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Abstract: The vacuum transition probabilities for a Friedmann–Lemaître–Robertson–Walker universe
with positive curvature in Hořava–Lifshitz gravity in the presence of a scalar field potential in the
Wentzel–Kramers–Brillouin approximation are studied. We use a general procedure to compute such
transition probabilities using a Hamiltonian approach to the Wheeler–DeWitt equation presented in a
previous work. We consider two situations of scalar fields, one in which the scalar field depends on
all the spacetime variables and another in which the scalar field depends only on the time variable.
In both cases, analytic expressions for the vacuum transition probabilities are obtained, and the
infrared and ultraviolet limits are discussed for comparison with the result obtained by using general
relativity. For the case in which the scalar field depends on all spacetime variables, we observe that
in the infrared limit it is possible to obtain a similar behavior as in general relativity, however, in
the ultraviolet limit the behavior found is completely opposite. Some few comments about possible
phenomenological implications of our results are given. One of them is a plausible resolution of
the initial singularity. On the other hand, for the case in which the scalar field depends only on the
time variable, the behavior coincides with that of general relativity in both limits, although in the
intermediate region the probability is slightly altered.

Keywords: quantum gravity; Hořava–Lifshitz theory; early universe; vacuum transitions

1. Introduction

The quantum theory of the gravitational phenomena, or quantum gravity, is a theory
in construction, which is necessary in order to shed light on the quantum effects of gravita-
tional systems. Among the problems that require the uses of quantum gravity is the study
of the microscopic origin of thermodynamic properties of black holes and those describing
some cosmological phenomena in the very early universe. Another important problem
is the study of the vacuum decay and the transition between vacua at early stages of the
evolution of the universe. Euclidean methods have been proposed in order to compute
this transition probability by using the path integral approach [1–3]. One of the salient
features of this approach is the prediction of transitions between open universes [3]. Later
an alternative procedure to compute these transitions using the Hamiltonian approach was
developed [4,5]. This method incorporates the Arnowitt, Deser and Misner (ADM) Hamil-
tonian formalism of general relativity (GR) [6–8]. The vacuum is implemented through
a cosmological constant, which is interpreted as the vacuum energy, and the transitions
are carried out through a bubble nucleation [9]. In this approach, the transitions between
Minkowski and de Sitter spaces are allowed. Very recently, an approach [4,5] was further
developed by Cespedes et al. [10] where the vacuum is implemented by the minima of
a potential of a scalar field in the curved space. In this reference, it was computed the
general vacuum decay transitions in the Hamiltonian formalism in Wheeler’s superspace
and some examples were implemented in the minisuperspace formalism for the Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmology. In this kind of model, it was shown that
the transitions between closed universes are allowed, contrary to the Euclidean approxima-
tion of Coleman and De Luccia [3]. Later, the formalism of [10] was extended and used to
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obtain the vacuum decay transition probabilities for some examples of transitions between
anisotropic universes [11].

On the other hand, it is well known that GR is not a renormalizable theory. Thus,
its application to very small distances such as those associated with the early universe is
expected to fail. Instead of that, an important proposal to describe the quantum effects
of gravity is the Hořava–Lifshitz (HL) theory [12] (for some recent reviews, see [13–16]
and references therein). Hořava–Lifshitz theory is a theory with an anisotropic scaling
of spacetime and, consequently, it is not Lorentz invariant at high energies (ultraviolet
(UV)). However, it is a well-behaved description at small distances due to the incorporation
of higher order derivative terms in the spatial components of the curvature to the usual
Einstein–Hilbert action, giving rise to a ghost-free theory. Thus, this theory is more appro-
priate to describe the quantum effects of the gravitational field, such as the vacuum decay
processes in the early stages of the universe evolution.

It is important to remark that HL theory is a theory whose low energy limit which
connects with GR is troublesome. The parameters of the theory are the critical exponent z
and the foliation parameter λ. This last parameter is associated with a restricted foliation
compatible with the Lifshitz scaling. In the low energy limit z→ 1, the Lorentz invariance
is recovered. In the infrared (IR) limit, the z → 1 limit is accompanied by the limit
λ → 1, where the full diffeomorphisms symmetry is recovered and, consequently, the
usual foliation of the ADM formalism is regained. In addition, the higher order derivative
terms in the action have to be properly neglected in order to obtain the correct limit.
As we mentioned before, the GR limit is problematic since it remains an additional degree
of freedom (in some cases interpreted as dark matter) which leads to a perturbative IR
instability [14,16–18]. The non-projectable version of the HL theory has the possibility
to remove this unphysical degree of freedom. Thus, it represents an advantage over the
projective theory. However, in the case in which one is concerned with the Wheeler–DeWitt
(WDW) equation, both approaches give the same result. In consequence, we will work with
the projectable version.

Since HL theory represents an improvement over GR in the high energy regime,
it is natural that quantum gravity aspects of the theory are of great interest. Indeed,
canonical quantization of the theory has been extensively studied. For example, some of
the papers describing solutions for Hořava–Lifshitz’s gravity in quantum cosmology in the
minisuperspace are [19–25].

As we mentioned before, HL gravity is a UV completion of GR, thus, it is a more
suitable arena to study the vacuum transitions in the presence of a scalar field potential.
This proposal will be carried out in the present article. In order to do that, we use the
Hamiltonian formalism of the HL theory, in particular the WDW equation will be discussed
in this context following [10,11]. We will particularly focus on the closed FLRW universe
and study two types of scalar fields. First, since the anisotropic scaling of spacetime
variables is a key ingredient of HL theory, we will consider a scalar field which is allowed
to depend on all spacetime coordinates. Lastly, we will also consider a scalar field which
only depends on the time variable as it is more usual on the cosmological models.

This work is organized as follows. In Section 2 we give a brief review of the general
procedure presented in [11] to study vacuum transition probabilities between two minima
of a scalar field potential in the minisuperspace following the formalism of [10]. We will
show that this formalism implemented for GR in [10,11] is sufficient to study vacuum
transitions in a more general theory, such as HL theory. Section 3 is devoted to obtaining
the WDW equation in the context of gravity coupled with matter. In Section 4, we study the
vacuum transitions in HL gravity for the scalar field depending on all spacetime variables.
The IR and UV limits for the transition probabilities are discussed and compared to the GR
result. Then, in Section 5, we study the transition probabilities for the scalar field depending
only on the time variable and we also compare the result to the GR one. Finally, in Section 6,
we give our conclusions and final remarks.
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2. Vacuum Transitions for a Scalar Field

In this section, we review the procedure to obtain a general expression for the tran-
sition probability between two minima of the potential of a scalar field by obtaining a
semi-classical solution to the WDW equation using a WKB ansatz described in Ref. [11].
We follow closely the notation and conventions given in that reference. It is a remarkable
point to see that this procedure is enough to implement theories more general than GR
such as the HL gravity.

