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Abstract: In this review, we revisit our latest works regarding the description of the gravitational
interaction on noncommutative spaces as matrix models. Specifically, inspired by the gauge-theoretic
approach of (ordinary) gravity, we make use of the suggested methodology, modified appropriately
for the noncommutative framework, of the well-established formulation of gauge theories on them.
Making use of a covariant four-dimensional fuzzy space, we formulate the gauge theory with an
extended gauge group due to noncommutativity. In turn, in order to decrease the amount of symmetry
we employ a symmetry breaking and result with an action which describes a theory that is a minimal
noncommutative extension of the original.

Keywords: gauge theories; gauge theories of gravity; four-dimensional gravity; noncommutative
spaces; fuzzy de Sitter; noncommutative gravity; spontaneous symmetry breaking

1. Introduction

Over more than a century, the General theory of Relativity (GR)1 has been established
as the theory describing gravitational interaction, having passed several tests over the years.
It is highly emphasized that, contrary to the rest of the fundamental interactions which are
established in a gauge-theoretic way, GR is geometrically formulated, rendering gravity
as an intrinsic property of the spacetime related to its curvature. This discrepancy on the
formulations of the theories of the fundamental interactions has been a major concern
of theoretical physicists for several decades; therefore, various attempts on attributing
a single description of all interactions has motivated the pursuit of a gauge-theoretic
description of gravity2. The first step to the above undertaking was taken by Utiyama,
whose work [6], although not entirely successful, triggered the production of serious
research around the concept of the gauge-theoretic alternative description of GR and, later,
extensions of the methodology to other gravitational theories took place, as well. For
instance, a gauge-theoretic approach of the four-dimensional Einstein–Hilbert action was
successfully formulated as a spontaneously broken gauge theory of the isometry group
of the four-dimensional de Sitter (or AdS), induced by the presence of an auxiliary scalar
field [7–9]. Later, the four-dimensional Weyl gravity was recovered in a gauge-theoretic
way as a gauge theory of the four-dimensional conformal group which becomes explicitly
broken by the consideration of specific constraints3 [12–17]. Moreover, later, it was shown
that the three-dimensional Einstein–Hilbert action could be retrieved gauge-theoretically
as a three-dimensional Chern–Simons theory, in a straightforward way, i.e., no additional
breaking mechanism was necessary [18].

Part of the contemporary theoretical research on gravity is conducted on issues that
are related to its behaviour in more extreme conditions, that is in the short-distance regime
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such that quantum effects may induce non-negligible corrections. Since straightforward
quantization of GR is problematic, an alternative way, among others, to approach such
a configuration is to assume that in these conditions, for example in Planck scale, it can
be assumed that the spacetime is not continuous any more but, rather, discretized due to
the presence of the notion of a minimal length. The coordinate systems attributed on such
spaces that are governed by the above loss of continuity are such that involve coordinates
which obey some kind of uncertainty principle (quantum spaces), leading to the notion of
noncommutative geometry. Therefore, noncommutative spaces are highly recommended
background spaces to accommodate theories of gravity in such extreme physical conditions.
The above argumentation has led to the conduction of serious research within the noncom-
mutative framework towards the direction of formulating theories of noncommutative
gravity, realized in several ways, according to the way the classical symmetries (e.g., diffeo-
morphism invariance) are deformed. Two approaches on introducing the noncommutative
spaces are the following:

A first (more mathematical) approach of noncommutative geometry is accomplished
through the spectral triples [19,20] (see also [21]). The commutative spectral triples
(A,H, D), where A is the algebra of the smooth functions on the manifold, H is the
Hilbert space of square integrable spinors on the manifold and D is the Dirac operator of
the Levi–Civita connection, provide a correspondence between Riemannian manifolds and
abstract algebras. This implies the derivative correspondence of points on the underlying
topological space to states on the algebra. If the algebra is taken to be noncommutative
(noncommutative spectral triple), then it corresponds to a noncommutative version of a
Riemannian manifold.

A second (more physical) approach is along the lines of the quantization of the phase
space, in which the canonical position and momentum are replaced by Hermitian operators
and, thus, cease to commute (Heisenberg relation). If the coordinates are considered to be
parametrized by Hermitian operators, then they will also be noncommutative satisfying the
Heisenberg-like commutation relation [x̂i, x̂j] = iθij(x), where θij(x) is an antisymmetric
tensor parametrizing the noncommutativity of the corresponding space. Having said the
above, now there are two paths one can follow in order to work on the noncommutative
spaces. The first one is to use the Weyl correspondence, that is an one to one mapping
from operators (that do not commute) to regular functions (that commute under the
ordinary product) equipped with a deformed product, that is called ?-product. This
consideration implies that the noncommutative nature of the space will be concentrated
exclusively in this new product, that is [xi

?, xj] = iθij(x), where xi, xj are functions4. The
second path relies on the matrix representation of the operators, familiar from quantum
mechanics. In this realization, the notion of noncommutativity is intrinsic, since the matrix
multiplication is noncommutative by definition (matrix geometry [31]). In this case, the
defining noncommutative relation becomes [Xi, Xj] = iθij(X), where Xi, Xj are Hermitian
matrices. In both pictures, derivation and integration are well-defined operations, therefore
noncommutative field theories can be realized (for reviews see [32–34]). Specifically for
noncommutative gravitational theories (in both pictures), there are two lines of reasoning
one can follow: the first is to focus on the diffeomorphism invariance and try to translate
it to the noncommutative framework and the second one is to make use of the gauge-
theoretic picture of gravity we mentioned earlier, namely to construct gravitational theories
as noncommutative gauge theories, which are well-established in the noncommutative
framework [35–37].

