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Abstract: For a pure SU(2) Yang–Mills theory in 4D, we revisit the spatial (3D), ball-like region of
radius r0 in its bulk subject to the pressureless, deconfining phase at T0 = 1.32 Tc, where Tc denotes
the critical temperature for the onset of the deconfining–preconfining phase transition. Such a region
possesses finite energy density and represents the self-intersection of a figure-eight shaped center-
vortex loop if a BPS monopole of core radius ∼ r0

52.4 , isolated from its antimonopole by repulsion
externally invoked through a transient shift of (anti)caloron holonomy (pair creation), is trapped
therein. The entire soliton (vortex line plus region of self-intersection of mass m0 containing the
monopole) can be considered an excitation of the pressureless and energyless ground state of the
confining phase. Correcting an earlier estimate of r0, we show that the vortex-loop self-intersection
region associates to the central part of a(n) (anti)caloron and that this region carries one unit of electric
U(1) charge via the (electric-magnetic dually interpreted) charge of the monopole. The monopole
core quantum vibrates at a thermodynamically determined frequency ω0 and is unresolved. For a
deconfining-phase plasma oscillation about the zero-pressure background at T = T0, we compute
the lowest frequency Ω0 within a neutral and homogeneous spatial ball (no trapped monopole) in
dependence of its radius R0. For R0 = r0 a comparison of Ω0 with ω0 reveals that the neutral plasma
oscillates much slower than the same plasma driven by the oscillation of a monopole core.

Keywords: SU(2) Yang-Mills thermodynamics; deconfining phase; caloron; confining phase; center-
vortex loop; electron; BPS monopole; quantum of action

1. Introduction

The thermodynamical phase structure of a single SU(2) Yang-Mills theory (electric-
magnetic dually interpreted with respect to U(1) ⊂ SU(2)), comprising deconfining and
preconfining thermal ground states of finite energy densities and (partially) massive gauge-
field excitations as well as an energyless and pressureless confining ground state, suggests
the existence of a solitonic, stable particle with intriguing yet familiar properties. Immersed
into the confining ground state [1], the figure-eight configuration of a self-intersecting center-
vortex loop acquires its two-fold degenerate magnetic moment by a quantised electric
current, composed of a chain of alternating monopoles and antimonopoles [2]. The mass
m0 of this soliton mainly arises from deconfining energy density within the self-intersection
region of the vortex loop, idealised to be a spherical blob of radius r0. At a temperature
T0 = 1.32 Tc, where Tc is the boundary1 of the deconfining phase, the pressure vanishes
with positive slope (stable particle) [1]. The electric charge of this region is carried by a
trapped BPS monopole of mass mm � m0 which is not resolved thermodynamically and
orginated by large-holonomy (anti)caloron dissociation (pair creation) [3]. The monopole’s
core fluctuates and is quantum initiated [1] to breathe at a certain frequency ω0 [4,5].

It is tempting to interpret this quantum soliton as the electron (or an idealised charged
lepton void of weak decay) (see, however, [6] for an interesting, extended field configuration
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mapping Minkowski to the internal space S3 and argued to describe the electron’s quantum
numbers on the classical level in terms of topological charges). In the present paper (see
also [7]), we realise Louis de Broglie’s ideas on the (quantum) thermodynamics of the
isolated particle in its rest frame [8,9] subject to internal, spatially homogeneous ‘clock ticks’
at rate ω0. According to de Broglie, such a spatially localised (within a 3D ball-like volume),
time-periodic phenomenon prescribes the soliton mass m0 via m0c2 = h̄ω0. By Lorentz-
boosting the standing wave of the particle at rest to a propagating wave (particle at spatial
momentum p), this implies the well-known matter wavelength λ = 2πh̄

p —the starting point
for the development of wave mechanics [10–13]. The probabilistic interpretation of the
locus of electric charge in terms of the wavefunction’s squared amplitude [14] matches with
the fact that the periodically breathing, unresolved monopole core is displaced frequently
and undeterministically by a local engagement with h̄ (and an external field, e.g., in a
hydrogen atom) throughout the self-intersection region of the vortex. The free solitons’s
apparent structurelessness, as inferred from collider experiments, is due to the thermal
nature of the self-intersection region (maximum entropy): Electric monopole charges
equally likely occur at any spatial point within volume ∼ 4

3 πr3
0, which is, in turn, immersed

into the ground state of the confining phase—a condensate of shrunk-to-points center-
vortex loops void of pressure and energy density [1]. (On the scale of rest mass m0, the non-
self-intersecting, spatial center-vortex loop is massless and prone to curve shrinking [1,15].)