We start by using the well-known ADM-formulation of GR [6–8] and consider the
Hamiltonian constraint expressed in the general form:

H =
1
2

GMN(Φ)πMπN + f [Φ] ≈ 0, (1)

where we take the coordinates in Wheeler’s superspace to be ΦM with M, N = 1, . . . , n
(which has in general an infinite number of dimensions). These variables are the com-
ponents of the three-dimensional metric, the matter field variables, etc. and are denoted
collectively as Φ. Their corresponding canonical momenta are πM and the inverse metric
in such space is GMN . Finally, f [Φ] is a function that represents all other additional terms,
such as the 3R term and the potential terms of scalar field in the WDW equation. The
general WDW equation that we are going to consider is obtained after carrying out the
standard canonical quantization procedure of the Hamiltonian constraint. Thus performing
this procedure we obtain:

HΨ(Φ) =

[
− h̄2

2
GMN(Φ)

δ

δΦM
δ

δΦN + f [Φ]

]
Ψ[Φ] = 0, (2)

where Ψ[Φ] represents the wave functionial which depends on all fields of the theory.
We are interested in obtaining a semi-classical result, therefore, following [10,11] we

consider an ansatz of the following WKB form Ψ[Φ] = exp
{

i
h̄ S[Φ]

}
, where S has an

expansion in h̄ in the usual form:

S[Φ] = S0[Φ] + h̄S1[Φ] +O(h̄2). (3)

Inserting Equation (3) into Equation (2) and focusing only on the term at the lowest
order in h̄ we obtain:

1
2

GMN δS0

δΦM
δS0

δΦN + f [Φ] = 0. (4)

On a certain slice of the space of fields a set of integral curves can be specified in
the form:

C(s)
dΦM

ds
= GMN δS0

δΦN , (5)

where s is the parameter of these curves. The classical action appearing in the previous
equation has the form:

S0[Φs] = −2
∫ s ds′

C(s′)

∫
X

f [Φs′ ]. (6)

It is easy to see that Equations (4) and (5) lead to:

GMN
dΦM

ds
dΦN

ds
= −2 f [Φs]

C2(s)
, (7)

where GMN satisfies the standard relation GPMGMN = δN
P .

We note that we have a system of equations for the n + 1 variables:
(

dΦM

ds , C2(s)
)

defined by (5) and (7). Thus, we can obtain a solution for such a system and then substitute
the results back into Equation (6) to obtain the classical action. Therefore, in principle,
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we have enough information to compute the classical action, and consequently, the wave
functionial to first order in h̄ regardless of the number of fields in superspace.

Under the ansatz that all the fields ΦM on the superspace depend only on the time
variable, we can obtain a general solution to the system in terms of the volume Vol(X) of
the spatial slice X of the form:

C2(s) = −2Vol2(X)

f [Φ]
GMN ∂ f

∂ΦM
∂ f

∂ΦN , (8)

dΦM

ds
=

f [Φ]

Vol(X)

GMN ∂ f
∂ΦN

GLO ∂ f
∂ΦL

∂ f
∂ΦO

. (9)

In this article, we will consider gravity coupled to a scalar field provided by a potential
which has at least a false and a true minima. Moreover, we will study wave functionals
such that the scalar field produces a transition between two minima of the potential.

One can use these wave functionals in order to compute the transition probability
with the standard interpretation that these transitions are due to a tunneling between the
two minima of the potential involved in the transition. In order to be more precise, in the
semi-classical approximation, the probability to produce a transition between two vacua at
φA and φB is the decay rate which can be written as:

P(A→ B) =

∣∣∣∣∣Ψ(ϕI
0, φB; ϕI

m, φA)

Ψ(ϕI
0, φA; ϕI

m, φA)

∣∣∣∣∣
2

=

∣∣∣∣∣ βe
i
h̄ S0(ϕI

0,φB ;ϕI
m ,φA) + χe−

i
h̄ S0(ϕI

0,φB ;ϕI
m ,φA)

βe
i
h̄ S0(ϕI

0,φA ;ϕI
m ,φA) + χe−

i
h̄ S0(ϕI

0,φA ;ϕI
m ,φA)

∣∣∣∣∣
2

=
∣∣∣e−Γ

∣∣∣2, (10)

where ϕI denotes all other fields defined on the superspace except the scalar field,
Ψ(ϕI

0, φB, ϕI
m, φA) is the wave functional associated to the path which starts in ϕI(s = 0) = ϕI

0,
and where the scalar field takes the value φB. Moreover, the path ends in ϕI(s = sM) = ϕI

m,
where the scalar field is denoted by φA. Furthermore, β and χ are the constants of the linear
superposition. In the previous equation, we will consider just the dominant contribution of
the exponential terms. Then, in the WKB approximation at first order Γ yields:

± Γ =
i
h̄

S0(ϕI
0, φB; ϕI

m, φA)−
i
h̄

S0(ϕI
0, φA; ϕI

m, φA), (11)

where the choice of the signs ± indicates the dominant terms in the expression (10). Thus,
we finally arrive at the transition probability given by:

P(A→ B) = exp[−2Re(Γ)] = exp
{
±2Re

[
i
h̄

S0(ϕI
0, φB; ϕI

m, φA)−
i
h̄

S0(ϕI
0, φA; ϕI

m, φA)

]}
. (12)

It is worth mentioning that the formalism developed in [10,11], originally for GR, is
general enough to include other gravitational theories, since it only depends on a Hamilto-
nian constraint written in the general form (1). In the next sections, we will show that it
can perfectly include higher derivative generalizations of GR as the HL theory. It would be
interesting to study to what extent this formalism can be used for more general theories.

3. Wheeler–DeWitt Equation for Hořava–Lifshitz Gravity Coupled to Matter

In this section, we will discuss the action in HL theory, as well as the action that
considers the coupling to a scalar field. We will consider a metric describing an FLRW
universe and a scalar field depending on the time variable, as well as the spatial variables,
and we will obtain the WDW equation for such a system. Although in the context of
cosmology it is usual to use a time-dependent field only, in this case, we will allow the
scalar field to also depend on the spatial variables since the anisotropic scaling of both
sets of variables is a key ingredient for the theory. This type of dependence has been used
previously in the context of cosmology for HL. For example, it was used in Ref. [26] to study
perturbations coming from a scalar field. However, for completeness and correspondence
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with the cosmological models, we will also study the case when the field will only depend
on the time coordinate in Section 5.

