Technological Novelties of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Imaging Atmospheric Cherenkov Telescopes
Abstract
:1. Introduction
2. Discovery of Cherenkov Emission in the Atmosphere
2.1. First Generation Atmospheric Cherenkov Telescopes
2.1.1. Extensive Air Showers and the Cherenkov Light Emission
2.1.2. Chudakov’s Telescopes in Crimea
2.1.3. Other First-Generation Telescopes
2.1.4. A Short Summary on the First-Generation Telescopes
3. EAS Images in Cherenkov Light Obtained Using an Image Intensifier
4. The First Monte Carlo Simulations and the “Stereo” Observations
5. The Second-Generation Telescopes
5.1. The 10 m Whipple Telescope
5.2. GT-48 in Crimea
5.3. High Energy Gamma Ray Astronomy (HEGRA)
5.4. The 7-Telescope Array
5.5. CLUE
5.6. CAT
5.7. CANGAROO
6. The Very Low Threshold, EBL and Solar Power Plants as Gamma-Ray Telescopes
7. The Threshold of an Imaging Air Cherenkov Telescope
“The energy threshold of a simple detector is inversely proportional to the diameter of the light collector. An energy threshold of 1011 eV requires an effective aperture of 5–10 m. To reach 1010 eV requires an aperture of 50–100 m; such apertures would have been out of the question a few years ago but the development of large concentrators for solar energy research makes this energy threshold a realistic possibility”.
8. The Third Generation Telescopes
8.1. H.E.S.S.
8.2. VERITAS
8.3. MAGIC
- 2 GHz sampling;
- Parabolic tessellated reflector;
- Mat, hemispherical input window PMTs + tailored to these light guides for fast timing and higher detection efficiency;
- Analog signal transmission via optical fibers;
- Active Mirror Control system, for optimal PSF in the focus;
- Sealed, temperature controlled and stabilized imaging camera;
- Light-weight reflector frame made of reinforced carbon-fiber.
9. Fourth Generation Instruments
9.1. Cherenkov Telescope Array—The Major Instrument
9.1.1. Enhanced Quantum Efficiency PMTs
9.1.2. SiPM-Based Imaging Camera
9.2. TAIGA
9.3. LHAASO
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jelley, J.V. Cherenkov Radiation and its Applications. In Proceedings of the International Workshop on Very High Energy Gamma Ray Astronomy, Ootacamund, India, 20–25 September 1982; Jelley, J.V., Ed.; Pergamon Press: Oxford, UK, 1958; Volume 64. [Google Scholar]
- Lidvansky, A.S. Air Cherenkov methods in cosmic rays: Review and some history. Rad. Phys. Chem. 2006, 75, 891. [Google Scholar] [CrossRef] [Green Version]
- Watson, A. The discovery of Cherenkov radiation and its use in the detection of extensive air showers. Nucl. Phys. B 2011, 212–213, 13. [Google Scholar] [CrossRef] [Green Version]
- Weekes, T.C. Very High Energy Gamma-Ray Astronomy (Series in Astronomy and Astrophysics); CRC Press: Boca Raton, FL, USA, 2003; ISBN 0-75-030658-0. [Google Scholar]
- Fegan, D. Detection of elusive radio and optical emission from cosmic-ray showers in the 1960s. Nucl. Instr. Meth. Phys. A 2012, 662, S2. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.; Wagner, R. Very-high energy gamma-ray astronomy. Eur. Phys. J. H 2012, 37, 459–513. [Google Scholar] [CrossRef] [Green Version]
- Hillas, A.M. Evolution of ground-based gamma-ray astronomy from the early daysto the Cherenkov Telescope Arrays. Astrop. Phys. 2013, 43, 19. [Google Scholar]
- Fegan, D. Cherenkov Reflections: Gamma-Ray Imaging and the Evolution of TeV Astronomy; World Scientific: Singapore, 2019. [Google Scholar]
- Mirzoyan, R. Brief history of ground-based very high energy gamma-ray astrophysics with atmospheric air Cherenkov telescopes. Astropart. Phys. 2014, 53, 91. [Google Scholar] [CrossRef]
- Galbraith, W.; Jelley, J.V. Light Pulses from the Night Sky associated with Cosmic Rays. Nature 1953, 171, 349. [Google Scholar] [CrossRef]
- Chudakov, A.E.; Dadykin, V.L.; Zatsepin, V.I.; Nesterova, N.M. A Search for Photons with Energy 1013 eV from Local Sources of Cosmic Radiation. P. N. Lebedev Phys. Inst. 1964, 26, 118141. [Google Scholar]
- Cocconi, G. Proceedings of the International Cosmic Ray Conference, Moscow, Russia, 6–11 July 1959.