In the present paper, we discuss a few amendments to [7], where the above-sketched
model for a charged lepton (idealised to be stable against weak decay) was introduced,
and we address oscillation physics about temperature T0 of a neutral plasma ball to con-
clude that the contributions to the quantum mass of the soliton from low-lying frequencies
of such spherically symmetric breathing modes are negligible. In Section 2, we correct the
values of r0 and the monopole mass mm as well as the ratio mm/m0 based on the monopole
mass formula:

mm =
4π

e(T0)
H∞(T0) (1)

where H∞(T0) = πT0 [1,3,16–22], and e(T0) = 12.96 is the value of the effective gauge
coupling at T0 [1]. In writing Equation (1), we assume that the spatial asymptotics of the
monopole’s A4 (or adjoint Higgs) field is determined by temperature alone, reflecting the
fact that the maximum holonomy of the originating, dissociated (anti)caloron is enforced
externally and not influenced by the ensemble’s spatial finite-range correlations encoded in
the value of e(T0) = 12.96 6= 1. The ratio r0

|φ|−1(T0)
is substantially smaller than erroneously

estimated in [7]: Instead of r0
|φ|−1(T0)

∼ 160, we now have r0
|φ|−1(T0)

∼ 0.1033. Here, |φ|(T) =√
Λ3

2πT represents the modulus of the adjoint and inert scalar field of the deconfining
phase (spatially coarse-grained, densely packed (anti)caloron centers [1]), and Λ denotes
the Yang–Mills scale. The length scale |φ|−1, therefore, sets the resolution for the SU(2)
gauge-field theory prescribed by the quantum behavior of (anti)caloron centers [1]. In
the present paper, we show that r0

T−1
0
∼ 1.29. Therefore, the blob of center-vortex self-

intersection2 does not per se represent infinite-volume thermodynamics [1]. Rather, it
is deeply contained within the central (quantum) region of the accomodating caloron or
anticaloron: r0

|φ|−1(T0)
∼ 0.1033. We will argue, however, that as far as the derivation of

soliton properties is concerned, the thermodynamical results in [1] still apply. Interestingly,
the smallness of r0

|φ|−1(T0)
excludes the possibility of trapping two or more monopoles

or antimonopoles within one and the same blob: they would have to be provided by
two or more dissociating (anti)calorons but the blob only contains the central part of a
single (anti)caloron. In addition to a re-visit of the physics of the self-intersection region at
temperature T0 in a spatial center-vortex loop, we also discuss, in Section 3, the lowest radial
oscillation of a neutral deconfining plasma ball of radius R0 which does not trap a monopole.
Computing the associated frequency Ω0 requires the determination of longitudinal sound
speed cs at T0. We obtain cs = 0.479 c. Note that in spite of T0 ∼ Tc, where conformal-
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symmetry breaking effects due to the Yang–Mills scale Λ are large, this value is close to the
ultra-relativistic-gas limit cs =

1√
3

c ∼ 0.577 c. To exclude that there are sizable corrections
to the left-hand side of Equation (5) due to plasma-breathing effects just above the threshold
we compare Ω0 and ω0 = m0c2/h̄ at R0 = r0 and find Ω0 � ω0. Finally, in Section 4, we
summarise our work and comment on future developments.

