
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are bounded, hence supτ∈R ||L( f , τ)|| < ∞. (Here and in what follows, we assume that L is a
Banach space. If L is a a topological vector space specified by a system of seminorms, we
should impose the above conditions for every seminorm.)

Notice that L( f , τ)ω does not depend on τ. (Using the fact that the map σ commutes with
translations, we obtain that L( f , τ)ω = Tτσ(T−τ f ) = σ( f ).). This means that

L̇( f , τ)ω = 0 (1)

where the dot stands for the derivative with respect to τ.
Let us introduce the notation

Λ( f1, · · · , fn| −∞) = lim
τ1→−∞,··· ,τn→−∞

Λ( f1, τ1, · · · , fn, τn) (2)

where
Λ( f1, τ1, . . . , fn, τn) = L( f1, τ1) . . . L( fn, τn)ω.

We say that (2) is an in-state.
For large negative τ, the state

TτΛ( f1, · · · , fn| −∞)

can be described as a collection of particles with wave functions Tτ fi. To prove this fact, we use
the formulas

Tτ(L( f , τ′)) = Tτ+τ′L(T−τ′ f )T−τ−τ′ = L(Tτ f , τ + τ′),

TτΛ( f1, · · · , fn| −∞) = Λ(Tτ f1, · · · , Tτ fn| −∞).

For f1, · · · , fn in a dense subset of h× · · · × h, the distance between essential supports of
wave functions Tτ fi tends to ∞ as τ → −∞. This follows from the assumption in the preceding
section.

This remark allows us to say that for arbitrary τ, the state TτΛ( f1, · · · , fn| −∞) describes
a collision of particles with wave functions ( f1, · · · , fn).

It is obvious that the in-state (2) is symmetric with respect to f1, . . . , fn if

lim
τ→−∞

||[L( fi, τ), L( f j, τ)]|| = 0. (3)

One can replace (3) by

||[L(φ), L(ψ)]|| ≤
∫

dxdx′Dab(x− x′)|φa(x)| · |ψb(x
′)| (4)

where Dab(x) tends to zero faster than any power as x→ ∞.
Then, the in-state is symmetric if the wave functions f1, . . . , fn do not overlap.
Let us give conditions for the existence of the limit

lim
τ1→−∞,··· ,τn→−∞

Λ( f1, τ1, · · · , fn, τn). (5)

For simplicity, we consider the case when τ1 = · · · = τn = τ.

Lemma 2. Let us assume that for τ → −∞, the commutators [L̇( fi, τ), L( f j, τ)] are small. More
precisely, the norms of these commutators should be bounded from above by a summable function of τ :

||[L̇( fi, τ), L( f j, τ)]|| ≤ c(τ),
∫
|c(τ)|dτ < ∞. (6)
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Then, the vector Λ(τ) = Λ( f1, τ, · · · , fn, τ) has a limit as τ → −∞.

It is sufficient to check that the norm of the derivative of this vector with respect to τ is a
summable function of τ. (Then, Λ(τ2)−Λ(τ1) =

∫ τ2
τ1

Λ(τ)dτ tends to zero as τ1, τ2 → −∞.)
Calculating Λ̇(τ) by means of Leibniz rule, we obtain n summands; each summand has

one factor with L̇. The assumption about the behavior of commutators allows us to move
the factor with a derivative to the right if we neglect the terms tending to zero faster than a
summable function of τ. It remains to be noticed that the expression with the derivative in the
rightmost position vanishes due to (1).

If L is a complete topological linear space with the topology specified by a system of
seminorms, we can generalize the above proof assuming an analog of (6) for every seminorm.

Instead of (6), we can assume that

||[L( fi, τ′)− L( fi, τ), L( f j, τ)]|| ≤ c(τ),
∫
|c(τ)|dτ < ∞. (7)

where |τ′ − τ| is bounded from above.
We can slightly strengthen (6) assuming that

||[L̇( fi, τ), L( f j, τ1)]|| ≤ c(τ),
∫
|c(τ)|dτ < ∞. (8)

where τ − τ1 is bounded from above. Then, we can derive (7) from (8) integrating over τ.
It is easy to derive from (7) that

||[L( fi, τ′)− L( fi, τ), L( f j, τ)]|| → 0 (9)

as τ, τ′ → ∞ or τ, τ′ → −∞.