- Jennings, D.M.; White, G.; Porter, N.A.; O’Mongain, E.P.; Fegan, D.J.; White, J. Results of a search for 1012 eV gamma rays from pulsars. Nuovo Cimento 1974, 20, 71–82. [Google Scholar] [CrossRef]
- Hanbury, B.R.; Davis, J.; Allen, L.R. The Effects of Cerenkov Light Pulses on a Stellar Intensity Interferometer. Mon. Not. Roy. Astr. Soc. 1969, 146, 399. [Google Scholar] [CrossRef] [Green Version]
- Grindlay, J.E. Detection of Pulsed Gamma Rays of ~1012 EV from the Pulsar in the Crab Nebula. Astrophys. J. 1972, 174, L9–L17. [Google Scholar] [CrossRef]
- Resvanis, L.K.; Tzamarias, S.; Voulgaris, G.; Szentgyorgyi, A.; Hudson, J.; Kelley, L.; Learned, J.G.; Sinnis, C.; Stenger, V.; Weeks, D.D.; et al. The Haleakala Gamma-Ray Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1988, 269, 297. [Google Scholar] [CrossRef]
- Brink, C.; Raubenheimer, B.C.; van Urk, G.; van der Walt, D.J.; de Jager, O.C.; Meintjes, P.J.; Nel, H.I.; North, A.R.; van Wyk, J.P.; Visser, B. The Nooitgedacht Mk II TeV Gamma Ray Telescope. In Proceedings of the 22nd International Cosmic Ray Conference ICRC, Dublin, Ireland, 11–23 August 1991. [Google Scholar]
- Turver, K.E.; Weekes, T.C. Gamma-Rays above 100 GeV. Phil. Trans. Roy. Soc. Lond. A Math. Phys. Sci. 1981, 301, 615–628. Available online: https://www.jstor.org/stable/37067 (accessed on 6 February 2022).
- Baillon, P.; Danagoulian, S.; Dudelzak, B.; Espigat, P.; Eschstruth, P.; Fontaine, G.; George, R.; Ghesquière, C.; Kovacs, F.; Meynadier, C.; et al. Gamma ray spectrum of the crab nebula in the multi TeV region. Astropart. Phys. 1993, 1, 341. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.B.; Chitnis, V.R.; Bose, D.; Rahman, M.A.; Upadhya, S.S.; Gothe, K.S.; Nagesh, B.K.; Purohit, P.N.; Shobha, K.R.; Kamesh, K.R.; et al. Search for TeV gamma-rays from Geminga pulsar. Astropart. Phys. 2009, 32, 120. [Google Scholar] [CrossRef]
- Singh, B.B.; Britto, R.J.; Chitnis, V.R.; Shukla, A.; Saha, L.; Sinha, A.; Acharya, B.S.; Vishwanath, P.R.; Anupama, G.C.; Bhattacharjee, P.; et al. VHE gamma-ray observation of Crab Nebula with HAGAR telescope array. Exp. Astron. 2019, 47, 177–198. [Google Scholar] [CrossRef] [Green Version]
- Borwankar, C.R.; Sharmaa, M.; Bhatta, N.; Bhattacharyyaa, S. Simulation studies of MACE gamma ray telescope: Estimation of integral sensitivity, angular resolution and energy resolution. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021. [Google Scholar] [CrossRef]
- Karle, A.; Merck, M.; Plaga, R.; Arqueros, F.; Haustein, V.; Heinzelmann, G.; Holl, I.; Fonseca, V.; Lorenz, E.; Martinez, S.; et al. Design and performance of the angle integrating Cerenkov array AIROBICC. Astropart. Phys. 1995, 3, 321. [Google Scholar] [CrossRef]
- Chadwick, P.M.; McComb, T.J.L.; Turver, K.E. Very high energy gamma rays from x-ray binary pulsars. J. Phys. G Nuck. Part Phys. 1990, 16, 1773. [Google Scholar] [CrossRef]
- Hill, D.A.; Porter, N.A. Photography of Cerenkov Light from Extensive Air Showers in The Atmosphere. Nature 1960, 191, 690. [Google Scholar] [CrossRef]
- Zatsepin, V.I. The Angular Distribution of Instensity of Cerenkov Radiation from Extensive Cosmic Ray Air Showers. Sov. Phys. JETF 1965, 20, 459. [Google Scholar]