2. Self-Intersection Region of a Figure-Eight Shaped Center-Vortex Loop

In [7], a model of the free electron was proposed which relies on the phase structure
and thermodynamical quantities of SU(2) Yang–Mills thermodynamics, the nature of
the excitations in the confining phase [23], and the work in [4,5] on the perturbed BPS
monopole. In [23], an operator—the ’t Hooft loop—was defined nonlocally for pure SU(N)
Yang–Mills theory. The ’t Hooft loop is dual in nature relative to the (spatial) Wilson loop.
Its action creates one unit of magnetic flux with respect to the maximal Abelian subgroub
U(1)N−1 ⊂ SU(N), as expressed by a phase change through a root of unity in the Wilson
loop linking to it. In the confining phase of SU(2), such a flux line occurs as the zero-core-
size limit of the Abrikosov–Nielsen–Olesen vortex of winding number unity and, thus,
is massless, causing ’t Hooft loop to acquire a finite, spatially homogeneous expectation.
Moreover, no explicit isolated charges with respect to U(1) ⊂ SU(2)3, which could serve as
flux sources or sinks, are tolerated by the pressureless confining ground state, composed
of shrunk-to-points single center-vortex loops [1]. Therefore, a given, static vortex line,
viewed as a 1D object in 3D space, has to form a closed loop. However, the self-intersection
in a center-vortex loop locally represents a strong distortion of confining order (the ’t Hooft
loop representing the order parameter), reinstating a region of pressureless, deconfining
phase wherein an isolated charge—a BPS monopole or antimonopole—may lead a shielded
longtime existence. The responses of such a classical BPS (anti)monopole to a spherically
symmetric initial perturbation and the spectrum of normal modes were investigated in [4,5],
respectively. As a result, it was found that the asymptotic state of oscillation is determined
by a frequency ω0 given by the mass of the two off-Cartan modes in the adjoint Higgs
model that the monopole lives in. (In a thermal situation, this adjoint Higgs model is the
pure Yang–Mills theory with the A4-component of the gauge field, for which its value at
spatial infinity determines the nontrivial (anti)caloron holonomy, playing the role of the
Higgs field for the spatial components Ai [20–22].)

We now revise the implications of the incorrect monopole mass formula in [7] (Equation (18)
of [7]). Moreover, we point out an error in Equation (21) of [7] which requires a conceptual
reinterpretation of the physics of the self-intersection region. The mass mm of a BPS monopole is
defined as the spatial integral of the 00-component of the energy-momentum tensor on its field
configuration with winding number one in Π2(SU(2) \U(1) = S2) [24]. It reads as follows.

mm =
4π

e
H∞ . (2)

Here, e denotes the defining gauge coupling of the adjoint Higgs model (or the fun-
damental, thermalised pure SU(2) Yang–Mills theory), and H∞ is the spatially asymptotic
modulus of the Higgs field. Only (anti)calorons of scale parameter close to |φ|−1 contribute
to the emergence of the thermal ground state in the deconfining phase. Therefore, the gauge
coupling e can be interpreted as the effective one [1].

Assuming that the monopole was liberated by the dissociation of a maximum-holonomy
caloron at T0 = 1.32 Tc, we have the following [1,3].

e(T0) = 12.96 , H∞(T0) = πT0 . (3)

In writing the maximum nontrivial holonomy value of H∞(T0), we assume that this
(externally imposed, pair creation) spatial asymptote solely depends on temperature and
is not influenced by the spatial finite-range correlations imposed by the trivial-holonomy
(anti)caloron constituting the thermal ground-state estimate. Being a quantum soliton
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of circular frequency ω0, the electron’s rest mass m0 is determined by a monopole-core
oscillation [8,9]. This frequency ω0 was found to be equal to the mass of the two off-Cartan
modes in the adjoint Higgs model containing the BPS monopole [4,5].

ω0 = eH∞ . (4)

Alternatively, assuming a conserved energy content of the approximately ball-like
self-intersection region of radius r0 (the contribution of the two vortex loops is negligible [1],
and r0 is denoted as R0 in [7])—trapping a quantum non-initialised, static BPS monopole
of mass mm and constituted by a deconfining SU(2) Yang–Mills plasma of energy density
ρ(T0)—one derives the following equation [7].

m0 = ω0 = 12.96 H∞(T0) = mm +
4π

3
r3

0ρ(T0)

= H∞(T0)

(
4π

12.96
+ 8.31× 128π

3

( r0

18.31

)3
H3

∞(T0)

)
. (5)

Note that the left-hand side describes the soliton mass by a situation of an initialised
monopole and its covibrating quantum surroundings—all captured by a multiplication
of the frequency ω0 with the quantum of action h̄ after the oscillation was triggered by
monopole interaction with the thermal ground state and its excitations—while the right-
hand side describes the energy balance of the system before such an initialisation has
occurred. Energy conservation implies the equality of these two expressions. Notice that
m0 = 12.96 H∞(T0) entails that the Yang–Mills scale Λ relates to m0 as follows [7].