Lemma 3. The condition (9) implies the existence of the limit (2). Hence, the existence of this limit
follows also from (7) or (8).

We should check that the difference

L( f1, τ′1) . . . L( fn, τ′n)ω− L( f1, τ1) . . . L( fn, τn)ω

tends to zero as τ′i , τi → −∞.
It is sufficient to consider the expression

L( f1, τ1) . . . (L( fi, τ′i )− L( fi, τi)) . . . L( fn, τn)ω. (10)

(One can go from L( f1, τ1) . . . L( fn, τn)ω to L( f1, τ′1, . . . L( fn, τ′n)ω in n steps changing one
variable at every step.) Using (9), we can move the factor L( fi, τ′i )− L( fi, τi) to the rightmost
position in (10). It remains to be noticed that this factor gives zero acting on ω.

Notice that the distance between essential supports of functions Tτ fi grows linearly as τ →
−∞ if the sets U fi

do not overlap. This allows us to derive the existence of the limit for f1, · · · , fn
in a dense subset of h× · · · × h if we assume that the commutator [Tα(L(T−τ′ f )), L(T−τ g)] is
small when the essential supports of Tτ′ f and Tτ g are far away for τ, τ′ → ∞. One can make
this statement precise in various ways.

For example, applying Lemma 3, we can prove the following theorem
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Theorem 1. Let us assume that

||[Tα(L(φ)), L(ψ)]|| ≤
∫

dxdx′Dab(x− x′)|φa(x)| · |ψb(x
′)| (11)

where Dab(x) tends to zero faster than any power as x → ∞ and α runs over a finite interval. Then,
the limit (2) exists if the functions fi do not overlap (hence, it exists for f1, . . . , fn in a dense subset of
h× . . .× h).

Applying (11), we obtain estimates for commutators [Tα(L(T−τ f )), L(T−τ g)] that are
sufficient to prove the inequality (7); hence, the existence of the limit (2). (We are using the
relation

||[L( f , τ′), L(g, τ)]|| = ||[Tτ′(L(T−(τ′) f ), Tτ(L(T−τ g))]|| ≤ (12)

C||[Tτ′−τ(L(T−τ′ f ), L(T−τ g)]||

and its particular case for τ′ = τ).
Let us review shortly the scattering theory in the algebraic approach modifying slightly

the considerations of [3]2. Recall that in this approach, an elementary excitation of translation-
invariant stationary state ω is specified by an isometric map Φ : h → H commuting with
translations and obeying Φ( f ) = B( f )θ where B( f ) ∈ A. (Here, θ stands for a vector corre-
sponding to ω in the spaceH of GNS representation.)

Let us define the operator B( f , τ) by the formula

B( f , τ) = Tτ(B(T−τ f )) = Tτ B(T−τ f ))T−τ .

Notice that B( f , τ)θ does not depend on τ. This follows from the remark that ω is
stationary; hence, T−τθ = θ and B( f , τ)θ = TτΦ(T−τ f ) = Φ( f ).

Lemma 4. Let us assume that
||[Ḃ( fi, τ), B( f j, τ)]|| ≤ c(τ)

where c(τ) is a summable function. Then, the vector

Ψ(τ) = B( f1, τ) . . . B( fn, τ)θ

has a limit in H̄ as τ tends to −∞.