- Fazio, G.G.; Helmken, H.F.; Rieke, G.H.; Weekes, T.C. An experiment to search for discrete sources of cosmic gamma rays in the 1011 to 1012 eV region. Can. J. Phys. 1968, 46, S451. [Google Scholar] [CrossRef]
- Fazio, G.G.; Helmken, H.F.; Rieke, G.H.; Weekes, T.C. A Search for Discrete Sources of Cosmic Gamma Rays of Energies Near 2 × 1012 eV. Astrophys. J. 1968, 154, L83. [Google Scholar] [CrossRef]
- Weekes, T.C.; Turver, K.E. Proceedings of the 12th ESLAB Symposium (Frascati); Wills, R.D., Battrick, B., Eds.; European Space Agency: Paris, France, 1977; p. 279. [Google Scholar]
- Hillas, A.M. 19th International Cosmic Ray Conference, La Jolla, USA, 11–23 August 1985: Conference Papers; Scientific and Technical Information Branch: Washington, DC, USA, 1985; p. 445. [Google Scholar]
- Weekes, T.C.; Cawley, M.F.; Fegan, D.J.; Gibbs, K.G.; Hillas, A.M.; Kowk, P.W.; Lamb, R.C.; Lewis, D.A.; Macomb, D.J.; Porter, N.A.; et al. bservation of TeV Gamma-rays from the Crab Nebula using the Atmospheric Cherenkov Imaging Technique. Astrophys. J. 1989, 342, 379. [Google Scholar] [CrossRef]
- Davies, J.M.; Cotton, E.M. Design of the quartermaster solar furnace. Sol. Energy 1957, 1, 16–22. [Google Scholar] [CrossRef]
- Kornienko, A.P.; Stepanian, A.A.; Zyskin, Y.L.; Yu, I.; Neshpor, V.P.; Fomin, V.G.; Shitov, B.M.V. The characterisation of a Cerenkov imaging telescope for ground-based gamma-ray astronomy through correlation of coincident images. Experim. Astron. 1993, 4, 77. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Akhperjanian, A.G.; Atoyan, A.M.; Beglarian, A.S.; Gabrielian, A.A.; Kankanian, R.S.; Kazarian, P.M.; Mirzoyan, R.G.; Stepanian, A.A. In Proceedings of the Internationl Workshop VHE Gamma-Ray Astron, Crimea, USSR, 17–21 April 1989.
- Mirzoyan, R.; Vacanti, G. Proceedings of the Towards a Major Atmospheric Cherenkov Detector-I, Palaiseau, France, 11–12 June 1992; p. 239.
- Mirzoyan, R.; Habel, U.; Neshpor, Y.; Vladimirsky, V. The efficiency of light guide application in imaging cameras of the 2-nd generation gamma-ray Cherenkov telescopes. Exp. Astron. 1993, 4, 137. [Google Scholar] [CrossRef]
- Mirzoyan, R.; Kankanian, R.; Krennrich, F.; Müller, N.; Sander, H.; Sawallisch, P.; Aharonian, F.; Akhperjanian, A.; Beglarian, A.; Fernandez, J.; et al. The first telescope of the HEGRA air Cherenkov imaging telescope array. Nucl. Instr. Meth. A 1994, 351, 513. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Chilingaryan, A.A.; Mirzoyan, R.G.; Konopelko, A.K.; Plyasheshnikov, A.V. The system of imaging atmospheric Cherenkov telescopes: The new prospects for VHE gamma ray astronomy. Exp. Astron. 1992, 2, 331. [Google Scholar] [CrossRef]
- Pühlhofer, G.; Bolz, O.; Götting, N.; Heusler, A.; Horns, D.; Kohnle, A.; Lampeitl, H.; Panter, M.; Tluczykont, M.; Aharonian, F.; et al. The technical performance of the HEGRA system of imaging air Cherenkov telescopes. Astropart. Phys. 2003, 20, 267. [Google Scholar] [CrossRef] [Green Version]
- Teshima, M.; Dion, G.; Hayashida, N.; Hibino, K.; Kifune, T.; Nagano, M.; Kadota, K.; Kakimoto, F.; Ogio, S.; Yoshida, S.; et al. Telescope array. In Proccedings of the First Palaiseau Workshop: Towards a Major Atmospheric Cerenkov Detector for TeV Astro/particle Physics, Palaiseau, France, 11–12 June 1992; pp. 255–266. [Google Scholar]