Various works have been carried out making use of the above approaches and direc-
tions. First, within the spectral triple framework, the main contributions lie in the direction
in which the gravitational interaction is coupled to the Standard Model, admitting a purely
gravitational noncommutative description [38–45]. Second, within the approach of a quan-
tum spacetime, using the ?-product formulation and the Seiberg–Witten map [46], some
characterizing works on formulation of noncommutative gravity using the diffeomorphism
and/or the gauge-theoretic approach of GR are the following [47–58], while various theo-
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ries of noncommutative gravity have been constructed using the matrix realization, to name
a few: [59–66] where noncommutativity emerges through string theory, [67–70] where, in
some cases, quantization of the spacetime can lead to the emergence of noncommutative
gravity, [71,72] where the frame formalism gives rise to noncommutative cosmological
insights, as well. As far as our interests and contributions is concerned, we focus on the
construction of gravitational theories on noncommutative spaces using the gauge-theoretic
approach within the matrix formulation of noncommutativity [73–75] (see also [76,77]).

Before we move on to the description of the works we are reviewing, for completion, it
is worth noting that there exist some recent works that focus on an alternative construction
of noncommutative field theories using the concept of the L∞ algebras [78,79]. Indicatively,
in [80] it is described that noncommutative gauge theories should admit an underlying L∞
algebra and noncommutative theories of Chern–Simons and Yang–Mills are constructed
this way. In [81], the noncommutative deformations are implemented by the quantization
technique of Drinfel’d twist leading to braided L∞ algebras5. In this work a braided version
of the Einstein–Cartan–Palatini gravitational theory is formulated. Moreover, in [83],
braided L∞ algebras are produced making use of the Drinfel’d twist of the graded Hopf
algebra, which, in presence of a compatible codifferential, consists an alternative form of
the underlying L∞ algebra.

Let us now give a brief description of our works which we review. The concept of our
approach is the translation of the gauge-theoretic view of gravity to the noncommutative
framework, working in its matrix realization. First, we focused on the three-dimensional
case [73], in which a noncommutative gravity model was constructed as the gauge theory
of U(2)×U(2) (GL(2,C) in the Lorentzian case) on the covariant noncommutative space
R3

λ [84–87] (R1,2
λ [88]), which is the foliation of the three-dimensional Euclidean space

by adjacent fuzzy spheres [89] (foliation of the three-dimensional Minkowski space by
adjacent hyperboloids [90]). Then, in the more complicated four-dimensional case, we
worked on constructing a covariant four-dimensional noncommutative space which would
accommodate the gravitational theory [74,75]. Motivated by works on four-dimensional
covariant noncommutative spaces in the literature [71,72,91–98], we moved on with a
construction of a fuzzy version of the dS4 space and then we constructed a gravitational
model on it using the toolbox of noncommutative gauge theories, obtaining, among other
results, the transformations of the various gauge fields, the expressions of the component
tensors of the field strength and the field equations by starting with a topological action and
performing a spontaneous symmetry breaking with the inclusion of an auxiliary scalar field.
Last, the commutative limit of the theory was the Einstein–Hilbert theory with positive
cosmological constant.

The outlook of the current review is the following. First, we recall the various gauge-
theoretic approaches of gravity theories (Section 2). Next, we write down the necessary
information regarding the construction of gauge theories on noncommutative spaces
(Section 3). In turn, we present our gravitational model as a gauge theory on a covariant
noncommutative space, i.e., the fuzzy four-sphere (Section 4). Last, we write down our
conclusions and future plans (Section 5).

2. Gauge-Theoretic Approach of Gravity Theories

Here, we recall the gauge-theoretic approach of gravity, that is an alternative descrip-
tion to the geometric one, since the employed principles and methodology are important
for our purposes. We present this reminder in a retrospective approach attempting to follow
the timeline of the developments in the field along the lines of [4] (see also [5]).

The gauge principle has been developed into a fundamental element of the description
of the physical world over almost a whole century. In the early days, the concept of
the gauge principle was applied on internal symmetries, first by Weyl (1929), with the
consideration of gauge invariance under local U(1) transformations of the Dirac Lagrangian
augmented by two terms, one involving the related conserved current coupled to the
corresponding gauge field encoding the interactions and another one, the kinetic term of the
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gauge field rendering it as dynamical. Later, in the mid 1950s, Yang and Mills used a similar
construction for the local invariance under the SU(2) isospin rotation transformations,
which was the first extension of the above to a non-Abelian group [99]. The decisive step
towards the translation of the gauge-theoretic technique to spacetime symmetries was
made by Utiyama, who extended the Yang–Mills theory to semi-simple groups, thus the
localization of the Lorentz group could be realized, a step compatible with the local nature
of GR [6].