Theorem 2. Let us assume that

||[Ḃ(φ), B(ψ)]|| ≤
∫

dxdx′Dab(x− x′)|φa(x)| · |ψb(x
′)| (13)

where Dab(x) tends to zero faster than any power as x→ ∞. Then, for f1, . . . , fn in a dense subset of
h× . . .× h, the vector

Ψ( f1, τ1, . . . , fn, τn) = B( f1, τ1) . . . B( fn, τn)θ

has a limit in H̄ as τj tends to −∞; this limit will be denoted by

Ψ( f1, . . . , fn| −∞)

The proof of Lemma 4 is very similar to the proof of Lemma 2. To prove Theorem 2, we
use the analog of (12) to verify the analogs of (8), (7) and (9); using the analog of (9), we apply
the method used in the proof of Lemma 3.
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Let us introduce the asymptotic bosonic Fock space Has as a Fock representation of
canonical commutation relations

[b(ρ), b(ρ′)] = [b+(ρ), b+(ρ′)] = 0, [b(ρ), b+(ρ′)] = 〈ρ, ρ′〉

where ρ, ρ′ ∈ h.
We define Møller matrix S− as a linear map ofHas into H̄ that transforms b+( f1) . . . b+( fn)|0〉

into Ψ( f1, . . . , fn| −∞). (Here, |0〉 stands for the Fock vacuum.) Imposing some additional
conditions, one can prove that the operator S− can be extended to isometric embedding ofHas
into H̄ (see [3]).

Replacing −∞ by +∞ in the definition of S−, we obtain the definition of the Møller
matrix S+. If both Møller matrices are surjective maps, we say that the theory has particle
interpretation. We can define the scattering matrix of elementary excitations (particles) as an
operator inHas by the formula S = S∗+S−; if the theory has particle interpretation, this operator
is unitary.

Let us define the in-operators a+in by the formula

a+in( f ) = lim
τ→−∞

B( f , τ). (14)

This limit exists as a strong limit on vectors Ψ( f1, . . . , fn| −∞) if there exists the limit
Ψ( f , f1, . . . , fn| −∞).

Operators a+out (out-operators) are defined by the formula

a+out( f ) = lim
τ→+∞

B( f , τ). (15)

Equivalently, the Møller matrix S− can be defined as a mapHas → H obeying

a+in(ρ)S− = S−b+(ρ), S−|0〉 = θ.

The operators ain(ρ), aout(ρ) (Hermitian conjugate to a+in(ρ) and a+out(ρ) ) obey

ain(ρ)S− = S−b(ρ), aout(ρ)S+ = S+b(ρ).

Notice that spatial and time translations act naturally in Has. The Møller matrix commutes
with translations.

There exists an obvious relation between our considerations in the geometric and algebraic
approach. It is clear that the operator L( f , τ) in the space of states corresponds to the oper-
ator B( f , τ) in H̄ (i.e., L( f , τ) = B̃( f , τ)B( f , τ).) It follows that the state Λ( f1, τ1, · · · , fn, τn)
corresponds to vector Ψ( f1, τ1, · · · , fn, τn), and the state Λ( f1, · · · , fn| −∞) (the in-state) corre-
sponds to the vector Ψ( f1, · · · , fn| −∞).

The relation (11) implies that (5) specifies a map of symmetric power of h into the cone C.
This map (defined on a dense subset) will be denoted by S̃−; it can be regarded as an analog of
the Møller matrix S− in the geometric approach. The above statements allow us to relate S̃−
with S− for theories that can be formulated algebraically. In this case, S− maps a symmetric
power of h considered as a subspace of the Fock space into H̄. Composing this map with the
natural map of H̄ into the cone of states C, we obtain S̃−.

The map S̃− is not linear, but in the case when L is quadratic or Hermitian, it induces a
multilinear map of the symmetric power of the cone C(h) corresponding to h into the cone C.

Constructing the scattering matrix in the algebraic approach, we imposed some conditions
on commutators (for example, the condition (13) in Lemma 5). These conditions can be replaced
by similar conditions on anticommutators; the above statements remain correct after slight
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modifications. (In particular, we should consider the fermionic Fock space instead of the
bosonic one.) It is important to notice that operators L = B̃B (almost) commute not only in
the case when operators B (almost) commute but also in the case when operators B (almost)
anticommute; hence, our considerations in the geometric approach can be applied not only to
bosons but also to fermions.

5. Inclusive Scattering Matrix

Instead of the cone C, one can consider the dual cone C∨ ⊂ L∨ (it consists of linear
functionals that are non-negative on C). The group V (in particular the group of translations)
and the semiringW act on C∨.