Λ =
1

118.6
m0 . (6)

Solving Equation (5) for r0 yields the following:

r0 = 4.043 H−1
∞ (7)

instead of r0 = 4.10 H−1
∞ , as obtained in [7]. It is instructive to compute the relative

contribution of mm to m0, the ratio of the monopole core size rc to r0, and the reduced
Compton wave length lC to the thermodynamical resolution scale |φ|−1(T0). Note that
lC = rc = m−1

0 = 1
12.96 H∞(T0)

[4,5]. One has the following.

mm

m0
=

4π

(12.96)2 = 0.0748 ,
rc

r0
=

1
52.40

,
lC

|φ|−1(T0)
= 0.00197 . (8)

Therefore, a hypothetically static, classical monopole would not contribute sizably
to the mass of the region of self-intersection. Rather, it is the phenomenon of oscillation,
expressing a strong interdependence between the unresolved monopole and its quantum
environment that gives rise to the mass of this region. The region’s radius r0 is about
50-times larger than the radius of the monopole core, and the monopole core intrinsically
is far from being resolved. Therefore, it is safe to say that the quantum-induced motion
of the monopole is not influenced by the boundary. This boundary is the surface where
the plasma of the self-intersection region transmutes into a thin fuzzy/turbulent shell of
preconfining phase adjacent to a surrounding of pressureless confining ground state, which
is composed of condensed single and shrunk-to-points center vortices [1]. Interestingly,
radius r0 compares to the spatial coarse-graining scale |φ|−1(T0) as follows.

r0

|φ|−1(T0)
=

4.043√
2
(

118.6
12.96

)3
= 0.1033 . (9)
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A simple calculational error in Equation (22) of [7] has produced a value much larger
than unity. The correct result of Equation (9) implies that the “thermodynamics” we dis-
cussed so far actually occurs deep within the center of a(n) (anti)caloron of scale parameter
ρ ∼ |φ|−1(T0). Since we have the following:

r0

β0
= 1.29 (β0 ≡

1
T0

) , (10)

Figure 1 suggests that the scale parameter integral, defining the phase of φ [1], does
not quite saturating a harmonic dependence on Euclidean time when cut off at ρ ∼ r0.
However, our above discussion on the right-hand side of Equation (5) assumes that such a
saturation occurs within the volume 4π

3 r3
0. Hence, the right-hand side of Equation (5) only

yields an approximate account of the distorted thermodynamics within the self-intersection
region: the monopole is always close to the locus of action at the inmost point of the caloron
or anticaloron, rendering this region a jittery object even within its deep bulk.

Figure 1. Saturation towards a harmonic Euclidean time dependence of the contributions of
Harrington–Shepard calorons to the field-strength correlation defining the phase of the field φ

as a function of the scaled cutoff ξ ≡ ρ
β for the instanton-scale-parameter integration. Cutting off at

ρ ∼ r0 = 1.29β0 suggests that there are (mild) deviations from a harmonic dependence. Figure taken
from [25].

Still, the link between a hypothetically static monopole and its surroundings—described
by infinite-volume thermodynamics—to the quantum-induced mass of the containing re-
gion due to oscillation is self-consistently made via Equation (5) by energy conservation,
and reasonable estimates of r0 and the critical temperature Tc = 13.87/(2π × 118.6)m0 =
9.49 keV [7] (λc ≡ 2πTc/Λ = 13.87 [1]) should yet be possible.

3. Lowest Spherically Symmetric Breathing Mode

Spherically symmetric oscillations of the deconfining plasma temperature T0 are not
only driven by internally induced monopole oscillations but interfere with spatially homo-
geneous, coherent plasma oscillations due to external distortions of the initial temperature:
T0 −→ T0 + δT. At the same, radius r0 of these two oscillation modes should be compared
in terms of their frequencies ω0 and Ω0, respectively, in order to judge whether mass m0 of
the self-intersection region, arising from monopole-driven oscillation, is influenced sizably
by the contribution of a global, oscillatory temperature distortion. Moreover, a neutral
plasma ball of radius R0 � r0 is subject to thermodynamics at face value. Since such a
(distorted) macrocopic ball is expected to radiate electromagnetically on top of its weak
black-body evaporation, diagnosing a lower frequency cutoff Ω0 in the excess spectrum
would allow the unique extraction of plasma-ball radius R0 and, hence, of the energy
content of the ball.
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Let us, thus, compute the frequency Ω0 of the lowest spherically symmetric breathing
mode of a deconfining SU(2) Yang–Mills plasma ball of homogeneous energy density ρ and
pressure P, for which its temperature oscillates about T0. Surface effects, arising from the
transition between the deconfining (bulk) and the confining (exterior of ball) phases can
be neglected for a sufficiently large ball mass M ≡ 4