- Bartoli, B.; Bastieri, D.; Bigongiari, C.; Biral, R.; Ciocci, M.A.; Cresti, M.; Dokoutchaeva, V.; Kartashov, D.; Liello, F.; Malakhov, N.; et al. Observation of γ-sources using a new reconstruction technique in the CLUE experiment. Nucl. Phys. B 2001, 97, 211. [Google Scholar] [CrossRef]
- Barrau, A.; Bazer-Bachi, R.; Beyer, E.; Cabot, H.; Cerutti, M.; Chounet, L.M.; Debiais, G.; Degrange, B.; Delchini, H.; Denance, J.P.; et al. The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy. Nucl. Instr. Meth. A 1998, 416, 278. [Google Scholar] [CrossRef] [Green Version]
- Goret, P.; Palfrey, T.; Tabary, A.; Vacanti, G.; Bazer-Bachi, R. Observations of TEV gammarays from the Crab-Nebula. Astron. Astrophys 1993, 270, 401. [Google Scholar]
- Mori, M. Recent results from CANGAROO-III. In Proceedings of the International Workshop Cosmic-rays and High Energy Universe, Aoyama Gakuin University, Shibuya, Tokyo, Japan, 5–6 March 2007. [Google Scholar]
- Dwek, E.; Krennrich, F. The extragalactic background light and the gamma-ray opacity of the universe. Astropart. Phys. 2013, 43, 112–133. [Google Scholar] [CrossRef] [Green Version]
- Ahlen, S.; Becker, U.; Fisher, P.; Galaktionov, Y.; Goldstein, J.; Kieda, D.; Marin, A.; Salamon, M.; Ting, S.; Tümer, O.; et al. A new generation gamma ray telescope. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 351, 493–512. [Google Scholar] [CrossRef]
- Plaga, R.; Arqueros, F.; Ballestrinb, J.; Berenguelc, M.M.; Borquea, D.; Camachod, E.F.; Diaze, M.; Gebauere, H.-J.; Enriquez, R. Very high-energy γ-ray observations of the Crab nebula and other potential sources with the GRAAL experiment. Astropart. Phys. 2002, 3, 293. [Google Scholar] [CrossRef]
- Jarvis, A.; Ong, R.A.; Williams, D.A.; Aune, T.; Ball, J.; Carson, J.E.; Covault, C.E.; Driscoll, D.D.; Fortin, P.; Gingrich, D.M.; et al. Very High Energy Observations of Gamma-ray Bursts with STACEE. Astrophys. J. 2010, 722, 862. [Google Scholar] [CrossRef]
- Smith, D.A. Review of the Solar Array Telescopes. In Proceedings of the Towards a Network of Atmospheric Cherenkov Detectors VII, Ecole Polytechnique, Palaiseau, France, 27–29 April 2005. [Google Scholar]
- De Naurois, M.; Holder, J.; Bazer-Bachi, R.; Bergeret, H.; Bruel, P.; Cordier, A.; Debiais, G.; Dezalay, J.-P.; Dumora, D.; Durand, E. Measurement of the Crab flux above 60 GeV with the CELESTE Cerenkov telescope. Astrophys. J. 2002, 566, 343. [Google Scholar] [CrossRef] [Green Version]
- Mirzoyan, R. Proceedings of the Towards a Major Atmospheric Cherenkov Detector-V, Kruger National Park, South Africa, 9–11 August 1997.
- Mirzoyan, R. 17 m Diameter MAGIC telescope project for sub-100 GeV gamma ray astronomy. Nucl. Phys. B 1997, 54, 350. [Google Scholar] [CrossRef]
- Bradbury, S.M. Towards a Major Atmospheric Cherenkov Detector-IV. In Proceedings of the Padova Workshop on Tev Gamma-Ray Astrophysics, Padova, Italy, 11–13 September 1995; p. 277. [Google Scholar]
- Lorenz, E. In Proceedings of the Fouth International Workshop on Theoretical and Phenomenological Aspects of Underground Physics, Toledo, Spain, 17–21 September 1995.