Let us consider a translation invariant stationary element α ∈ C∨ obeying the conditions
similar to the conditions we imposed on ω. (In the algebraic approach, we can take α(σ) = σ(1),
the value of σ on the unit of algebra.) Let us assume that 〈α|L′(g) is an elementary excitation
of α. (Here, L′ maps the elementary space h into the space of endomorphisms of L; these
endomorphisms can be considered also as endomorphisms of the dual space L∨.)

Taking
lim

τk→+∞
〈α|(L′(g1, τ1) . . . L′(gm, τm)|Λ( f1, · · · , fn| −∞)〉

we obtain a number characterizing the result of the collision. We can write this number as

lim
τ′k→+∞,τj→−∞

〈α|L′(g1, τ′1) . . . L′(gm, τ′m)L( f1, τ1) . . . L( fn, τn)|ω〉 (16)

Let us assume that operators L( f ) obey (11) and operators L′(g) obey similar condition. Then

Theorem 3. If both ( f1, .., fn) and (g1, . . . , gm) do not overlap, the limit (16) exists. This limit is
symmetric with respect to ( f1, .., fn) and with respect to (g1, . . . , gm).

The proof of this theorem is similar to the proof of Theorem 1. The second statement
follows from the fact that operators L( f j, τj) and L( f j′ , τj′) almost commute in the limit τj, τj′ →
−∞ and from a similar fact for operators L′.

By the definition of elementary excitation, σ(φ) is a quadratic (or Hermitian) map; hence,
it is natural to assume that the map L(φ) is also quadratic (or Hermitian). Then, it can be
extended to a bilinear (or sesquilinear) map L(φ̃, φ), and the map Lφ, τ) can be extended to
a map L(φ̃, φ, τ). (If we assume that the bilinear map is symmetric, then these extensions are
unique, but in the algebraic approach, it is convenient to consider extensions that are not
symmetric. Recall that in the algebraic approach, we define L(φ) as B̃(φ)B(φ); the extension
can be defined by the formula L(φ̃, φ) = B̃(φ̃)B(φ).) We assume that L′ is also quadratic or
Hermitian and extend it to a bilinear or sesquilinear map.

Using these extensions, we can define a functional

σ(g̃′1, g′1, . . . , g̃′n′ , g′n′ , g̃1, g1, . . . , g̃n, gn) =

〈α| lim
τ′i→+∞,τj→−∞

L′(g̃′1, g′1, τ′1) . . . L′(g̃′n′ , g′n′ , τ′n′)L(g̃1, g1, τ1) . . . L(g̃n, gn, τn)|ω〉 (17)

that is linear or antilinear with respect to all of its arguments.
Notice that in the case when we take symmetric extensions of L and L′, the existence of

the limit (17) follows from the existence of the limit (16); in the general case, we should modify
slightly the condition (11) to prove a generalization of Theorem 3.

We say that (17) is an inclusive scattering matrix. (If we do not assume that the map L(φ) is
quadratic or Hermitian, the inclusive scattering matrix should be defined by the formula (16))3
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This terminology comes from the fact that in the algebraic approach, matrix elements of an
inclusive scattering matrix are related to inclusive cross-sections. In this approach, one can
express an inclusive scattering matrix in terms of on-shell GGreen functions that appear in the
formalism of L-functionals (used in [4,5,7]) and in Keldysh formalism [8–10]. Let us sketch the
derivation of this expression (see [4,5,7] for more detail).

The functional (17) can be considered as a generalized function

σ(k̃′1, ĩ′1, k′1, i′1, . . . , k̃′n′ , ĩ′n′ , k′n′ , i′n′ , k̃1, ĩ1, k1, i1, . . . , k̃n, ĩn, kn, in) (18)

This generalized function is defined for an open dense subset of its arguments. It is
sufficient to require that k̃′i 6= k̃′j, k′i 6= k′j, k̃i 6= k̃j, ki 6= kj, for i 6= j if we assume that k 6= k′

implies ∇εj(k) 6= ∇ε′j(k
′). (Recall that we use the notation εj(k) for eigenvalues of the matrix

E(k).) More generally, we can consider the sets U(k) consisting of vectors ∇εj(k) and assume
that the sets U(k) and U(k′) do not overlap. Then, the essential support of a function T−τ( f )
is far away from the essential support of a function T−τ( f ′) if the support of f lies in the
neighborhood of k, the support of f ′ lies in the neighborhood of k′ 6= k and τ → ∞.