The tetradic first order formulation of GR had already consisted a suggestive setup
pointing to the gauge-theoretic description of GR as a gauge theory of the Lorentz group
with the spin connection as the corresponding gauge field which would enter the action
through the corresponding field strength (curvature), although in a non-quadratic form. In
short, Palatini’s first order action principle is an alternative to the Einstein–Hilbert action,
but still of the same form (gµνRµν(Γ)), in which the metric and affine connection (not
the Levi–Civita one) are treated as independent fields. The translation of the latter in the
tangent space language, that is in terms of the frame fields and spin connection, consists
the tetradic first order formulation of GR. It is remarkable that the torsionless condition
considered in GR emerges now as an equation of motion of the spin connection. Moreover,
this translation allows the coupling of gravity to fermions in a natural way, leading to the
same results as the Einstein–Cartan (EC) gravity theory (torsionful connection) which is a
(viable) generalization of GR in which, due to the reparametrization invariance, energy-
momentum tensor sources the curvature, while, due to the local Lorentz invariance on the
tangent space, spin-energy potential sources the torsion.

The separation of the two above-mentioned symmetries through the EC theory along
with the hints of a gauge theory of the Lorentz group from the tetradic first order formu-
lation of GR and the advances on the gauge principle a la Weyl and Yang–Mills, allowed
Utiyama to result with an SO(1, 3) gauge theory formulation of GR. Despite the break-
through, the construction was imperfect as it could not explain the ad hoc introduction
of the vierbein, the Riemannian nature of the connection and, last, the involvement of the
angular momentum current instead of the energy-momentum one, as it holds for gravity
and is confirmed by GR. In the early 1960s, Sciama carried the construction one step further
by localizing again the Lorentz group on a Riemannian manifold background and resulted
to a spacetime with torsion (Riemann–Cartan) [7]. A serious development on the above
setup was made at the same time by Kibble, who chose to gauge the Poincaré group on a
Minkowski background, maybe a more intuitive choice as it is the manifold in absence of
gravity [8]. In other words, he constructed a gauge theory on a special (and not general—
such as Sciama—6) relativistic background using as a gauge group the corresponding
isometry group with the corresponding algebra expressed by the following commutation
relations:

[Mab, Mcd] = 4η[a[c Md]b] , [Pa, Mbc] = 2ηa[bPc] , [Pa, Pb] = 0 , (1)

where ηab = diag(−1, 1, 1, 1) is the Minkowski metric, Mab and Pa the Lorentz and trans-
lational generators, respectively. The above consideration renders both the vierbein and
the spin connection as gauge fields composing the total gauge connection, but also the
corresponding field strength components are identified as the torsion and curvature tensors,
respectively. In particular, their expressions are:

Tµν
a(e, ω) = 2∂[µeν]

a − 2ω[µ
abeν]b , Rµν

ab(ω) = 2∂[µων]
ab − 2ω[µ

acων]c
b . (2)

The action proposed was once again of Einstein-Hilbert type, a consideration that is not
completely satisfactory since it is considered rather ad hoc. The result was once again
a Riemann–Cartan spacetime with the presence of torsion. A nice amendment is that
energy-momentum tensor enters now in a natural way through the translational group.
The contribution of Sciama and Kibble enhance the Einstein–Cartan theory and that is why
the theory is called Einstein–Cartan–Sciama–Kibble.
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An improvement regarding the origin of the action was proposed by MacDowell
and Mansouri in the late 1970s [14], who exchanged the Poincaré group7 with the (A)dS4,
which has the same amount of generators as the Poincaré group but with the property that
it is semi-simple, meaning that generators are treated on equal footing8. Effectively, this
means that the construction of a Yang–Mills-like quadratic action is now an option. The
generators satisfy the commutation relation:

[MAB, MCD] = 4η[A[C MD]B] ,

where ηAB is the mostly positive 5-dim Minkowski metric. The Poincaré group can be
viewed as a group contraction of SO(1, 4) as the radius, a, goes to infinity (Wigner-Inönü
contraction). Considering the change (rescaling) Mab → Mab and Ma5 = −aPa on the dS4
generators, then the algebra becomes:

[Mab, Mcd] = 4η[a[c Md]b] , [Mab, Pc] = ηbcPa − ηacPb , [Pa, Pb] =
1
a2 Mab .

The contraction limit a→ ∞, meaning that the translations are much smaller compared to
the radius, trivializes the commutator of the generators of the translations and produces
the (non-isomorphic) Poincaré algebra of Equation (1). Moreover, the de Sitter space is a
maximally symmetric solution of the Einstein field equations in vacuum, thus the radius
of the space is related to the cosmological constant as Λ = 3

a2 . Therefore, the contraction
limit can be viewed from a more physical perspective, as Λ → 0, which means that the
spacetime now is the flat Minkowski. The above splitting on the set of the generators
induces a splitting on the gauge field to two components identified as the vierbein and the
spin connection9. Accordingly, the same applies for the field strength tensor and writing it
in the Poincaré language of Equation (2), one results:

R̂ ab
µν = R ab

µν +
2
a2 e [a

µ e b]
ν , R̂ a

µν =
1
a

T a
µν . (3)

As stated above, the main virtue of this construction is that it admits a quadratic action. The
invariance under infinitesimal diffeomorphisms suggests the use of a top form including
the curvature two-form. Taking into consideration that the only available invariants are the
metric and the totally antisymmetric tensor, in order to construct a valid (parity preserving)
gauge invariant action, the only candidate is R̂ab ∧ R̂cdεabcd. It is evident that the above term
is not invariant under the total SO(1, 4) gauge group but only under the Lorentz subgroup.
In order to recover a totally invariant combination (only formally but still satisfactory),
Mansouri and MacDowell introduced a constant vector, which explicitly breaks the SO(1, 4)
gauge symmetry to the SO(1, 3). The form of the resulting action after the breaking is:

S = α
∫

d4xεµνρσεabcd

(
LRR +

1
a2LeeR +

1
a4Leeee

)
. (4)

The first term is topological (Gauss–Bonnet, see [100]), the second term is the Palatini
action10 and the third one is the cosmological constant term.