Let us begin by considering the gravitational part of the general action in projectable
HL gravity without a cosmological constant and without detailed balance. This action can
be written as [19,27,28]:

SHL =
M2

p
2

∫
dtd3xN

√
h
[

KijKij − λK2 + R− 1
M2

p

(
g2R2 + g3RijRij) − 1

M4
p

(
g4R3 + g5R

(
RijRij)+ g6Ri

jR
j
kRk

i + g7RD2R + g8DiRjkDiRjk
)]

, (13)

where N is the lapse function, Rij the Ricci tensor with i, j = 1, 2, 3 the spatial indices, R the
Ricci scalar, Kij the extrinsic curvature, Mp the Planck mass, D denotes covariant derivative
with respect to the three-metric hij and h denotes its determinant, all gn (n = 2, . . . , 8) are
positive dimensionless running coupling constants and the parameter λ runs under the
renormalization group flow. GR is, in principle, obtained in the limit λ → 1 and gn → 0.
However, this is not actually fulfilled because of the perturbative IR instability and the
presence of an unphysical degree of freedom as mentioned in the introduction.

Let us take the FLRW metric with positive curvature that describes a closed homoge-
neous and isotropic universe. This metric is written as:

ds2 = −N2(t)dt2 + a2(t)
[
dr2 + sin2 r

(
dθ2 + sin2 θdψ2

)]
, (14)

where, as usual, 0 ≤ r ≤ π, 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π. In the context of the ADM
formalism, we note that for this metric:

N = N(t), Ni = 0, (hij) = a2(t)diag
(

1, sin2 r, sin2 r sin2 θ
)

, (15)

and therefore, we will work with a projectable version of HL gravity. Substituting these
values in the action (13) we obtain that for this metric the gravitational action reads:

SHL = 2π2
∫

dtN

[
−

3(3λ− 1)M2
pa

2N2 ȧ2 + 3M2
pa− 6

a
(3g2 + g3) −

12
a3M2

p
(9g4 + 3g5 + g6)

]
, (16)

where a dot stands for the derivative with respect to the time variable. The integral for the
spatial slice has been performed, that is:

Vol(X) =
∫ π

r=0

∫ π

θ=0

∫ 2π

ψ=0
sin2 r sin θdrdθdψ = 2π2. (17)

In order to couple a scalar field φ(t, xi) (where xi denotes collectively the three spatial
variables) to this theory we need to consider actions that are compatible with the anisotropic
scaling symmetries of the theory and UV renormalizability. In fact, the general scalar action
in HL gravity is found to contain up to six order derivatives. This action is written in the
form [29]:

Sm =
1
2

∫
dtd3x

√
hN
[
(3λ− 1)

2N2

(
φ̇− Ni∂iφ

)2
+ F(φ)

]
, (18)

where the function F(φ) is given by:

F(φ) = φ
(

c1∆φ− c2∆2φ + c3∆3φ
)
−V(φ), (19)

with ∆ denoting the three-metric laplacian and V(φ) is the potential for the scalar field.
The constant c1 is the velocity of light in the IR limit, whereas the two other constants are
related to the energy scale M as:

c2 =
1

M2 , c3 =
1

M4 . (20)
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There are three more possible terms that can be part of (19) constructed as products of
derivatives, but we restrict ourselves to the terms just described.

Since the three-metric derived from the FLRW metric is just a scale factor times the
metric of the three-sphere S3, we can use the spherical harmonic functions defined in this
space to expand our scalar functions [30,31]. These functions can be defined in our spatial
three-metric as eigenfunctions of the laplacian of the form:

∆Ynlm(xi) = −n(n + 2)
a2 Ynlm(xi), (21)

where n is an integer. They obey the orthonormality condition:

1
a3

∫ √
hYnlm(xi)Y∗n′ l′m′(xi)d3x = δnn′δll′δmm′ . (22)

Since these functions form a complete basis, we can expand any scalar function defined
on the sphere in terms of them as:

f (xi) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

αnlmYnlm(xi) = ∑
{n,l,m}

αnlmYnlm(xi). (23)

Therefore, using this basis, we can expand the scalar field as:

φ(t, xi) = ∑
{n,l,m}

φnlm(t)Ynlm(xi), (24)

where the fields φnlm(t) are real functions depending only on the time variable. We can
also expand the scalar field potential as:

V(φ) = ∑
{n,l,m}

Vnlm(t)Ynlm(xi), (25)

where the function Vnlm(t) depends on all the functions φnlm(t) in general. Substituting (24)
and (25) back into the action (18), we observe that for the FLRW metric the field part of the
action is written as:

Sm = ∑
{n,l,m}

1
2

∫
dt
{

3λ− 1
2N

a3φ̇2
nlm − Na

[
c1βn +

c2β2
n

a2 +
c3β3

n
a4

]
φ2

nlm −Na3γnlmVnlm

}
, (26)

where βn = n(n + 2) and

γnlm =
∫ π

r=0

∫ 2π

ψ=0

∫ π

θ=0
sin2 r sin θYnlm(r, θ, ψ)drdψdθ, (27)

are constants. Finally, by considering both actions (16) and (26), we observe that the full
lagrangian describing HL gravity coupled to a scalar field is:

L = 2π2N
[
− 3M2

p ȧ2a
2N2 (3λ− 1) + 3M2

pa− 6
a (3g2 + g3)− 12

a3 M2
p
(9g4 + 3g5 + g6)

]
+∑{n,l,m}

{
3λ−1

4N a3φ̇2
nlm −

Na
2

[
c1βn +

c2β2
n

a2 + c3β3
n

a4

]
φ2

nlm −
Na3

2 γnlmVnlm

}
.

(28)

We observe, in this case, that the degrees of freedom are the fields {a, φnlm}. Their
canonical momenta turn out to be:

πa = −
6π2M2

p(3λ− 1)

N
aȧ, πφnlm =

3λ− 1
2N

a3φ̇nlm, (29)
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and, as it is usual, the lapse function is non-dynamical since πN = 0. Therefore, we obtain
that the Hamiltonian constraint takes the form:

H = N
{
− π2

a
12π2 M2

p(3λ−1)a
+ ∑{n,l,m}

π2
φnlm

(3λ−1)a3

+2π2
[
−3M2

pa + 6
a (3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6)

]
+ 1

2 ∑{n,l,m}

[(
c1βn +

c2
a2 β2

n +
c3
a4 β3

n

)
aφ2

nlm + a3γnlmVnlm

]}
' 0.

(30)

4. Vacuum Transitions in Hořava–Lifshitz Gravity

Now that we have obtained the Hamiltonian constraint of the HL gravity coupled to
a scalar field depending on all spacetime variables, let us study the probability transition
between two vacua of the scalar field potential. We note that the form of the Hamiltonian
constraint (30) as obtained in the previous section is of the same general form as the one
considered in (1) taking the coordinates on superspace to be {a, φnlm}. The inverse metric
is given by:

(GMN) = diag

(
− 1

6π2M2
p(3λ− 1)a

,
2

(3λ− 1)a3 1nlm

)
, (31)

where 1nlm denotes a vector with length equal to all the possible values that the set {n, l, m}
can have and with 1 in all its entries. In this case then we also have:

f (a, φnlm, Vnlm) = 2π2
[
−3M2

pa + 6
a (3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6)

]
+ 1

2 ∑{n,l,m}

[(
c1βn +

c2
a2 β2

n +
c3
a4 β3

n

)
aφ2

nlm + a3γnlmVnlm

]
.