3 πR3
0ρ(R0), and the expression for Ω0

reads as follows [26,27]:

Ω0 =
πcsΛ

R̄0
, (11)

where the dimensionless quantities cs (longitudinal sound velocity) and R̄0 (R0 in units of
the inverse Yang–Mills scale Λ−1) are defined as follows:

c2
s ≡

dP̄
dλ
dρ̄
dλ

∣∣∣∣∣
λ=λ0

(12)

and R̄0 ≡ R0Λ. In Equation (12), the employments of the one-loop pressure P ≡ Λ4P̄
and of the one-loop energy density ρ ≡ Λ4ρ̄ are excellent approximations (modified by
higher-loop corrections on the 1%-level [1]). Amusingly, an estimate of Ω0 by virtue of a
linearisation of the force–balance equation 4

3 πR3ρ(R)R̈ = 4πR2P(R) about the stable point
R0 and an appeal to energy conservation of the following:

R̄ ≡ RΛ =

(
3M̄

4πρ̄(R̄)

)1/3

(M̄ ≡ ΛM) , (13)

replaces the factor of π in Equation (11) by a factor of three. For P̄ and ρ̄, we have the
following [1]:

P̄(2a, λ) ≡ − 2λ4

(2π)6

[
2P̃(0) + 6P̃(2a)

]
− 2λ ,

ρ̄(2a, λ) ≡ 2λ4

(2π)6 [2ρ̃(0) + 6ρ̃(2a)] + 2λ ,

a = a(λ) ≡ 2πe(λ)λ−3/2 (e(λ0) = 12.96) , (14)

where

P̃(y) ≡
∫ ∞

0
dx x2 log

[
1− exp

(
−
√

x2 + y2
)]

,

ρ̃(y) ≡
∫ ∞

0
dx x2

√
x2 + y2

exp
(√

x2 + y2
)
− 1

. (15)

Taking into account implicit (via a(λ)) and explicit dependences of P̄ and ρ̄ on λ and
employing the evolution equation for the mass of off-Cartan gauge modes as a function of
temperature [1]:

1 = − 24λ3

(2π)6

(
λ

da
dλ

+ a
)

aD(2a) , (16)

one derives the following:

dP̄
dλ

= − λ3

(2π)6

(
16P̃(0) + 48(P̃(2a)− a2D(2a))

)
,

dρ̄

dλ
=

λ3

(2π)6

(
16ρ̃(0) + 48

(
ρ̃(2a)− a2(D(2a)− F(2a))

))
+ 2
(

1− D(2a)− F(2a)
D(2a)

)
,

(17)
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where the following is the case.

D(y) ≡
∫ ∞

0
dx

x2√
x2 + y2

1

exp
(√

x2 + y2
)
− 1

,

F(y) ≡
∫ ∞

0
dx x2

exp
(√

x2 + y2
)

(
exp

(√
x2 + y2

)
− 1
)2 . (18)

Substituting Equation (17) into Equation (12) at λ0 = 18.31, we numerically obtain the
following.

cs(λ0) = 0.479 . (19)

For Equation (11), this yields the following.

Ω0 = 1.506
Λ
R̄0

. (20)

Let us now compare the monopole-core induced frequency ω0 of the self-intersection
region of the figure-eight shaped center-vortex loop (model of the electron) with Ω0 at one
and the same radius:

r0 = R0 = 4.043 H−1
∞ (T0) , (21)

see Equation (7). For Ω0, this yields the following:

Ω0 = 0.372 H∞(T0) (22)

such that the following is the case.