- H. E.S.S. Collaboration The H.E.S.S. Galactic plane survay. A&A 2018, 612, 1–61. [Google Scholar] [CrossRef]
- Förster, A. Gamma-ray astronomy with H.E.S.S. Nucl. Inst. Meth. A 2014, 766, 69–72. [Google Scholar] [CrossRef]
- Mukherjee, R. Observing the energetic universe at very high energies with the VERITAS gamma ray observatory. Adv. Space Res. 2018, 62, 2828. [Google Scholar] [CrossRef] [Green Version]
- Otte, N. The Upgrade of VERITAS with High Efficiency Photomultipliers. In Proceedings of the 32nd International Cosmic Ray Conference (ICRC 2011), Beijing, China, 11–18 August; 2011. [Google Scholar] [CrossRef]
- Paneque, D.D.; Gebauer, J.H.; Lorenz, E.; Mirzoyan, R. A method to enhance the sensitivity of photomultipliers for Air Cherenkov Telescopes by applying a lacquer that scatters light. Nucl. Inst. Meth. A 2004, 518, 619–621. [Google Scholar] [CrossRef]
- Bartko, H.; Goebel, F.; Mirzoyan, R.; Pimpl, W.; Teshima, M. Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope. Nucl. Inst. Meth. 2005, 548, 464–486. [Google Scholar] [CrossRef] [Green Version]
- Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. Improving the performance of the single-dish Cherenkov telescope MAGIC through the use of signal timing. Astropart. Phys. 2009, 30, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. Observation of Pulsed γ-Rays Above 25 GeV from the Crab Pulsar with MAGIC. Science 2008, 322, 1221–1224. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. Phase-resolved energy spectra of the Crab pulsar in the range of 50–400 GeV measured with the MAGIC telescopes. AA 2012, 540, A69. [Google Scholar] [CrossRef] [Green Version]
- Acciari1, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; de Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar]
- MAGIC Collaboration. Observation of inverse Compton emission from a long γ-ray burst. Nature 2019, 575, 459–463. [Google Scholar] [CrossRef]
- Biland, A.; Garczarczyk, M.; Anderhub, H.; Danielyan, V.; Hakobyan, D.; Lorenz, E.; Mirzoyan, R. The Active Mirror Control of the MAGIC Telescope. In Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, 3–11 July 2007. [Google Scholar]
- Mirzoyan, R.; Lorenz, E.; Petry, D.; Prosch, C. On the influence of afterpulsing in PMTs on the trigger threshold of multichannel light detectors in self-trigger mode. Nucl. Inst. Meth. A 1997, 387, 74. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet, E.A.; Asano, K.; Baack, D.; Babic, A.; Baquero, A.; Barres, U.; Barrio, J.A.; et al. Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV. A&A 2020, 643, L14. [Google Scholar]
- Acharya, B.S.; Actis, M.; Aghajani, T.; Agnetta, G.; Aguilar, J.; Aharonian, F.; Ajello, M.; Akhperjanian, A.; Alcubierre, M.; Aleksić, J.; et al. Introducing the CTA concept. Astropart. Phys. 2013, 43, 3. [Google Scholar] [CrossRef] [Green Version]
- The CTA Consortium. Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2017. [Google Scholar]
- Cherenkov Telescope Array. Heidelberg Germany. Available online: https://www.cta-observatory.org/ (accessed on 6 February 2022).