(32)

Therefore, the general procedure to obtain a solution of the WDW equation presented
in Section 2 is applicable to the WDW equation obtained after quantizing the Hamilto-
nian constraint (30) in HL gravity. In order to study transitions between two vacua of a
scalar field potential, we consider that all fields Vnlm appearing in the expansion of the
potential (25) have the same minima, namely, one false minimum at φA

nlm and one true
minimum at φB

nlm, and therefore, the two minima of the scalar field φ(t, xi) comes only from
its time dependence. Therefore, the transition probability in the semi-classical approach
between these two minima is given by Equation (12).

Following [11], we can choose the parameter s such that for the interval [0, s̄− δs],
where s = 0 is the initial value, the field remains close to its value at the true minimum φB,
and for the interval [s̄ + δs, sm] the field remains very close to its value at the false minimum
φA, that is, we choose the parameter s such that:

φ(s) ≈
{

φB, 0 < s < s̄− δs,
φA, s̄ + δs < s < sM.

(33)

However, in this case, taking the expansion (24) and since the spherical harmonics are
an orthonormal set, the latter implies that:

φnlm(s) ≈
{

φB
nlm, 0 < s < s̄− δs,

φA
nlm, s̄ + δs < s < sM,

(34)

and similarly for the potentials

Vnlm(s) ≈
{

VB
nlm, 0 < s < s̄− δs,

VA
nlm, s̄ + δs < s < sM.

(35)
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Therefore, using the general form of the action (6) we obtain in this case:

S0

(
a0, φB

nlm; am, φA
nlm

)
= −4π2

[∫ s̄−δs

0

ds
C(s)

f
∣∣
φnlm=φB

nlm
+
∫ s̄+δs

s̄−δs

ds
C(s)

f +
∫ sm

s̄+δs

ds
C(s)

f
∣∣
φnlm=φA

nlm

]
, (36)

and
S0

(
a0, φA

nlm; am, φA
nlm

)
= −4π2

∫ sm

0

ds
C(s)

f
∣∣
φnlm=φA

nlm
. (37)

Consequently, the logarithm of the probability (11) is given in this case by:

±Γ = i
h̄

[
−4π2

∫ s̄−δs
0

ds
C(s) f

∣∣
φnlm=φB

nlm
+ 4π2

∫ s̄−δs
0

ds
C(s) f

∣∣
φnlm=φA

nlm

−4π2
∫ s̄+δs

s̄−δs
ds

C(s)

{
1
2 ∑{n,l,m}

[
a
(

c1βn +
c2
a2 β2

n +
c3
a4 β3

n

)(
φ2

nlm − (φA
nlm)

2)
+a3γnlm(Vnlm −VA

nlm)
]}]

.

(38)

We note that the last term of Equation (38) can be written as:

− 4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

1
2 ∑
{n,l,m}

a3γn,l,m(Vn,l,m −VA
nlm)

 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

a3
[
V0 −VA

0

]
, (39)

with a potential defined by

V0 =
1
2 ∑
{n,l,m}

γnlmVnlm. (40)

We note that this term has the same form as the one considered in Refs. [10,11]
regarding the portion of the integral in which the scalar field can vary, therefore, we can
also interpret this term as a tension term taking:

2π2 ā3T0 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

a3
[
V0 −VA

0

]
. (41)

Moreover, we note that the term that contains c1 in (38) can be written as:

− 4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

1
2 ∑
{n,l,m}

ac1βn

(
φ2

nlm − (φA
nlm)

2
) = −4π2i

∫ s̄+δs

s̄−δs

ds
C(s)

c1a
[
V1 −VA

1

]
, (42)

with
V1 =

1
2 ∑
{n,l,m}

βnφ2
nlm. (43)

Although this function has no minima in the points considered, it is a function of the
scalar fields that can be interpreted as a new effective potential with the form of a mass
term. Therefore, applying the same logic used in [11] to such terms, we can define a new
contribution for the tension term as:

2π2c1 āT1 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

c1a
[
V1 −VA

1

]
. (44)

Similarly, we define for the two remaining terms:

V2 =
1
2 ∑
{n,l,m}

β2
nφ2

nlm, V3 =
1
2 ∑
{n,l,m}

β3
nφ2

nlm, (45)

and the two contributions to the tension terms as:

2π2 c2

ā
T2 = −4π2i

∫ s̄+δs

s̄−δs

ds
C(s)

c2

a

[
V2 −VA

2

]
, (46)
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2π2 c3

ā3 T3 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

c3

a3

[
V3 −VA

3

]
. (47)

On the other hand, in order to do the two first integrals in (38) where all scalar fields
are constants, we use the general solutions (8) and (9), then, after changing the integration

variables from s to a according to ds =
(

da
ds

)−1
da we obtain:

− 4π2
∫ s̄−δs

0

ds
C(s)

f
∣∣
φnlm=φA,B

nlm
= ±4π3Mp

√
3(3λ− 1)

∫ ā−δa

a0

√
−αA,B

1 a2 + αA,B
2 +

αA,B
3
a2 + VA,B

0 a4da, (48)

where

αA.B
1 = 6π2M2

p − c1VA,B
1 ,

αA,B
2 = 12π2(3g2 + g3) + c2VA,B

2 ,

αA,B
3 =

24π2

M2
p
(9g4 + 3g5 + g6) + c3VA,B

3 .

(49)

Therefore, substituting Equations (41), (44), (46), (47) and (48) back into (38) we obtain:

±Γ = ± 4π3 Mp
√

3(3λ−1)
h̄

[∫ ā−δa
a0

F
(
αB

1 , αB
2 , αB

3 , VB
0 , a

)
da −

∫ ā−δa
a0

F
(
αA

1 , αA
2 , αA

3 , VA
0 , a

)
da
]
+ 2π2

h̄

[
ā3T0 + c1 āT1 +

c2
ā T2 +

c3
ā3 T3

]
. (50)

where we have defined the function:

F(a, b, c, e, x) =
√

ax2 − b− c
x2 − ex4, (51)

and it is worth noting that in the above result, the sign ambiguity on the left-hand side
comes from the arguments leading to Equation (11), whereas the one on the right comes
from the fact that the general solution (8) and (9) for the system of equations gives a solution
for C2(s), which produces a sign ambiguity in Equation (48). Therefore, both ambiguities
are independent to each other.