One can say that the function (18) gives matrix elements of inclusive scattering matrix.
Let us show that in the algebraic approach, inclusive cross-sections can be expressed in

terms of these matrix elements. Notice that in this approach

σ(g̃′1, g′1, . . . , g̃′n′ , g′n′ , g̃1, g1, . . . , g̃n, gn) = 〈1| lim
τ′i→+∞,τj→−∞

B̃′(g̃′1, τ′1)B′(g′1, τ′1) . . . B̃′(g̃′n′ , τ′n)B′(g′n′ , τ′n′)B̃(g̃1, τ1)B(g1, τ1) . . . B̃(g̃n, τn)B(gn, τn)|ω〉 =
〈a+out(g̃′1) . . . a+out(g̃′n′)Ψ(g̃1, . . . , g̃n| −∞), a+out(g′1) . . . a+out(g′n′)Ψ(g1, . . . , gn| −∞)〉 =
〈aout(g′n′) . . . , aout(g′1)a+out(g̃′1) . . . a+out(g̃′n′)Ψ(g̃1, . . . , g̃n| −∞), Ψ(g1, . . . , gn| −∞)〉

(19)

We have used Theorem 2, Equation (15) and relations (B̃1B2ω)(A) = ω(B∗1 AB2) =
〈θ, , B∗1 AB2θ〉 = 〈B1θ, AB2θ〉, 〈1|B̃1B2|ω〉 = 〈B1θ, B2θ〉 in this derivation.

In terms of generalized functions

σ(k̃′1, ĩ′1, k′1, i′1, . . . , k̃′n′ , ĩ′n′ , k′n′ , i′n′ , k̃1, ĩ1, k1, i1, . . . , k̃n, ĩn, kn, in) = (20)

〈aout(k′n′ , i′n′) . . . aout(k′1, i′1)a+out(k̃
′
1, ĩ′1) . . . a+out(k̃

′
n′ , ĩ′n′)Ψ(k̃1, ĩ1, . . . , k̃n, ĩn)| −∞), Ψ(k1, i1, . . . , kn, in| −∞)〉

The inclusive scattering matrix can be expressed in terms of generalized Green functions.
These functions (GGreen functions) are defined by the formula

〈1|T(B̃′(g̃′1, τ̃′1)B′(g′1, τ′1) . . . B̃′(g̃′n′ , τ̃′n)B′(g′n′ , τ′n′)B̃(g̃1, τ̃1)B(g1, τ1) . . . B̃(g̃n, τ̃n)B(gn, τn))|ω〉 (21)

where T stands for chronological product (see [3]).
The inclusive cross-section of the process (M, N) → (Q1 . . . , Qm) is defined as a sum

(more precisely, a sum of integrals) of effective cross-sections of the processes (M, N) →
(Q1, . . . , Qm, R1, . . . , Rn) over all possible R1, . . . , Rn. If the theory does not have particle inter-
pretation, this formal definition of an inclusive cross-section does not work, but still, the inclu-
sive cross-section can be defined in terms of probability of the process (M, N)→ (Q1, . . . , Qn+
something else) and expressed in terms of the inclusive scattering matrix defined above. To
verify this statement, we consider the expectation value

ν(a+out(p1, k1)aout(p1, k1) . . . a+out(pm, km)aout(pm, km)) (22)

where ν is an arbitrary state.
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This quantity is the probability density in momentum space for finding m outgoing
particles of the types k1, . . . , kn with momenta p1, . . . , pm plus other unspecified outgoing
particles. It gives an inclusive cross-section if ν is an in-state.

Comparing this statement with (20), we obtain that the inclusive cross-section can be
obtained from the inclusive scattering matrix if k̃i tends to ki and k̃′i tends to k′i. (We assume
that the expression

ν(a+out(p̃1, k1)aout(p1, k1) . . . a+out(p̃m, km)aout(pm, km)) (23)

tends to (22) as p̃i tends to pi.)

