Modeling of Magnetospheres of Terrestrial Exoplanets in the Habitable Zone around G-Type Stars
Abstract
:1. Introduction
2. Model Description
3. Numerical Results
- (a)
- rmp = 8RER2 = 0.7 rmp = 5.6 RplBt = 2B0Rpl3/rmp3 = 2B0/83 = 2 × 3.1 × 104 nT/83 = 6.2 × 104 nT/512 = 620 × 102 nT/512 = 121 nT
- (b)
- rmp = 16 RER2 = 0.7 rmp = 11.2 RplBt = 2B0Rpl3/rmp3 = 620 × 102 nT/163 = 620 × 102 nT/4096 = 15 nT.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, B.E. Astrospheres and solar-like stellar winds. Living Rev. Sol. Phys. 2004, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belenkaya, E.; Alexeev, I.; Khodachenko, M.; Panchenko, M.; Blokhina, M. Stellar wind magnetic field influence on the exoplanet’s magnetosphere. In Proceedings of the European Planetary Science Congress, Rome, Italy, 19–24 September 2010; EPSC Abstracts. Volume 5, p. EPSC2010-72. [Google Scholar]
- Khodachenko, M.L.; Sasunov, Y.; Arkhypov, O.; Alekseev, I.; Belenkaya, E.; Lammer, H.; Kislyakova, K.; Odert, P.; Leitzinger, M.; GЁudel, M. Stellar CME activity and its possible influence on exoplanets’ environments: Importance of magnetospheric protection. In Nature of Prominences and Their Role in Space Weather Proceedings IAU Symposium No. 300; Schmieder, B., Malherbe, J.-M., Wu, S.T., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- McLeod, M.; Oklopčić, A. Stellar wind confinement of evaporating exoplanet Atmospheres and its signatures in 1083 nm observations. Astrophys. J. 2022, 926, 226. [Google Scholar] [CrossRef]
- Cassinelli, J.P. Stellar winds. Ann. Rev. Astron. Astrophys. 1979, 17, 275–308. [Google Scholar] [CrossRef]
- Vink, J.S. The theory of stellar winds. arXiv 2011, arXiv:1112.0952. [Google Scholar] [CrossRef]
- Johnstone, C.P.; Güdel, M.; Lüftinger, T.; Toth, G.; Brott, I. Stellar winds on the main-sequence I. Wind model. Astron. Astrophys. 2015, 577, A27. [Google Scholar] [CrossRef] [Green Version]
- Reda, R.; Giovannelli, L.; Alberti, T.; Berrilli, F.; Bertello, L.; del Moro, D.; di Mauro, M.P.; Giobbi, P.; Penza, V. The exoplanetary magnetosphere extension in Sun-like stars based on the solar wind—Solar UV relation. arXiv 2022, arXiv:2203.01554. [Google Scholar] [CrossRef]
- Nichols, J.D.; Milan, S.E. Stellar wind–magnetosphere interaction at exoplanets: Computations of auroral radio powers. Mon. Not. R. Astron. Soc. 2016, 461, 2353–2366. [Google Scholar] [CrossRef] [Green Version]
- Carolan, S.; Vidotto, A.A.; Loesch, C.; Coogan, P. The evolution of Earth’s magnetosphere during the solar main sequence. Mon. Not. R. Astron. Soc. 2019, 489, 5784–5801. [Google Scholar] [CrossRef] [Green Version]
- Zarka, P.; Treumann, R.A.; Ryabov, B.P.; Ryabov, V.B. Magnetically-Driven Planetary Radio Emissions and Application to Extrasolar Planets. Astrophys. Space Sci. 2001, 277, 293–300. [Google Scholar] [CrossRef]
- Zarka, P. Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 2007, 55, 598–617. [Google Scholar] [CrossRef]
- Cowley, S.W.H. Asymmetry effects associated with the X component of the IMF in a magnetically open magnetosphere. Planet. Space Sci. 1981, 29, 809–818. [Google Scholar] [CrossRef]
- Cowley, S.W.H.; Morelli, J.P.; Lockwood, M. Dependence of convective flows and particle precipitation in the high-latitude dayside ionosphere on the x and y components of the interplanetary magnetic field. J. Geophys. Res. 1991, 96, 5557–5564. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.; Newell, P.T.; Sibeck, D.G.; Meng, C.-I.; Brittnacher, M.; Parks, G. Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. 2001, 106, 5799–5810. [Google Scholar] [CrossRef] [Green Version]
- Shue, J.-H.; Newell, P.T.; Liou, K.; Meng, C.-I. Influence of interplanetary magnetic field on global auroral patterns. J. Geophys. Res. 2001, 106, 5913–5926. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Wang, C.; Hu, Y.Q.; Kan, J.R.; Yang, Y.F. Simulations of observed auroral brightening caused by solar wind dynamic pressure enhancements under different interplanetary magnetic field conditions. J. Geophys. Res. 2011, 116, A06217. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.-J.; Yang, H.-G.; Han, D.-S.; Huang, D.-H.; Zhang, B.-C.; Hu, H.-Q.; Liu, R.-Y. Dayside auroral emissions controlled by IMF: A survey for dayside auroral excitation at 557.7 and 630.0 nm in Ny-Ǻlesund, Svalbard. J. Geophys. Res. 2012, 117, A02201. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.F.; Lu, J.Y.; Wang, J.-S.; Peng, Z.; Zhou, L. Influence of interplanetary magnetic field and solar windon auroral brightness in different regions. J. Geophys. Res. Space Phys. 2013, 118, 209–217. [Google Scholar] [CrossRef]