As it is well known, the IR limit of HL gravity for an FLRW metric is achieved in the
limit λ→ 1 and a >> 1, and corresponds to GR with an extra degree of freedom albeit with
the instability problems mentioned in the introduction section. We note that the kinetic
term for the scale factor in (28) is:

− 2π2

[
3M2

paȧ2

2N
(3λ− 1)

]
. (52)

In the GR case considered in [11], it is given by:

− 3aȧ2

N
, (53)

because the 2π2 term in that case is a global multiplicative factor to the full lagrangian, it
can therefore be ignored. Thus, in order to obtain the same kinetic term in both cases in the
limit λ → 1, we consider units such as 2π2M2

p = 1. This choice of units will allow us to
directly compare the transition probability to the one obtained in GR.

Then, we finally obtain for the logarithm of the transition probability:

±Γ = ± 2π2
√

6(3λ−1)
h̄

[∫ ā−δa
a0

F
(
αB

1 , αB
2 , αB

3 , VB
0 , a

)
da −

∫ ā−δa
a0

F
(
αA

1 , αA
2 , αA

3 , VA
0 , a

)
da
]
+ 2π2

h̄

[
ā3T0 + c1 āT1 +

c2
ā T2 +

c3
ā3 T3

]
(54)
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with

αA.B
1 = 3− c1VA,B

1 ,

αA,B
2 = 12π2(3g2 + g3) + c2VA,B

2 ,

αA,B
3 = 48π3(9g4 + 3g5 + g6) + c3VA,B

3 .

(55)

We note that in contrast to the results obtained using GR for all the types of metrics
considered in [11], this transition probability is described by five parameters, and by
extremizing the latter with respect to ā we can at most reduce them by one. It is also
important to note that the above integrals cannot be performed explicitly for any values
of the αi constants. Nonetheless, it is an expression valid for any value of the potentials
and, interestingly, it is a general expression that does not depend on having to consider the
different modes contributing to the expansion in Equation (24) separately.

As it is explained in [10,11], the choice of s as in (33) is useful to obtain exact solutions
for the transition probabilities that lead to the same solutions as the ones obtained using
euclidean methods. However, there is also room to consider s in different ways. For
example, we can also choose s as the distance in field space. This choice allows us to show
that we can have classical transitions just because the metric in superspace for the WDW
equation considered here coming from the Hamiltonian constraint (30) is non-positive
definite, as is the case for all the metrics considered in [11].

Now that we have computed the transition probability for HL gravity in general, let
us consider its two limits of importance, namely, the infrared and the ultraviolet limit. The
first enables us to directly compare with the result found by using GR and the latter allows
us to highlight the contributions for high energies that marks the importance of HL gravity.

Taking the IR limit of (54), that is, taking λ→ 1 and a >> 1, we obtain:

± ΓIR = ∓4π2

h̄

√
1
3

 (αB
1 )

3/2

VB
0

(
1−

VB
0

αB
1

a2

)3/2∣∣∣∣ā−δa

a0

−
(αA

1 )
3/2

VA
0

(
1−

VA
0

αA
1

a2

)3/2∣∣∣∣ā−δa

a0

+
2π2

h̄

[
ā3T0 + c1 āT1

]
. (56)

Therefore, we find in the infrared an expression quite similar to the GR result plus one
degree of freedom extra coming from the c1 term in the action for the scalar field (26) as
expected. In order to directly compare our result to the result obtain for GR, we can, for the
moment, set c1 = 0, then the last result simplifies to:

± ΓIR = ∓12π2

h̄

 1
VB

0

(
1−

VB
0
3

a2

)3/2∣∣∣∣ā−δa

a0

− 1
VA

0

(
1−

VA
0
3

a2

)3/2∣∣∣∣ā−δa

a0

+
2π2

h̄
ā3T0, (57)

that is the same result obtained for GR in [10,11]. The only difference comes in the choice
of a0, since for the consistency of the integral approximation we have here that a0 >> 1,
therefore, it cannot be chosen to be zero. Thus, the difference between this result and the
GR one are only constants. We also note that the potential appearing in this expression is
not the potential found originally in the scalar field action, rather it is an effective potential
appearing after integration of the harmonic functions. Considering the thin wall limit
δa→ 0 and extremizing the above result with respect to ā we obtain:

T0 = ±2

√ 1
ā2 −

VA
0
3
−

√
1
ā2 −

VB
0
3

. (58)

Then substituting it back into Equation (57) and choosing the plus sign in the right-
hand side we obtain:
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±ΓIR = 12π2

h̄

{
1

VB
0

[(
1− VB

0
3 ā2

)3/2
−
(

1− VB
0
3 a2

0

)3/2
]

− 1
VA

0

[(
1− VA

0
3 ā2

)3/2
−
(

1− VA
0
3 a2

0

)3/2
]
− ā2

3

(√
1− VA

0
3 ā2 −

√
1− VB

0
3 ā2

)}
.

(59)

Therefore, in this limit, the transition probability is finally described in terms of just
one parameter (considering a0 as a constant).

If we take a0 = 0 in (57), consider the thin wall limit and rename V0 → V and T0 → T,
we obtain the result found in [10,11] for GR:

± ΓGR = ∓12π2

h̄

[
1

VB

(
1− VB

3
a2
)3/2∣∣∣∣ā

a0

− 1
VA

(
1− VA

3
a2
)3/2∣∣∣∣ā

a0

]
+

2π2

h̄
ā3T, (60)

then, extremizing we obtain:

T = ±2

(√
1
ā2 −

VA
3
−
√

1
ā2 −

VB
3

)
. (61)

Thus, finally the logarithm of the transition probability in GR is written in terms of
just one parameter as:1

± ΓGR =
12π2

h̄

{
1

VB

[(
1− VB

3
ā2
)3/2

− 1

]
− 1

VA

[(
1− VA

3
ā2
)3/2

− 1

]
− ā2

3

(√
1− VA

3
ā2 −

√
1− VB

3
ā2

)}
. (62)

We can see from (61) that since VA > VB choosing the plus sign on the right-hand side
of (60) implies that T > 0 always. The same is true regarding T0. As we know from [10,11],
this choice of sign allows us to obtain the results found using the euclidean approach in [32].
It can be proven that the right-hand side of (62) is always positive and, therefore, in order
to have a well-defined probability defined by (12) we choose the plus sign in the left-hand
side as well. We note, however, from (58) and (61) that in order to have a well-defined
tension we need the terms inside the square roots to be positive. If both potential minima
are negative, we see that this is indeed satisfied for all values of ā. However, if at least one
of the potential minima is positive, we see that the tension will only be well defined until ā
is big enough, that is, in this case, the tension term is well defined and consequently the
expressions (59) and (62) are valid only in an interval from 0 until an upper bound for ā.