A very insightful contribution on the breaking of the initial SO(1, 4)-invariant action
was given by Stelle and West who considered the following [9]:

SSO(1,4) = α
∫

d4x
(

εµνρσR AB
µν R CD

ρσ εABCDE
φE

a
+ λ(φAφA − a2)

)
, (5)

where λ is a Lagrange multiplier and φA transforms trivially under coordinate transfor-
mations but as a vector under SO(1, 4). The symmetry of the above action breaks sponta-
neously due to the constraint of the φA field. Considering the field to be frozen in the fifth
direction φA = aδA

4, or, in other words, picking the specific gauge φa(x) = 0 and φ4(x) = a,
the action functional reduces to the MacDowell–Mansouri one.
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Last, it is meaningful, for reasons of completion, to mention the gauge-theoretic
approach of another theory of gravity, namely the Teleparallel Equivalent to GR (TEGR),
that is a gauge theory of the group of translations constructed on a Weitzenböck spacetime
(curvature-less connection) [101]. The construction manifests many important features but
presents a problem when it comes to the coupling of the theory to spinors. Additionally,
the gauge principle can be applied to retrieve other gravitational theories as well, for
instance, one can derive the four-dimensional Weyl gravitational theory considering the
four-dimensional conformal group as the initial gauge group on Minkowski spacetime and
perform an explicit symmetry breaking on the gauge invariant action (of Yang-Mills type)
using specific constraints to result with the action of Weyl gravity [12–17].

3. Gauge Theories and Noncommutativity

Let us now recall the necessary information of the noncommutative version of the
gauge-theoretic formulation, as it is contained in [35]11, since it will consist the main
ingredient for the construction of our model.

Let us start with a scalar field, φ(X), where X represents the coordinates of the
noncommutative space and suppose that it transforms non-trivially under the gauge
transformation produced by a gauge group. For a gauge parameter ε(X), an infinitesimal
transformation of the above scalar field will be:

δφ(X) = ε(X)φ(X) .

Taking into consideration that the coordinates transform trivially under the gauge transfor-
mation, the Xµφ(X) quantity transforms as:

δ(Xµφ(X)) = Xµε(X)φ(X) .

By inspection, it is straightforward that the above transformation is not covariant, since
noncommutativity of the coordinates implies [Xµ, ε(X)] 6= 0, which, in turn, forbids the
above transformation to be written covariantly as δ(Xµφ) = ε(X)(Xµφ(X)).

Direct analogy to ordinary gauge theories in which covariant derivative is introduced
for similar reasons, in this case too, the covariant coordinate is defined in order that the
above quantity obtains a covariant transformation rule:

δ(Xµφ(X)) ≡ ε(X)Xµφ(X) ,

which holds if the transformation property of the covariant coordinate is δXµ = [ε(X),Xµ],
that is covariant by definition. The above configuration is achieved by the introduction of a
field Aµ(X) which transforms as:

δAµ(X) = −[Xµ, ε(X)] + [ε(X), Aµ(X)] .

Therefore, the coordinate used in order to build a consistent gauge theory is the covariant
one, given as: Xµ = Xµ + Aµ(X), with the interpretation of the Aµ field as gauge field
becoming evident. Furthermore, the introduction of the gauge field implies the definition
of the corresponding field strength tensor. In this noncommutative picture, the definition of
the field strength tensor is not given only by the commutator of the covariant coordinates,
but its definition is upgraded with an extra term which is introduced by necessity to render
the transformation as covariant.

A subtle issue in the formulation of non-Abelian gauge theories on noncommutative
spaces is the proper treatment of the anticommutators of the various operators. Let us
consider the generic situation of the commutator of two elements which belong to an
arbitrary gauge algebra with generators Ta, namely ε(X) = εa(X)Ta and φ(X) = φa(X)Ta:

[ε, φ] =
1
2
{εa, φb}[Ta, Tb] +

1
2
[εa, φb]{Ta, Tb} .
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In the ordinary gauge theories, the last term is vanishing as the commutator of [εa, φb]
contains regular (commutative) functions, therefore the outcomes of the anticommutator
of the two generators are completely irrelevant. On the contrary, in the noncommutative
case, the commutator is not vanishing since it contains functions which depend on the
coordinates which, by definition, do not commute. Therefore, the products of the anticom-
mutator of the generators now matter. In principle, the products of such an anticommutator
are operators which do not belong to the considered algebra, i.e., they do not close, but
also they are representation-dependent. This is an unwelcome feature and needs to be
addressed. One possible scenario is to take into consideration all possible operators coming
from the anticommutator and consider them as generators. This leads to the extension of
the initial algebra to an infinite-dimensional one (universal enveloping algebra), which,
although welcome in other contexts (e.g., in [37,52,54]), it is not optimal for our purposes.
Another scenario, which we adopt, is to consider the generators of a specific representation
which means that the anticommutators would produce specific and a finite number of
operators, therefore, one can incorporate them into the starting algebra and work with the
extended, but finite, one.