- See, V.; Jardine, M.; Vidotto, A.A.; Petit, P.; Marsden, S.C.; Jeffers, S.V.; de Nascimento, J.D., Jr. The effects of stellar winds on the magnetospheres and potential habitability of exoplanets. Astron. Astrophys. 2014, 570, A99. [Google Scholar] [CrossRef] [Green Version]
- Alexeev, I.I.; Belenkaya, E.S.; Kalegaev, V.V.; Lyutov, Y.G. Electric fields and field-aligned current generation in the magnetosphere. J. Geophys. Res. 1993, 98, 4041–4051. [Google Scholar] [CrossRef]
- Alexeev, I.I. The penetration of interplanetary magnetic and electric fields into the magnetosphere. J. Geomag. Geoelectr. 1986, 38, 1199–1221. [Google Scholar] [CrossRef] [Green Version]
- Shue, J.-H.; Song, P.; Russell, C.T.; Chao, J.K.; Yang, Y.-H. Toward predicting the position of the magnetopause within geosynchronous orbit. J. Geophys. Res. 2000, 105, 2641–2656. [Google Scholar] [CrossRef]
- Joy, S.P.; Kivelson, M.G.; Walker, R.J.; Khurana, K.K.; Russell, C.T.; Ogino, T. Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 2002, 107, 1309. [Google Scholar] [CrossRef] [Green Version]
- Winslow, R.; Anderson, B.; Johnson, C.; Slavin, J.A.; Korth, H.; Purucker, M.E.; Baker, D.N.; Solomon, S.C. Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. J. Geophys. Res. 2013, 118, 5. [Google Scholar] [CrossRef]
- Johnson, C.L.; Purucker, M.E.; Korth, H.; Anderson, B.J.; Winslow, R.M.; al Asad, M.M.H.; Slavin, J.A.; Alexeev, I.I.; Phillips, R.J.; Zuber, M.T.; et al. MESSENGER observations of Mercury’s magnetic field structure. J. Geophys. Res. 2012, 117, E00L14. [Google Scholar] [CrossRef]
- Belenkaya, E.S.; Bobrovnikov, S.Y.; Alexeev, I.I.; Kalegaev, V.V.; Cowley, S.W.H. A model of Jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 2005, 53, 863–872. [Google Scholar] [CrossRef]
- Alexeev, I.I.; Belenkaya, E.S.; Slavin, J.A.; Korth, H.; Anderson, B.J.; Baker, D.N.; Boardsen, S.A.; Johnson, C.L.; Purucker, M.E.; Sarantos, M.; et al. Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus 2010, 209, 23–29. [Google Scholar] [CrossRef]
- Parker, E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 1958, 664–676. [Google Scholar] [CrossRef]
- Cranmer, S.R.; Saar, S.H. Testing a predictive theoretical model for the mass lost rate of cool stars. Astrophys. J. 2011, 741, 54. [Google Scholar] [CrossRef]
- Schield, M.A. Pressure balance between solar wind and magnetosphere. J. Geophys. Res. 1969, 74, 1275–1286. [Google Scholar] [CrossRef]
- Sibeck, D.G.; Lopez, R.E.; Roelof, E.C. Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res. 1991, 96, 5489–5495. [Google Scholar] [CrossRef]
- Shue, J.-H.; Chen, Y.-S.; Hsieh, W.-C.; Nowada, M.; Lee, B.S.; Song, P.; Russell, C.T.; Angelopoulos, V.; Glassmeier, K.H.; McFadden, J.P.; et al. Uneven compression levels of Earth’s magnetic fields by shocked solar wind. J. Geophys. Res. 2011, 116, A02203. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, A.A.; Gordeev, E.; Tsyganenko, N.A.; Šafránková, J.; Němeček, Z.; Šimůnek, J.; Sibeck, D.G.; Tóth, G.; Merkin, V.G.; Raeder, J. Do we know the actual magnetopause position for typical solar wind conditions? J. Geophys. Res. 2016, 121, 6493–6508. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, A.A.; Bogdanova, Y.V.; Branduardi-Raymont, G.; Sibeck, D.G.; Toth, G. Is the relation between the solarwind dynamic pressure and the magnetopause standoff distance so straightforward? Geophys. Res. Lett. 2020, 47, e2019GL086474. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Besser, B.P.; Zaitseva, S.A. Magnetopause stand-off distance in dependence on the magnetosheath and solar wind parameters. Ann. Geophys. 1998, 16, 388–396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belenkaya, E.S.; Alexeev, I.I.; Blokhina, M.S. Modeling of Magnetospheres of Terrestrial Exoplanets in the Habitable Zone around G-Type Stars. Universe 2022, 8, 231. https://doi.org/10.3390/universe8040231
Belenkaya ES, Alexeev II, Blokhina MS. Modeling of Magnetospheres of Terrestrial Exoplanets in the Habitable Zone around G-Type Stars. Universe. 2022; 8(4):231. https://doi.org/10.3390/universe8040231
Chicago/Turabian StyleBelenkaya, Elena S., Igor I. Alexeev, and Marina S. Blokhina. 2022. "Modeling of Magnetospheres of Terrestrial Exoplanets in the Habitable Zone around G-Type Stars" Universe 8, no. 4: 231. https://doi.org/10.3390/universe8040231
APA StyleBelenkaya, E. S., Alexeev, I. I., & Blokhina, M. S. (2022). Modeling of Magnetospheres of Terrestrial Exoplanets in the Habitable Zone around G-Type Stars. Universe, 8(4), 231. https://doi.org/10.3390/universe8040231