Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015
Abstract
:1. Introduction
2. Data and Model
2.1. TIMED/SABER Observations
2.2. TIEGCM Simulations
3. Results
3.1. Solar Radiation and Interplanetary and Geomagnetic Conditions
3.2. NO Cooling Variations on the Dayside
3.2.1. Peak NO Cooling Rate
3.2.2. Peak NO Cooling Altitude
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuller-Rowell, T.J.; Codrescu, M.V.; Rishbeth, H.; Moffett, R.J.; Quegan, S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1996, 101, 2343–2353. [Google Scholar] [CrossRef]
- Prölss, G.W. Storm-induced changes in the thermospheric composition at middle latitudes. Planet. Space Sci. 1987, 35, 807–811. [Google Scholar] [CrossRef]
- Forbes, J.M.; Lu, G.; Bruinsma, S.; Nerem, S.; Zhang, X. Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J. Geophys. Res. 2005, 110, A12S27. [Google Scholar] [CrossRef]
- Sutton, E.K.; Forbes, J.; Nerem, R.S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J. Geophys. Res. 2005, 110, A09S40. [Google Scholar] [CrossRef]
- Bruinsma, S.; Forbes, J.M.; Nerem, R.S.; Zhang, X. Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J. Geophys. Res. 2006, 111, A06303. [Google Scholar] [CrossRef]
- Lei, J.; Thayer, J.P.; Burns, A.G.; Lu, G.; Deng, Y. Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm. J. Geophys. Res. 2010, 115, A05303. [Google Scholar] [CrossRef]
- Maruyama, T.; Ma, G.; Nakamura, M. Signature of TEC storm on 6 November 2001 derived from dense GPS receiver network and ionosonde chain over Japan. J. Geophys. Res. 2004, 109, A10302. [Google Scholar] [CrossRef]
- Lu, G.; Hagan, M.E.; Häusler, K.; Doornbos, E.; Bruinsma, S.; Anderson, B.J.; Korth, H. Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: An integrated data-model investigation. J. Geophys. Res. Space Phys. 2014, 119, 10358–10375. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wei, F.; Feng, X.; Guo, J.; Emery, B.A.; Zhao, X. Large ionospheric disturbances during a minor geomagnetic storm on 23 June 2000. Ann. Geophys. 2012, 55, 2. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Positive and negative ionospheric storms occurring during the 15 May 2005 geomagnetic superstorm. J. Geophys. Res. Space Phys. 2015, 120, 7822–7837. [Google Scholar] [CrossRef]
- Roble, R.G. Energetics of the mesosphere and thermosphere. In The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory; Geophysical Monograph Series; Johnson, R.M., Killeen, T.L., Eds.; AGU: Washington, DC, USA, 1995; Volume 87, pp. 1–21. [Google Scholar] [CrossRef]
- Barth, C.A. Nitric oxide in the lower thermosphere. Planet. Space Sci. 1992, 40, 315–336. [Google Scholar] [CrossRef]
- Sharma, R.D.; Dothe, H.; Duff, J.W. Model of the 5.3 μm radiance from NO during the sunlit terrestrial thermosphere. J. Geophys. Res. 1998, 103, 14753–14768. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Martin-Torres, F.J.; Crowley, G.; Kratz, D.P.; Funke, B.; Lu, G.; López-Puertas, M.; Russell, J.M.; Kozyra, J.; Mertens, C.; et al. Energy transport in the thermosphere during the solar storms of April 2002. J. Geophys. Res. 2005, 110, A12S25, Erratum in J. Geophys. Res. 2007, 112, A02303. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M.G.; Hunt, L.A.; Marshall, B.T.; Martin-Torres, J.; Mertens, C.J.; Russell, J.M.; Remsberg, E.E.; López-Puertas, M.; Picard, R.; Winick, J.; et al. Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res. 2010, 115, A03309. [Google Scholar] [CrossRef]
- Mlynczak, M.G.; Knipp, D.J.; Hunt, L.A.; Gaebler, J.; Matsuo, T.; Kilcommons, L.M.; Young, C.L. Space-based sentinels for measurement of infrared cooling in the thermosphere for space weather nowcasting and forecasting. Space Weather 2018, 16, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Mlynczak, M.G.; Hunt, L.A.; Woods, T.N.; Roble, R.G. On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res. 2010, 115, A05306. [Google Scholar] [CrossRef] [Green Version]
- Mlynczak, M.; Martin-Torres, F.J.; Russell, J.; Beaumont, K.; Jacobson, S.; Kozyra, J.; Lopez-Puertas, M.; Funke, B.; Mertens, C.; Gordley, L.; et al. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 2003, 30, 2100. [Google Scholar] [CrossRef] [Green Version]
- Siskind, D.E.; Barth, C.A.; Roble, R.G. The response of thermospheric nitric oxide to an auroral storm: 1. Low and middle latitudes. J. Geophys. Res. 1989, 94, 885. [Google Scholar] [CrossRef]
- Lei, J.; Burns, A.G.; Thayer, J.P.; Wang, W.; Mlynczak, M.G.; Hunt, L.A.; Dou, X.; Sutton, E. Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. J. Geophys. Res. 2012, 117, A03314. [Google Scholar] [CrossRef] [Green Version]