Let us study now the ultraviolet limit, this is found when a << 1. In this limit
Equation (54) simplifies to:

± ΓUV = ±2π2
√

6(3λ− 1)
h̄

[(√
−αB

3 −
√
−αA

3

)
ln a
∣∣∣∣ā−δa

a0

]
+

2π2

h̄

[ c2

ā
T2 +

c3

ā3 T3

]
. (63)

We note, however, that since all gn are positive, and the V3 function defined in (45)
is also positive for both minima, the first term is purely imaginary. Therefore, it does not
contribute to the transition probability at all and it can be ignored. Thus, we finally obtain
in this limit:

± ΓUV =
2π2

h̄

[ c2

ā
T2 +

c3

ā3 T3

]
. (64)

However, this expression does not have an extremal with respect to ā. Then, in this
case, the probability is described by three independent parameters. For consistency with
the GR result, we will choose the plus sign in the left-hand side of the latter equation,
therefore, we note that in order to have a well-defined probability we need the overall sign
of the right-hand side to be positive. Thus, we can choose both T2 and T3 to take always
positive values.
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We can see from the GR result (60), or after extremizing (62), that in any case
P(A→ B)→ 1 when ā → 0,. However, for the UV limit of HL presented in (64) we
have in the contrary P(A → B) → 0 when ā → 0 and then the probability increases as ā
increases. Therefore, in this case the UV behavior is completely different for both theories.

Now that we have studied the two limits of interest. We proceed to compare the full
result for the transition probability valid for all ā (54) to the GR result. As we have said,
for consistency with GR we are going to choose the plus sign in the left-hand side and the
minus sign in the right, and use the thin wall limit, therefore, we will consider:

Γ = − 2π2
√

6(3λ−1)
h̄

[∫ ā
a0

F
(
αB

1 , αB
2 , αB

3 , VB
0 , a

)
da

−
∫ ā

a0
F
(
αA

1 , αA
2 , αA

3 , VA
0 , a

)
da
]
+ 2π2

h̄

[
ā3T0 + c1 āT1 +

c2
ā T2 +

c3
ā3 T3

]
.

(65)

If we want to vary (65), we will obtain an expression involving the tension terms and
the functions F(αA,B

1 , αA,B
2 , αA,B

3 , VA,B, ā). However, since those functions are defined in
terms of square roots, we need the terms inside to be non-negative in order to have well
defined tension terms, that is we need that:

αA,B
1 ā2 − αA,B

2 −
αA,B

3
ā2 −VA,B

0 ā4 ≥ 0. (66)

We note that in the best scenario, the latter expression implies only a lower bound
on ā coming from the α3 term. In the other cases, it could happen that we obtain a lower
and an upper bound for ā, that is the tension terms would only be well defined over a
specific interval, or it could even happen that the latter expression is not satisfied at all for
any value of ā and in that case (65) would not have an extremal. In any case, we see that
the extremizing procedure is very dependent on the many parameters of the theory and
does not allow us to obtain well-defined tension terms in general, in particular, we never
have access to the UV region. Therefore, in order to avoid these difficulties, we are going
to compare the results obtained before the extremizing procedure takes place, that is, we
will use for the comparison the GR result (60) choosing the signs already mentioned and
the HL result (65). Since the HL expression depends on many independent parameters
and the integrals cannot be made for any values of the constants involved, we are going to
evaluate numerically this expression. Since in the IR limit we saw that after extremizing
T0 and T are always positive, we are going to take positive values for these parameters.
On the other hand, in the UV limit we saw that we can take T2 and T3 also to be positive.
Finally, in order to obtain a well defined probability, we are also going to choose positive
values for the remaining free parameter T1. Thus, we will take positive values for all the
tension terms.

In Figure 1, we show a plot of the transition probabilities coming from the two theories.
We choose units such as 24π2

h̄ = 1. For the GR result (blue line), we choose VA = 1, VB = 0.1
and T = 2. We note that in this case, the first term in (60) is negative, therefore, we need to
choose a value for T great enough to obtain a well-defined probability. We see the behavior
outlined earlier, that is, the probability goes to 1 in the limit ā→ 0 and then it decreases as ā
increases going to zero. For the HL plots, we choose VA

0 = 1, VB
0 = 0.1, αA

1 = αA
2 = αA

3 = 5,
αB

1 = αB
2 = αB

3 = 4, T0 = 2 and c1T1 = c2T2 = c3T3 = 1, we plot the probability for three
different values of λ to see how this parameter affects the behavior. In this case, we choose
a0 = 0.000001 in order to compute the integral numerically, however, we know from the
UV analysis, that a0 = 0 can be chosen without any problem and the general form will be
unaltered. In this case, we also have that the first term in (65) is negative and increases
with λ, therefore, we also need to make sure that the tensions chosen are big enough to
have a well-defined probability. This figure shows the behavior that we described earlier
by studying the different limits of interest. That is, in the IR region, the probability falls in
the same manner as the GR result. We note that ā has to be big enough so the first term
can be positive and then contribute to the probability, therefore, the different values of λ
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only affect the curve in the IR region and as λ increases, the probability increases since this
term has the opposite sign than the tension terms. In the UV region, the parameter λ has
no impact at all, and then, everything is defined by the tension terms. As we have said
earlier, the probability goes to 0 as ā → 0 and then it increases with ā. We note that this
behavior comes from the c2 and c3 terms, that is, it comes from the extra terms in the action
for the scalar field (18) and it can be interpreted as the fact that HL avoids the singularity
and predicts these types of transitions to occur in a UV regime (small ā) but not too close to
the singularity. Then, the probability starts to decrease and then it goes into the IR behavior
just described. We note that the general form of the plot will be maintained regardless of
the values of the parameters, we only have to make sure that they are chosen in a way
that the tension terms dominate so we can have a well-defined probability. However,
specific things such as the maximum height or the point in which both plots match is
completely determined by the parameters and, therefore, we cannot say something about
them in general.

Figure 1. Transition probability in units such that 24π2

h̄ = 1, with VA = VA
0 = 1, VB = VB

0 = 0.1,
αA

1 = αA
2 = αA

3 = 5, αB
1 = αB

2 = αB
3 = 4, T = T0 = 2, c1T1 = c2T2 = c3T3 = 1, for GR (blue line) and

HL with a scalar field depending on all spacetime variables with λ = 0.5 (red line), λ = 1 (green line)
and λ = 2 (yellow line). For HL we choose a0 = 0.000001 but the same form is expected for a0 = 0.