4. Noncommutative Gravity in Four Dimensions: A Matrix Model

In this section we present our gauge-theoretic construction of the 4-dimensional
matrix model of noncommutative gravity. As understood from Section 2, in order to build
a (noncommutative) gauge theory, a background (noncommutative) space is required
to accommodate it. Therefore, first we focus on the construction of a four-dimensional
covariant noncommutative space, which plays the role of the background space and then
we present the gravity model, constructed as a noncommutative gauge theory on the
above space.

4.1. A Fuzzy Version of the Four-Sphere

The most typical noncommutative space is a fuzzy sphere, S2
F, which is the discrete

matrix approximation of the ordinary, continuous, sphere, S2, with the property of preserv-
ing its isometries [89]. Therefore, its isometry group is the SO(3), which is generated by
the three angular momentum operators. The eigenfunctions of the corresponding Laplace
operator are the well-known spherical harmonics and by replacing them with another,
finite, set of functions, one ends up with a truncated algebra, which does not close under
multiplication. In order to recover closure, the common product of those truncated func-
tions may be upgraded to a noncommutative one, namely the matrix product. The above is
a way to introduce the fuzzy sphere as a matrix approximation of the ordinary one, with
the coordinates defined as dimensionally appropriate rescalings of the SO(3) generators in
a high representation.

In the above-mentioned case the construction was straightforward, but that is not the
case when a similar approach is applied in higher-dimensional spaces, in the sense that
covariance is not automatically satisfied. More specifically, according to the arguments
used in the fuzzy sphere case, attempt of the construction of the fuzzy four-sphere, S4

F,
on the same principle, would suggest to consider the SO(5) group, since it consists of
the corresponding isometry group, and identify the coordinates with a subset of the
generators. Nevertheless, the subalgebra is not closing, and, therefore, covariance is not
satisfied [93]. The requirement of the preservation of covariance leads to utilizing a group
with larger symmetry, in which it will be possible to incorporate all generators and the
noncommutativity in it, with an appropriate identification, and result with a construction
in which the coordinates will transform as vectors under the action of the rotational
transformations. Extending minimally the symmetry leads to the adoption of the SO(6)
group [74,75].
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Let us now consider the 15 generators of SO(6), JA,B, with A, B = 1, ..., 6, which obey
the following algebra:

[JAB, JCD] = i(δAC JBD + δBD JAC − δBC JAD − δAD JBC). (6)

Now, let us decompose the above generators in an SO(4) notation and redefine genera-
tors as:

Jµν =
1
h̄

Θµν, Jµ5 =
1
λ

Xµ, Jµ6 =
λ

2h̄
Pµ, J56 =

1
2

h, (7)

where µ, ν = 1, ..., 4. The parameter λ has been introduced for dimensional reasons, h is an
operator related with the radius constraint, and Xµ, Pµ, Θµν are identified as the coordinates,
momenta12 and noncommutativity tensor, respectively [75]. Coordinates and momenta
satisfy the following commutation relations:

[
Xµ, Xν

]
= i

λ2

h̄
Θµν,

[
Pµ, Pν

]
= 4i

h̄
λ2 Θµν ,[

Xµ, Pν

]
= ih̄δµν h,

[
Xµ, h

]
= i

λ2

h̄
Pµ ,[

Pµ, h
]
= 4i

h̄
λ2 Xµ,

(8)

where the first two imply that the commutator of coordinates and the commutator of
momenta separately close into the SO(4) subalgebra of the total SO(6) symmetry group.
The commutation relation of the coordinates and momenta manifests the quantum nature
of the noncommutative space. The algebra of spacetime transformations is:[

Θµν, Θρσ

]
= ih̄

(
δµρΘνσ + δνσΘµρ − δνρΘµσ − δµσΘνρ

)
,[

Xµ, Θνρ

]
= ih̄

(
δµρXν − δµνXρ

)
,[

Pµ, Θνρ

]
= ih̄

(
δµρPν − δµνPρ

)
,[

h, Θµν

]
= 0 .

(9)

The first relation is actually the defining commutation relation of the SO(4) subalgebra,
that is the four-dimensional rotational symmetry of the space. The second relation is
important since it manifests that the coordinates transform as vectors under rotations in
a covariant way (and the momenta as well). The main point to note is that the above
algebra admits finite-dimensional representations for Xµ, Pµ and Θµν, thus the constructed
noncommutative spacetime is actually a finite quantum system13. This is the space that is
employed for the construction of the four-dimensional gravity model as a noncommutative
gauge theory.

4.2. Four-Dimensional Gravity Matrix Model

In the following, we present the formulation of gravity as a gauge theory on the
noncommutative space that was constructed above. The procedure that is going to be
followed is based on that of Section 2, albeit now we will be using the framework of
noncommutative gauge theories, which was presented in Section 3. Drawing lessons from
the commutative case (Section 2), in which the isometry group of the underlying space
(Poincaré group) was gauged in order to reach the appropriate results, in this case as well,
the isometry group of the above, covariant space is gauged, namely the SO(5) group.