- Schliesser, A.; Mirzoyan, R. Wide-field prime-focus imaging atmospheric Cherenkov telescopes. A systematic study. Astropart. Phys. 2005, 24, 382. [Google Scholar] [CrossRef] [Green Version]
- Vassiliev, V.V.; Fegan, S.; Brousseau, P. Wide field aplantic two mirror telescopes for ground-based gamma-ray astronomy. Astropart. Phys. 2007, 28, 10. [Google Scholar] [CrossRef] [Green Version]
- Mirzoyan, R.; Andersen, M.I. A 15 wide field of view imaging air Cherenkov telescope. Astropart. Phys. 2009, 31, 1. [Google Scholar] [CrossRef] [Green Version]
- Mirzoyan, R.; Goebel, F.; Hose, J.; Hsu, C.C.; Ninkovic, E.; Paneque, D.; Rudert, A.; Teshima, M. Enhanced quantum efficiency bialkali photo multiplier tubes. Nucl. Instr. Meth. A 2007, 572, 479. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Hose, J.; Menzel, U.; Mirzoyan, R. Light Induced Afterpulses in Photomultipliers. IEEE Trans. Nucl. Sci. 2015, 62, 1313. [Google Scholar] [CrossRef]
- Mirzoyan, R.; Mueller, D.; Hose, J.; Menzel, U.; Nakajima, D.; Takahashi, M.; Teshima, M.; Toyamam, T.; Yamamoto, T. Evaluation of novel PMTs of worldwide best parameters for the CTA project. Nucl. Inst. Meth. A 2017, 845, 603. [Google Scholar] [CrossRef]
- Otte, N.; Dolgoshein, B.; Hose, J.; Klemin, S.; Lorenz, E.; Mirzoyan, R.; Popova, E.; Teshima, M. The Potential of SiPM as Photon Detector in Astroparticle Physics Experiments like MAGIC and EUSO. Nucl. Phys. B 2006, 150, 144. [Google Scholar] [CrossRef]
- Dolgoshein, B.; Mirzoyan, R.; Popova, E.; Buzhan, P.; Ilyin, A.; Kaplin, V.; Stifutkin, A.; Teshima, M.; Zhukov, A. Large area UV SiPMs with extremely low cross-talk. Nucl. Instr. Meth. A 2012, 695, 40. [Google Scholar] [CrossRef]
- Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kaplin, V.; Klemin, S.; Mirzoyan, R. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes. Nucl. Instr. Meth. A 2009, 610, 131. [Google Scholar] [CrossRef]
- Knoetig, M.; Hose, J.; Mirzoyan, R. SiPM Avalanche Size and Crosstalk Measurements with Light Emission Microscopy. IEEE Trans. Nucl. Sci. 2014, 61, 1488. [Google Scholar] [CrossRef]
- Neise, D.; Adam, J.; Ahnen, M.L.; Baack, D.; Balbo, M.; Bergmannd, M.; Biland, A. FACT–Status and experience from five years of operation of the first G-APD Cherenkov Telescope. Nucl. Instr. Meth. A 2017, 876, 17. [Google Scholar] [CrossRef]
- Hahn, A.; Detlaff, A.; Fink, D.; Mazin, D.; Mirzoyan, R.; Teshima, M. Development of three silicon photomultiplier detector modules for the MAGIC telescopes for a performance comparison to PMTs. Nucl. Instr. Meth. A 2018, 912, 259. [Google Scholar] [CrossRef]
- Gress, O.; Astapov, I.; Budnev, N.; Bezyazeekov, P.; Bogdanovich, A.; Boreyk, V. The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka Valley: Design, composition and commissioning. Nucl. Instr. Meth. A 2017, 845, 367. [Google Scholar] [CrossRef] [Green Version]
- Budnev, N.; Astapov, I.; Bezyazeekov, P.; Bonvech, E.; Borodin, A.; Brückner, M.; Bulan, A.; Chernov, D.; Chiavassa, A.; Dyachok, A.; et al. TAIGA—An Innovative Hybrid Array for High Energy Gamma Astronomy, Cosmic Ray Physics and Astroparticle Physics. Phys. At. Nucl. 2021, 84, 362. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.A.; An, Q.; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33. [Google Scholar] [CrossRef]
- Aharonian, F.A.; An, Q.; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Construction and On-site Performance of the LHAASO WFCTA Camera. Eur. Phys. J.C. 2021, 81, 657. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzoyan, R. Technological Novelties of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Imaging Atmospheric Cherenkov Telescopes. Universe 2022, 8, 219. https://doi.org/10.3390/universe8040219
Mirzoyan R. Technological Novelties of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Imaging Atmospheric Cherenkov Telescopes. Universe. 2022; 8(4):219. https://doi.org/10.3390/universe8040219
Chicago/Turabian StyleMirzoyan, Razmik. 2022. "Technological Novelties of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Imaging Atmospheric Cherenkov Telescopes" Universe 8, no. 4: 219. https://doi.org/10.3390/universe8040219
APA StyleMirzoyan, R. (2022). Technological Novelties of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Imaging Atmospheric Cherenkov Telescopes. Universe, 8(4), 219. https://doi.org/10.3390/universe8040219