6. Analogs of Green Functions

Let us consider a functional

〈α|T(L′(g̃′1, g′1, τ′1) . . . L′(g̃′n′ , g′n′ , τ′n′)L(g̃1, g1, τ1) . . . L(g̃n, gn, τn))|ω〉 (24)

where T denotes a chronological product. This expression is linear or antilinear with respect
to its arguments g′i , gj. We assume that these arguments do not overlap. It follows from this
assumption and the second statement of Theorem 3 (or generalization of this theorem) that
(24) tends to an inclusive scattering matrix (17) as τ′k → +∞, τj → −∞ (the time ordering is
irrelevant for the first n′ factors and also for the last n factors).

The functional (24) can be considered as a generalized function

Gn′ ,n(k̃
′
1, ĩ′1, k′1, i′1, τ′1 . . . , k̃′n′ , ĩ′n′ , k′n′ , i′n′ , τ′n′ , k̃1, ĩ1, k1, i1, τ1, . . . , k̃n, ĩn, kn, in, τn) (25)

This generalized function is defined for an open dense subset of its arguments.
One can obtain (18) (matrix elements of inclusive scattering matrix ) from (25) taking the

limit τ′k → +∞, τj → −∞.
The function (25) can be considered as an analog of the Green function in (p, t)-representation.

Taking Fourier transform with respect to τ′k, τj, we obtain an analog of Green function in (p,
ω)-representation that also can be used to calculate matrix elements of the inclusive scattering
matrix. (If a function f (t) has limits as t→ ±∞, then these limits can be calculated as residues
in the poles of the Fourier transform of f (t)).

In the algebraic approach, the functional (24) and generalized function (25) are related to
the generalized Green function (GGreen function) [3]. Namely, in this approach, one can obtain
(24) from (21) taking τ̃′k = τ′k, τ̃j = τj and using the relation L(g̃, g, τ) = B̃(g̃, τ)B(g, τ).

7. Discussion

Let us discuss some properties of the above construction of in-state and of inclusive
scattering matrix.

We start again with elementary excitation σ : h→ C of state ω. By definition of elementary
excitation, there exists a map L : h→ End(L) obeying σ(φ) = L(φ)ω. The map L is not unique;
let us prove that under some conditions, the in-state does not change when we are changing L.
More precisely, we can prove the following statement:

Let us assume that the maps Li : h→ End(L) can be used to define the in-state and

||[Li(φ), Lj(ψ)]|| ≤
∫

dxdx′Dab(x− x′)|φa(x)| · |ψb(x
′)|.

where Dab tends to zero faster than any power. Then

Λ( f1, · · · , fn| −∞) = lim
τ1→−∞,··· ,τn→−∞

Li1( f1, τ1), . . . Lin( fn, τn)ω.



Universe 2022, 8, 663 12 of 13

(We assume that the functions fi do not overlap.)
To prove this statement, we notice first of all that Li( f , τ)ω = Lj( f , τ)ω; hence, the choice

of the operator Li in the rightmost position does not matter. Then, we use the fact that one can
move every factor to the rightmost position without changing the limit (the commutators are
small when τj → −∞).

A similar statement is true for the inclusive scattering matrix.
Let us consider a Poincaré-invariant theory. Recall that in our definitions, we started

with the homomorphism of the translation group T into group V . We assume that this
homomorphism can be extended to a homomorphism of the Poincaré group P . The translation
group acts also on the elementary space h; we assume that this action also can be extended to
the action of the Poincaré group and that the elementary excitation of the Poincaré invariant
state ω considered as a map σ : h→ C commutes with the actions of the Poincaré group on h
and C : for every P ∈ P and f ∈ h, we have

σ(P f ) = Pσ( f ) (26)

Then, we say that the theory is Poincaré-invariant.
By the definition of elementary excitation, there exists a map L : h→W obeying σ( f ) =

L( f )ω. If L commutes with Poincaré transformations, the scattering is obviously Poincaré-
invariant. However, one can prove the Poincaré invariance of scattering in a much more general
situation. Let us sketch a proof of this fact assuming that

lim
τ→−∞

||[L(P fi, τ), LP( f j, τ)|| = 0 (27)

(We introduced notation LP( f , τ) = PL( f , τ)P−1.)
The generalized Møller matrix S̃− is a map of the symmetric power of h into C. Let us

check that this map commutes with actions of the Poincaré group. (A similar proof can be
applied to the inclusive scattering matrix.)