- Sheng, C.; Lu, G.; Solomon, S.C.; Wang, W.; Doornbos, E.; Hunt, L.A.; Mlynczak, M.G. Thermospheric recovery during the 5 April 2010 geomagnetic storm. J. Geophys. Res. Space Phys. 2017, 122, 4588–4599. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lei, J. A numerical study of the thermospheric overcooling during the recovery phases of the October 2003 storms. J. Geophys. Res. Space Phys. 2018, 123, 5704. [Google Scholar] [CrossRef]
- Bharti, G.; Sunil Krishna, M.V.; Bag, T.; Jain, P. Storm time variation of radiative cooling by nitric oxide as observed by TIMEDSABER and GUVI. J. Geophys. Res. Space Phys. 2018, 123, 1500–1514. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W. Understanding the behaviors of thermospheric nitric oxide cooling during the 15 May 2005 geomagnetic storm. J. Geophys. Res. Space Phys. 2019, 124, 2113–2126. [Google Scholar] [CrossRef]
- Bag, T. Diurnal variation of height-distributed nitric oxide radiative emission during November 2004 superstorm. J. Geophys. Res. Space Phys. 2018, 123, 6727–6736. [Google Scholar] [CrossRef]
- Bag, T.; Li, Z.; Rout, D. SABER observation of storm-time hemispheric asymmetry in nitric oxide radiative emission. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028849. [Google Scholar] [CrossRef]
- Mlynczak, M.G. Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv. Space Res. 1997, 20, 1177–1183. [Google Scholar] [CrossRef]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.; Esplin, R. An overview of the SABER experiment and preliminary calibration results. In Paper Presented at SPIE Conference on Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III; SPIE: Denver, CO, USA, 1999; Volume 3756. [Google Scholar] [CrossRef]
- Flynn, S.; Knipp, D.J.; Matsuo, T.; Mlynczak, M.; Hunt, L. Understanding the global variability in thermospheric nitric oxide flux using empirical orthogonal functions (EOFs). J. Geophys. Res. Space Phys. 2018, 123, 4150–4170. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C.; Richmond, A.D.; Dickinson, R.E. A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 1988, 15, 1325–1328. [Google Scholar] [CrossRef]
- Richmond, A.D.; Ridley, E.C.; Roble, R.G. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 1992, 19, 601–604. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.G.; Emery, B.A.; Foster, B.; Lu, G.; Maute, A.; Richmond, A.D.; Roble, R.G.; Solomon, S.C.; Wang, W. The NCAR TIE-GCM: A community Model of the Coupled Thermosphere/Ionosphere System. In Modeling the Ionosphere–Thermosphere System; Geophysical Monograph Series; Huba, J., Schunk, R., Khazanov, G., Eds.; John Wiley Sons: Washington, DC, USA, 2014; pp. 73–84. [Google Scholar] [CrossRef]
- Richards, P.G.; Fennelly, J.A.; Torr, D.G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. Space Phys. 1994, 99, 8981–8992. [Google Scholar] [CrossRef]
- Heelis, R.A.; Lowell, J.K.; Spiro, R.W. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. Space Phys. 1982, 87, 6339–6345. [Google Scholar] [CrossRef]
- Weimer, D.R. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J. Geophys. Res. Space Phys. 2005, 110, A05306. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating tides in the middle and upper atmosphere excited by latent heat releases. J. Geophys. Res. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Kockarts, G. Nitric oxide cooling in the terrestrial thermosphere. Geophys. Res. Lett. 1980, 7, 137–140. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W.; Shi, Y.; Wang, M.; Su, Y.; Li, J. An EOFs Study of Thermospheric Nitric Oxide Flux Based on TIEGCM simulations. J. Geophys. Res. Space Phys. 2019, 124. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties. Sol. Phys. 2010, 264, 189–237. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.; Kamide, Y.; Kroehl, H.; Rostoker, G.; Tsurutani, B.; Vasyliunas, V.M. What is a geomagneitc storm? J. Geophys. Res. 1994, 99, 5771. [Google Scholar] [CrossRef]
- Li, Z.; Knipp, D.; Wang, W.; Sheng, C.; Qian, L.; Flynn, S. A comparison study of NO cooling between TIMED/SABER measurements and TIEGCM simulations. J. Geophys. Res. Space Phys. 2018, 123, 8714–8729. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Sun, M.; Li, J.; Zhang, K.; Zhang, H.; Xu, X.; Zhao, X. Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015. Universe 2022, 8, 236. https://doi.org/10.3390/universe8040236
Li Z, Sun M, Li J, Zhang K, Zhang H, Xu X, Zhao X. Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015. Universe. 2022; 8(4):236. https://doi.org/10.3390/universe8040236
Chicago/Turabian StyleLi, Zheng, Meng Sun, Jingyuan Li, Kedeng Zhang, Hua Zhang, Xiaojun Xu, and Xinhua Zhao. 2022. "Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015" Universe 8, no. 4: 236. https://doi.org/10.3390/universe8040236
APA StyleLi, Z., Sun, M., Li, J., Zhang, K., Zhang, H., Xu, X., & Zhao, X. (2022). Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015. Universe, 8(4), 236. https://doi.org/10.3390/universe8040236