In the present section, we have obtained a general formula (65) for the transition
probability when the scalar field depends on all spacetime variables. The integrals involved
cannot be performed in an analytic form, however, a numerical computation was performed
and we showed a plot comparing the results with the one coming from GR. As we pointed
out earlier, the UV behavior is found to be completely opposite. This result depends on
the extra terms in the action for the scalar fields, however, these terms are only present if
we take a field that depends on the spatial variables. Therefore, in the next section we are
going to study a scalar field depending only on the time variable.

Phenomenological Remarks

Before we end this section, let us discuss some phenomenological aspects regarding
our results. The theory of Hořava–Lifshitz has received a lot of attention and much work has
been performed since its first proposal from the theoretical, as well as the phenomenological,
point of view. For example, in [33–35] the viability of the different versions of the theory
have been tested against various experimental (or observational) data sets coming from
different sources such as CMB and BAO collaborations. It is found that the theory is in
good agreement with such data, and therefore, it supports the importance of considering
it as a viable theory. It is also interesting to point out that in these works they always
work with an FLRW metric with a non-zero curvature since the flat metric gives the same
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predictions as in General Relativity. Thus, the importance of studying such metrics as the
one we studied in the present article is also supported by these works.

On the other hand, in the vacuum decay process studied by using the euclidean
method, discussed in [3], the process is described by the nucleation of true vacuum bub-
bles and its corresponding expansion. This could lead to phenomenological predictions
regarding this kind of phase transitions occurring at some point in the evolution of the
universe. However, as it was pointed out in [10] the process studied by using a Hamiltonian
approach in the minisuperspace is limited. In fact, in the transition studied, there is no
notion of bubble nucleation, we can only compare two configurations of three-metrics
and then interpret its ratio as a transition probability. Therefore, it is speculated that this
formalism is not describing the same process as the euclidean method. It is believed that
it may describe a generalization of the tunneling from nothing scenario, that is, we are
obtaining probability distributions of creating universes from a tunneling event between
two minima of the scalar potential. If we take seriously this interpretation, then the scale
factor ā appearing in the expression found for the transition probability would correspond
to the value that the scale factor of the created universe would have at the time of creation
(its corresponding ‘size’). Then, the plot in Figure 1 would tell us that in Hořava–Lifshitz
gravity, in the case in which the scalar field depends on the spatial variables, the universe
would be created with a scalar factor different from zero, and therefore, we would avoid
the singularity contrary to GR which predicts a singularity at the beginning of the universe.
This, of course, would have potential phenomenological consequences in the physics of the
early universe and its corresponding evolution. Therefore, although we are in a speculating
phase, these kinds of transitions are worth studying in more detail.

5. Transitions for a Time-Dependent Scalar Field

In the previous sections, we studied a scalar field depending on all coordinates of
spacetime and found a transition probability whose behavior differs completely in the UV
regime comparing to the GR result. However, in cosmology it is more common to study a
scalar field depending only on the time variable as is the case in [29,36,37]. Therefore, in
this section we will consider such a dependence for the scalar field and study the vacuum
transition probability between two minima of the potential.

In this case, the scalar field action (18) reduces to:

Sm = 2π2
∫

dta3(t)
[

3λ− 1
4N2 φ̇2 − NV(φ)

]
, (67)

where we have redefined the scalar field potential appearing in (19) as V
2 → V so it coincides

with the usual scalar potential in the action. Since now we have a global factor of 2π2 as in
the action of the gravitational part (16), we can omit this factor. Then, the lagrangian this
time is given by:

L = N

[
−

3M2
p ȧ2a

2N2 (3λ− 1) + 3M2
pa− 6

a
(3g2 + g3)−

12
a3M2

p
(9g4 + 3g5 + g6)

]
+ a3

[
3λ− 1

4N
φ̇2 − NV

]
. (68)

Therefore, we have only two degrees of freedom a and φ, their canonical momenta are:

πa = −
3(3λ− 1)M2

p

N
aȧ, πφ =

(3λ− 1)a3

2N
φ̇, (69)

and the Hamiltonian constraint takes the form:

H = N

[
π2

φ

a3(3λ− 1)
− π2

a
6(3λ− 1)M2

pa
− 3M2

pa +
6
a
(3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6) + a3V(φ)

]
' 0. (70)
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Comparing this last expression to the general form considered in Equation (1), we
note that in this case the coordinates in superspace are {a, φ} with inverse metric:

Gφφ =
2

(3λ− 1)a3 , Gaa = − 1
3(3λ− 1)M2

pa
, (71)

and we also have

f (a, φ) = −3M2
pa +

6
a
(3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6) + a3V(φ). (72)

In order to study transitions between two minima of the potential, we choose the
parameter s as in expression (33), then, following a similar procedure as in the previous
section, we obtain in this case that choosing units such as Mp = 1 (as in the GR case) and
in the thin wall limit, the logarithm of the transition probability is written as:

± Γ = ±2π2
√

6(3λ− 1)
h̄

[∫ ā

a0

F(3, ᾱ2, ᾱ3, VB, a)da−
∫ ā

a0

F(3, ᾱ2, ᾱ3, VA, a)da
]
+

2π2

h̄
ā3T, (73)

where
ᾱ2 = 6(3g2 + g3), ᾱ3 = 12(9g4 + 3g5 + g6), (74)

the function F is defined in (51) and as we have mentioned in Section 4, the sign ambiguities
in the last expression are independent.

Now that we have computed the transition probability in general, we move on to
study its behavior in the limiting cases considered before. For the IR behavior, we consider
λ→ 1 and a >> 1 in the above expression, the result is the same as in (57) with the same
subtlety about a0 as discussed in the previous section. On the other hand, in the UV limit
we have a << 1. However, in this limit we obtain Γ→ 0 as ā→ 0. Therefore, we note that
the general behavior of these results is the same as the GR result in both extreme cases.
In fact, we can variate (73) with respect to ā to obtain:

T = ±
√

6(3λ− 1)
3ā2 [F(3, ᾱ2, ᾱ3, VA, ā)− F(3, ᾱ2, ᾱ3, VB, ā)]. (75)

Substituting it back in (73) we obtain finally:

±2Re[Γ] = ± 4π2
√

6(3λ−1)
h̄ Re

[∫ ā
a0

F(3, ᾱ2, ᾱ3, VB, a)da−
∫ ā

a0
F(3, ᾱ2, ᾱ3, VA, a)da

+ ā
3{F(3, ᾱ2, ᾱ3, VA, ā)− F(3, ᾱ2, ᾱ3, VB, ā)}

]
.

(76)

Thus, the transition probability is also written in terms of just one parameter as in
the GR result. Therefore, the only difference between GR and HL in this case is that
the transition probability changes by acquiring two more terms in the square root before
integration, making the integral not possible to be performed in general and a global factor
depending on λ in (76). The qualitative behavior in both the IR and UV limit is unaltered.