4.2.1. Gauge Group and Representation

As it has been noted above, the use of the anticommutators of the generators of the
algebra is inevitable in the noncommutative framework. For reasons already presented in
Section 3, when dealing with anticommutators of generators of arbitrary representation
of an algebra, one does not necessarily end up with generators of the algebra, and this
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is exactly the case regarding the generators of SO(5). This fact poses a problem, which,
in order to be bypassed, one has to pick a specific representation to which the generators
of SO(5) belong and then include the operators that the anticommutators produce into
the algebra, regarding them as generators of the algebra. That way, one results with an
extended gauge algebra; therefore, the corresponding gauge symmetry will be enhanced
as compared to the initial one. In our specific case, the above procedure will lead to
the extension of the SO(5) to the SO(6)×U(1) gauge group, whose generators will be
represented by 4× 4 matrices, namely:

Mab = − i
4
[Γa, Γb] , Ka =

1
2

Γa , Pa = −
i
2

ΓaΓ5 , D = −1
2

Γ5 , I4 . (10)

In the above expressions of the generators we have used the well-known 4× 4 gamma
matrices (in the Euclidean signature), which satisfy the relation {Γa, Γb} = 2δabI4, where
a, b = 1, . . . , 4, as well as the matrix Γ5 = Γ1Γ2Γ3Γ4.

The algebra and anticommutation relations the above generators satisfy are:

[Ka, Kb] = iMab, [Pa, Pb] = iMab,

[Pa, D] = iKa, [Ka, Pb] = iδabD, [Ka, D] = −iPa,

[Ka, Mbc] = i(δacKb − δabKc),

[Pa, Mbc] = i(δacPb − δabPc),

[Mab, Mcd] = i(δac Mbd + δbd Mac − δbc Mad − δad Mbc),

[D, Mab] = 0,

{Mab, Mcd} =
1
8
(δacδbd − δbcδad)I4 −

√
2

4
εabcdD,

{Mab, Kc} =
√

2εabcdPd, {Mab, Pc} = −
√

2
4

εabcdKd,

{Ka, Kb} =
1
2

δabI4, {Pa, Pb} =
1
8

δabI4, {Ka, D} = {Pa, D} = 0,

{Pa, Kb} = {Mab, D} = −
√

2
2

εabcd Mcd .

(11)

4.2.2. Action and Equations of Motion

Following the above, we now try to find the appropriate action for the noncommutative
SO(6)×U(1) gauge theory of gravity. Given the relation that defines the noncommutativity
of the background space (8), we first consider the following (topological) action:

S = Tr
([

Xµ, Xν

]
− κ2Θµν

)([
Xρ, Xσ

]
− κ2Θρσ

)
εµνρσ. (12)

The above action is considered to have X and Θ as independent fields, while variation with
respect to those fields gives the corresponding field equations, respectively:

εµνρσ
[

Xν,
[
Xρ, Xσ

]
− κ2Θρσ

]
= 0 , εµνρσ

([
Xρ, Xσ

]
− κ2Θρσ

)
= 0 . (13)

From the above results, the second relation recovers the noncommutative nature and
relation of the background space when κ2 = iλ2

h̄ and, in turn, the first one is trivially
satisfied. Having in mind the relation between the X and Θ from the construction of the
space, (8), we could have started from the very same action considered above, with the
only difference of assuming that X and Θ are not independent, i.e., that Θ = Θ(X). In this
case varying the action with respect to the only independent field, would lead us to the first
of the above field equations, which is once more satisfied by the considered fuzzy space.

The next step is to introduce dynamics in the above action and write it in a form which
will include the gauge fields of the theory. The way we will go about is by expressing the
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action in terms of the curvature field strength tensor, since this will allow us to compare the
theory with its commutative counterpart and gain intuition in the process. In order to do
that, we introduce the gauge fields in the action (12), by considering them as fluctuations
of X and Θ, and the action will be written as:

S = Tr tr εµνρσ
([

Xµ + Aµ, Xν + Aν

]
− κ2(Θµν + Bµν

))
·
([

Xρ + Aρ, Xσ + Aσ

]
− κ2(Θρσ + Bρσ

))
, (14)

where we have also included a trace over the gauge algebra. Now, if we define:

• Xµ = Xµ + Aµ, the covariant coordinate of the noncommutative gauge theory, where
Aµ is the gauge connection and is decomposed on the various generators as:

Aµ(X) = eµ
a ⊗ Pa + ωµ

ab ⊗Mab + bµ
a ⊗ Ka + ãµ ⊗ D + aµ ⊗ I4 ,

where one gauge field has been attached to each generator;
• Θ̂µν = Θµν + Bµν, the covariant noncommutative tensor, with Bµν the two-form field;
• Rµν =

[
Xµ,Xν

]
− κ2Θ̂µν, the field strength tensor of the theory,

and replace κ2 = iλ2

h̄ in the above action, we result with:

S = Trtr
([
Xµ,Xν

]
− iλ2

h̄
Θ̂µν

)([
Xρ,Xσ

]
− iλ2

h̄
Θ̂ρσ

)
εµνρσ := TrtrRµνRρσεµνρσ . (15)

This action is the noncommutative analogue of the four-dimensional Chern–Simons term,
and it is the one in which we will introduce the scalar field later on, in order to induce a
spontaneous symmetry breaking. Varying the above action with respect to X and B will
yield the following field equations:

εµνρσRρσ = 0 , εµνρσ
[
Xν,Rρσ

]
= 0 . (16)

The first of these two field equations is just the vanishing of the curvature field strength
tensor, while the second can be viewed as the noncommutative counterpart of the Bianchi
identity.