ω0

Ω0
=

12.96
0.372

= 34.84 . (23)

Such a large ratio is natural since the oscillation in the self-intersection region—
quantum initiated by caloron or anticaloron action—is induced by the classical dynamics
of a monopole core [4,5] for which its radius matches the reduced Compton wave length lC,
while the lowest symmetric breathing mode of the neutral deconfining ball is a consequence
of longitudinal sound propagation in an approximate bulk thermodynamics. This bulk
associates with r0 being comparable to the Bohr radius [7].

Equation (20) is the more reliable the larger R̄0 is. Isotropy breaking effects, which
associate with the neglected surface dynamics of the ball and/or the excitation of spherically
non-symmetric oscillation states, cause this surface to (electromagnetically) radiate with a
spectrum that is cut off towards the infrared at a frequency of about ν0 ∼ Ω0

2π , corresponding
to wave length l0 = 1

ν0
∼ 2πR0

1.506 .

4. Summary and Discussion

This paper’s main purpose was to compare two situations in which a ball-like region
of deconfining phase in SU(2) Yang-Mills thermodynamics oscillates about the zero of the
pressure at temperature T0: (i) the charged self-intersection region of a figure-eight shaped,
solitonic center-vortex loop (a model of the electron) containing an internally quantum-
perturbed BPS monopole, for which its classical core dynamics drives this oscillation
of (circular) frequency ω0 (up to a factor h̄ coincident with the rest energy m0c2 of the
soliton [8,9]); and (ii) the homogeneous, neutral region being perturbed externally such that
a lowest spherically symmetric oscillatory excitation of (circular) frequency Ω0 is excited
thanks to a finite longitudinal speed of sound cs. At the same radius, r0 = R0 = 4.043

πT0
, we

obtain ω0
Ω0

= 34.84. This hierarchy relates to the very different causes of oscillation in either
case and assures that the right-hand side of the mass formula Equation (5) for an oscillation
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in the sense of (i) does not receive any sizable contributions from an oscillation in the sense
of (ii).

Secondly, we have observed a numerical error in [7] concerning the estimate of the
system radius r0 in terms of the spatial coarse-graining scale |φ|−1 at T0. The correct result
states that finite-size corrections to infinite-volume thermodynamics cannot be excluded at
face value since the region of self-intersection actually is contained deeply within the ball
of spatial coarse-graining invoked in the derivation of the effective theory [1]. However,
the asymptotic harmonic time dependence of the integrated field-strength correlation [1],
required for the introduction of the field φ, is approximately saturated when cutting the
instanton-scale-parameter integration off at r0 < |φ|−1 already.

The present work only represents a first step in studying the plasma dynamics of a
ball-like region of deconfining phase at T0. More realistically, the physics of the boundary
shell, repesenting the transitions from the deconfining via the preconfining to the confining
phases, should be taken into account. Moreover, we did not address evaporation physics
(in adiabatic approximation: emission of non-intersecting and self-intersecting center-
vortex loops and, assuming a mixing with an SU(2) Yang–Mills theory of much lower
scale, electromagnetic modes from the surface of this shell in terms of thermal spectra) in
the case of macroscopically sized balls (see [28]) and how this process affects oscillation
dynamics. Last but not least, a thorough discussion of (delocalised) spin in terms of the
center-flux along the figure-eight shaped vortex line and the emergence of the electric
Coulomb field [29] throughout the confining-phase exterior to the blob of vortex-line self-
intersection needs to be realised. The latter represents a small contribution to the soliton
mass [7] and should manifest polarised dipole densities in (anti)caloron peripheries [1,30].

Our results on the spherically symmetric oscillations of the homogeneous and macro-
scopic plasma could be relevant in the description of certain, quasi-stabilised, compact
and radiating objects created within atmospheric discharges and for plasma diagnostics in
terrestial fusion experiments.
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Notes
1 For the sake of pointing out classical vs. quantum physics in association with (anti)calorons, we alternate between SI and natural

units in this introduction, and from Section 2 onward, we exclusively work in natural units where the speed of light in vacuum,
Planck’s (reduced) quantum of action, and Boltzmann’s constant are all set equal to unity: c = h̄ = kB = 1.

2 The radius r0 is denoted R0 in [7].
3 In physics models, charges and fluxes with respect to U(1) ⊂ SU(2) need to be interpreted in an electric-magnetically dual

manner [1].
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