In order to compare the result of this section with that of GR in general, not only on
the limiting cases, we note that as in the last section, the extremizing procedure leading to
Equation (75) gives rise to some restrictions for the validity of (76). In particular, it is never
well defined when ā is small. Therefore, we are going to use the result (73) and choose the
minus sign in the right-hand side so in the IR limit it coincides with the GR result and on
the left-hand side we will choose the plus sign in accordance with the GR result as well.
We will compare it with the GR result (60) with the sign choices made in the above section.
In both cases, we will take the tension T as an independent positive parameter and take
values big enough so we can have a well-defined probability and compute the integrals
numerically. In Figure 2, we show such a comparison. We choose units such as 24π2

h̄ = 1,
with VA = −1, VB = −10, ᾱ2 = ᾱ3 = 5 and T = 5. For the HL result we show plots for
three values of λ and choose a0 = 0.000001 in order to perform a numerical computation
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of the integrals, however, doing the UV limit we note that a0 = 0 is possible and it has
the same behavior. This figure shows the limiting behavior that we described earlier, that
is, in the IR and in the UV limits all curves behave in the same way, it is in the middle
region where their behavior is modified. In particular, we note that in the beginning the
HL probability is smaller than the one of GR, and the contribution of the λ parameter is not
noticeable; however, when the first term in (73) is big enough, the contribution of the first
term is big enough to separate the curves, and as in the case considered in the previous
section, as λ increases the probability increases. Finally, the three probabilities fall as in the
GR case.

Figure 2. Transition probability in units such that 24π2

h̄ = 1, with VA = −1, VB = −10, ᾱ2 = ᾱ3 = 5
and T = 5, for GR (blue line) and HL with a scalar field depending only on the time variable with
λ = 0.5 (red line), λ = 1 (green line) and λ = 2 (yellow line). For HL we choose a0 = 0.000001 but
the same form is expected for a0 = 0.

6. Final Remarks

In the present article, we have studied the transition probabilities for an FLRW metric
in Hořava–Lifhitz gravity using a WKB approximation to the WDW equation. The general
procedure proposed in [10,11] was found to be applicable to this case. We used HL theory
without detailed balance and consider an FLRW metric with positive spatial curvature.

We considered two types of scalar fields. First, since the anisotropic scaling between
space and time variables is a key ingredient of HL theory, we considered a scalar field
which depends on all spacetime variables. This type of dependence is useful to study
cosmological perturbations coming from scalar fields [26]. On the other hand, since in
cosmology it is customary to propose an ansatz in which the scalar field depends only on
the time variable, we studied this kind of dependence as well. For both cases, we found
analytic expressions for the logarithm of the transition probabilities in the thin wall limit.

For the scalar field, depending on all spacetime variables, the transition probability (65)
was found to depend on five different parameters coming from the new terms present in the
action for gravity, as well as the action from the scalar field in HL theory. There is only the
possibility to reduce just one of these parameters after an extremizing procedure but such a
procedure is not well defined for all values of the scale factor. Taking the IR limit we found
that one degree of freedom extra coming from the scalar field action survives, which is a
common issue regarding the IR limit of HL theory. However, if we ignore this contribution,
we can obtain an expression that differs from the GR result just by constants. In the opposite
limit, that is, in the UV limit, we found that the probability is described in terms of three
independent parameters and it vanishes in the limit ā→ 0. This is opposite to the GR result
in which the probability goes to 1 in that limit. We interpret this result as a way in which
HL theory avoids the spatial singularity at ā = 0 and predicts these transitions to occur on
the UV regime but away from the singularity. We note that this behavior comes from the
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terms in the scalar field action with spatial derivatives, and therefore, it is only possible
in the case in which the scalar field depends on the spatial variables. In order to visualize
these behaviors, we plotted the transition probabilities coming from GR and HL theory.
Such plots were presented in Figure 1. For the HL results, the integrals involved were
performed numerically and we saw that in all cases the probability begins at zero with
ā = 0, then it increases with ā until at some point it starts to decrease and then it behaves as
in the GR case. We noted that the first behavior in the UV region is independent of the λ
parameter and it is only on the IR where the dependence on this parameter is noticeable
making the probability increase as λ increases.

For the scalar field depending only on the time variable, the logarithm of the transition
probability found have the same number of independent parameters as the GR result, that
is, after extremizing we only have one parameter left. However, it also has dependence
on the many constants gn appearing in the extra terms in the gravity action for HL theory,
as well as in the parameter λ. The behavior of the probability in this case is found to be
the same as the GR result in both the IR, as well as the UV limits. In fact, in the IR limit,
we obtain the same expression as the one coming from the scalar field with dependence
in all spacetime variables when we ignore the degree of freedom that survives this limit
and in the UV regime we also found that the probability goes to 1 in the limit ā → 0.
Therefore, with a cosmological ansatz, the behavior in the UV regime found by using GR
is unaltered. However, in the intermediate region, the probability is of course modified.
In order to visualize the difference in this region, we plotted the transition probabilities
coming from GR and HL theory and showed them in Figure 2. In this case, we also carried
out a numerical computation of the integrals involved in the HL result. We noted that, at
first, the probability of HL is smaller than GR and the contribution from the λ parameter is
not noticeable. However, when the scale factor is big enough, this contribution is important
and, as in the latter case, the probability increases with λ. It is interesting to note that
using HL theory instead of GR for a cosmological ansatz of the scalar field does not have a
dramatic change on the transition probability at least at the semi-classical level we used in
this article through the WKB approximation.

It is worth pointing out that we have used a WKB approximation and kept only up
to first order in the expansion. However, this level of semi-classical approximation is
sufficient to obtain the transition probabilities and we can safely explore the UV regime of
both GR, as well as HL theory, since the transition probabilities are well-behaved functions
in the UV. It was shown that in the case when the scalar field is only dependent on
the cosmological time, GR and HL theories give very similar predictions in the WKB
approximation. However, the case with a dependence on time and position coordinates
for the scalar field, yields very different behavior from the GR case even in the WKB
approximation. It would be interesting to work out higher order contributions from the
WKB approximation, which presumably will have the contribution of quantum fluctuations.

It is important to remark as well, that we considered closed universes in the HL theory
and obtained well-defined transition probabilities. Therefore, one of the important results
obtained in Ref. [10] that asserts that these types of transitions can be carried out keeping the
closeness of the spatial universe can certainly be extended to include the Hořava–Lifshitz
theory of gravity as well.
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Note
1 We note that in [11] we miswrote the sign of the last term in Equation (62).
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23. Obregon, O.; Preciado, J.A. Quantum cosmology in Hořava-Lifshitz gravity. Phys. Rev. D 2012, 86, 063502. [CrossRef]
24. Benedetti, D.; Henson, J. Spacetime condensation in (2+1)-dimensional CDT from a Hořava–Lifshitz minisuperspace model. Class.
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