For reasons that will become apparent later on (when comparing to the commutative
case), we now write the explicit decomposition of the curvature field strength tensor on the
generators of the gauge algebra:

Rµν(X) = R̃µν
a ⊗ Pa + Rµν

ab ⊗Mab + Rµν
a ⊗ Ka + R̃µν ⊗ D + Rµν ⊗ I4 . (17)

Here, we write down the explicit expressions only for the component tensors R ab
µν and R̃µν

which will be useful later:

Rµν
ab =

[
Xµ + aµ, ων

ab
]
−
[

Xν + aν, ωµ
ab
]
+

i
2

{
bµ

a, bν
b
}

+

√
2

4

([
bµ

c, eν
d
]
−
[
bν

c, eµ
d
])

εabcd −
√

2
4

([
ãµ, ων

cd
]
−
[

ãν, ωµ
cd
])

εabcd

+ 2i
{

ωµ
ac, ων

b
}
+

i
2

{
eµ

a, eν
b
}
− iλ2

h̄
Bµν

ab , (18)

R̃µν =
[
Xµ + aµ, ãν

]
−
[
Xν + aν, ãµ

]
+

i
2
{

bµa, eν
a}− i

2
{

bνa, eµ
a}

−
√

2
8

εabcd

[
ωµ

ab, ων
cd
]
− iλ2

h̄
B̃µν . (19)

For the expressions of the rest see [74,75].
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4.2.3. Spontaneous Symmetry Breaking of the Noncommutative Action

We now proceed with the induction of a spontaneous symmetry breaking of the
action (15). In order to achieve that, we need to modify the aforementioned action, by
introducing a scalar field Φ along with a dimensionful parameter λ, which plays the role of
the length scale of our theory. Following the above modification, the action is written as14:

S = TrtrG λΦ(X)RµνRρσεµνρσ + η
(

Φ(X)2 − λ−2IN ⊗ I4

)
, (20)

where η is a Lagrange multiplier. It is evident, that the above expression will return
action (15) when considered on-shell, i.e., when the following constraint equation holds:

Φ2(X) = λ−2IN ⊗ I4.

At this point, it is noted that the dimension of η is
[
M−2], while variation of the above action

with respect to it will yield the aforementioned constraint equation, as a field equation. Now,
let us consider that the scalar field consists only of the symmetric part of the decomposition
on the generators, that is:

Φ(X) = φ̃a(X)⊗ Pa + φa(X)⊗ Ka + φ(X)⊗ I4 + φ̃(X)⊗ D ,

where the antisymmetric part, Mab, is absent. The final step towards the spontaneous
symmetry breaking of the action is to gauge fix the scalar field. We choose to gauge fix Φ in
the direction of the generator D, and more specifically at the value φ̃(X) = −2λ−1. The
gauge fixed expression of the scalar field will then take the following explicit form:

Φ(X) = φ̃(X)⊗ D|φ̃=−2λ−1 = −2λ−1IN ⊗ D.

Using the known anticommutation relations of the algebra generators, we proceed by
calculating the traces over the algebra in action (20) and after substituting the gauge fixed
scalar field, the surviving terms will comprise the form of the spontaneously broken action:

Sbr = Tr

(√
2

4
εabcdRµν

abRρσ
cd − 4RµνR̃ρσ

)
εµνρσ. (21)

Having kept only the symmetric part of the decomposition (symmetric tensor) of the scalar
field under SO(6) (uncharged under the initial U(1)) means that the remaining symmetry
out of the SO(6)×U(1) initial one is SO(4)×U(1)15. This means that, nine out of the total
16 generators break and those are the Pa, which implies the torsionless condition, R̃µν

a = 0,
leading to a relation between ω and the independent fields, the Ka ones, that is Rµν

a = 0,
which results to a proportionality relation between the e, b fields and the D one, which is
expressed by the gauge fixing of ãµ = 0 [114]. Therefore, according to the above, the gauge
group after the symmetry breaking is the SO(4)×U(1) and the only independent fields of
the theory are e and a.

At this point, we write down the explicit expression of the Rmn
ab component ten-

sor, (18), after fixing the conditions of the fields ãm = 0, bm
a = i

2 em
a:

Rmn
ab =

[
Xm + am, ωn

ab
]
−
[

Xn + an, ωm
ab
]
+ i
{

ωm
ac, ωn

bc
}
− i
{

ωm
bc, ωnc

a
}

+
3i
8

{
em

a, en
b
}
− iλ2

h̄
Bmn

ab,

which, as it will be shown in the following, it will survive in the commutative regime,
and the first line will coincide with the expression of the curvature two-form R(0)

mn
ab in the

Palatini formulation of GR.
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4.2.4. The Commutative Limit

In order to examine if the above noncommutative gravity model is indeed a generaliza-
tion of the predictions of GR in the energy regime below the Planck scale, we consider the
naive commutative limit of the model, that is the vanishing of all noncommutative-related
features. In order to achieve that and make direct identification, in this limit, we consider
the fuzzy space to have Lorentzian signature (fuzzy dS4). In order to employ the above, we
make the following considerations:

• As long as the noncommutativity of the space ceases to exist, the two-form field
Bµν, that was related to the preservation of covariance of the fuzzy space, decouples,
as does the aµ field, which was introduced to extend the gauge group due to the
behaviour of the anticommutators in noncommutative gauge theories;

• The commutators of functions vanish, [ f (x), g(x)]→ 0 while the anticommutators of
functions reduce to products, { f (x), g(x)} → 2 f (x)g(x);

• The inner derivation reduces to the simple derivative:
[
Xµ, f

]
→ ∂µ f and the traces

reduce to integrations,
√

2
4 Tr→

∫
d4x;

• Additionally, in the specific gauge in which the symmetry breaking occurred, the
expression of the D-related component tensor R̃µν, (19), of the field strength tensor
reduces to:

R̃µν = −
√

2
8

εabcd

[
ωµ

ab, ων
cd
]
− iλ2

h̄
B̃µν.