We should identify
L(P f1, τ), . . . L(P fn, τ)ω (28)

with
PL( f1, τ), . . . L( fn, τ)ω = LP( f1, τ), . . . LP( fn, τ)ω

in the limit τ → −∞. We will show that we can replace L(P fi, τ) with LP( fi, τ) in any number of
factors of (28) without changing the limit. For the rightmost factor, this statement is equivalent
to (26). Let us assume that this statement is correct for the last k factors. Then, it is true also
for the (k + 1)-th factor from the right. (To prove this, we interchange the (k + 1)-th factor
with the k-th factor from the right using (27) and use the induction hypothesis.) We proved the
statement by induction.

Modifying the considerations of Section 4, we can give various conditions for the Poincaré
invariance of scattering theory on a dense subset of h× . . .× h.

Until now, we did not use the semiringW in our considerations. Let us show how it can
be used. We need an additional structure on this semiring: we assume that it is represented
as a union of subsemiringsWV corresponding to domains V ⊂ Rd. If L1 ∈ WV1 , L2 ∈ WV2 ,
||L1|| = ||L2|| = 1 and the domains are far away, we assume that the commutator [L1, L2] is
small: for every n

||[L1, L2]|| ≤ Cnd(V1, V2)
−n

where d(V1, V2) stands for the distance between domains and Cn is a constant factor.
Let us assume that the operators L(φ) belong to the semiringW . Moreover, we require

that in the case when the function Tτφ has essential support in τV, the corresponding operator
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L(Tτφ) belongs toWCτV for some constant C. Then, it is easy to check that the inequality (7) is
satisfied in the case when functions fi, f j do not overlap. This allows us to prove the existence
of the limit (2) defining in-state in the case when the functions fi do not overlap.

One can give a formulation of quantum theory in terms of group V of linear operators
acting in topological vector space and semiringW of linear operators acting in the same space.
It seems that such a formulation can be useful in the BRST approach to quantum theory.

One can prove analogs of results of the present paper in the case when the group of
spatial translations is discrete. It is natural to assume that this group is isomorphic to Zd (free
abelian group with d generators). This happens, in particular, for quantum theory on a lattice
in d-dimensional space.

The notion of elementary space should be modified: h should consist of fast decreasing
functions on the lattice Zd, spatial translations act on this space as shifts of the argument.
Equivalently, one can consider elements of h as smooth functions on a torus (as smooth periodic
functions of d arguments); taking corresponding Fourier series, we come to fast decreasing
functions on Zd.

Working with this version of elementary space, we can modify all definitions and theorems
of this paper. One should expect that modified theorems can be applied to gapped lattice
systems.

These ideas can be applied also in the case when translation symmetry is spontaneously
broken (i.e., the theory is translation invariant, but we consider elementary excitations of a
state ω that are invariant only with respect to a discrete subgroup of the translation group.).

Similar modifications can be made when the time is discrete.
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Notes
1 We say that a closed convex set C is a convex cone if for every point x ∈ C all points of the form λx where λ is positive also belong to

C. Notice that in our terminology a vector space is a convex cone.
2 Notice that the operators B( f , τ) of present paper correspond to the operators B( f φ−1, τ) of [3]. The properties of operators B( f , τ)

that are taken for granted in the present paper are derived in [3] from asymptotic commutativity of the algebra A.
3 Notice that (16) and (17) can be considered either as an inclusive scattering matrix of elementary excitations of state ω or as an

inclusive scattering matrix of elementary excitations of state α. A similar statement is true for analogs of green functions introduced
in Section 6. It is not clear whether this strange duality has any physical meaning.
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