On that account, when the commutative limit is considered, the second term of
the corresponding action, (21), which contains the above tensor, will vanish, since
the commutator of the spin connection will be zero and the B̃µν will decouple, as
mentioned above. Furthermore, since the aµ field also decouples at the limit, it will
not be included in the first term of the aforementioned action.

• In order to exactly match the results of the commutative case, we also need to take
into account the following reparametrizations:

eµ
a → imeµ

a, Pa → −
i
m

Pa, R̃µν
a → imTµν

a

ωµ
ab → − i

2
ωµ

ab, Mab → 2iMab, Rµν
ab → − i

2
Rµν

ab,

where m is an arbitrary, complex constant of dimensions [L]−1, which serves the
purpose of keeping the eµ

a dimensionless in the commutative limit, so that the latter
can admit the interpretation of the actual vielbein field.

Regarding the torsion tensor R̃µν
a, after taking into consideration the above limits and

reparametrizations, it takes the following form:

Tµν
a = ∂µeν

a − ∂νeµ
a −ωµ

abeνb + ων
abeµb = 0

which exactly coincides with the torsionless condition of the first-order formulation of
GR. Hence, we understand that the relation between ω and e is exactly the same as in the
first-order formulation of GR.

Following the same logic as above, the curvature two-form Rµν
ab, after considering

the limits and rescalings above, will be given by the following expression:

Rµν
ab = ∂µων

ab − ∂νωµ
ab + ωµ

acων
b

c −ωµ
bcων

a
c +

3
2

m2eµ
aeν

b = R(0)
µν

ab +
3
2

m2eµ
aeν

b .

From the above expression, it is explicitly understood that the curvature two-form in our
case is exactly the same as that of the first order formulation of GR, plus an extra term
involving only the vielbein fields.

Finally, we comment on the action. As stated above, given the considered limits, the
second term of (21) will vanish, and the action will now consist only of the first term. It is
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also understood that the only invariance that the action is left with, in the commutative
limit, is the Lorentz one. After the corresponding calculations are performed, the expression
of the action in the commutative limit takes the form given by MacDowell–Mansouri, (4).

5. Conclusions—Future Plans

We reviewed the construction of a gravitational model on a four-dimensional noncom-
mutative space employing the gauge principle and showed that it consists a generalization
of GR in a top to bottom way. In the beginning, noncommutativity led to an extended
gauge symmetry and the introduction of extra fields in the theory, compared to the ordinary
case. However, the employment of a spontaneous symmetry breaking mechanism, reduced
the amount of the extra symmetry and eventually we resulted with a model in which the
whole noncommutativity modification is manifested through an extra U(1) symmetry.

Based on the above findings, we plan to make contact with phenomenology and
estimate the noncommutative scale through compatibility to the experimental gravitational
results. To that end, a thorough examination of the commutative limit is necessary in
order to find the modifications that noncommutativity induces in the low-energy regime.
Moreover, we plan to examine the coupling of the noncommutative gravity to matter
and, furthermore, to explore the cosmological implications that can be produced by the
above model.
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Notes
1 For classical textbooks on the subject see [1–3].
2 For a comprehensive map and a detailed study on this field see [4,5].
3 More recently, further breaking patterns of the Weyl conformal gravity are studied (see [10,11]).
4 See [22–30].
5 For another approach using the Drinfel’d twist see also [82].
6 Sciama’s general relativistic background is compensated in Kibble’s theory by the presence of the vierbeins. This implies a

correlation between the reparametrizations and local translational transformations.
7 The Poincaré group is not semi-simple since it possesses the translations as a normal subgroup. For this reason no non-degenerate

invariant form exists and that is why no quadratic action was available [18].
8 Here, we follow the construction for the dS4 group. The same methodology applies for the AdS4 case, too.
9 Regarding the vierbein and the spin connection, this is an a posteriori identification as the gauge fields, since, in order to proceed

with it, the torsionless condition and the field equation should hold (on-shell state) or else, especially for the vierbein, the
transformation is not even SO(1, 4) covariant. In other words, reparametrizations and gauge transformations of the fields may be
used interchangeably after the symmetry breaking of the considered action and the attainment of the equations of motion.

10 Therefore the torsionless condition is derived as the equation of motion of the Lorentz gauge field.
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11 For previous applications see [102–112].
12 The momenta operators will become more relevant in our future work, as matter fields is planned to be introduced.
13 For the initial steps on this construction see Snyder’s and Yang’s original works [91,92].
14 See also [113], in which the authors make use of a similar term in their action in the framework of stringy RVM.
15 Had we taken into consideration the antisymmetric part (antisymmetric tensor) or the adjoint representation, the symmetry

breaking would lead to the same gauge symmetry enhanced by a U(1). In case the scalars are charged under the initial U(1), this
Abelian gauge group also breaks to a global U(1).
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